summaryrefslogtreecommitdiffstatshomepage
path: root/src/mame/drivers/fidelz80.cpp
blob: ebfbf1455e692411671632def419c359bd42154b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
// license:BSD-3-Clause
// copyright-holders:Kevin Horton,Jonathan Gevaryahu,Sandro Ronco,hap
/******************************************************************************
*
*  Fidelity Electronics Z80 based board driver
*
*  All detailed RE work done by Kevin 'kevtris' Horton
*
*  TODO:
*  * Figure out why it says the first speech line twice; it shouldn't?
*    It sometimes does this on Voice Sensory Chess Challenger real hardware.
*    It can also be heard on Advanced Talking Chess Challenger real hardware, but not the whole line:
*    "I I am Fidelity's chess challenger", instead.
*  * Get rom locations from pcb (done for UVC, VCC is probably similar)
*  * correctly hook up VBRC speech so that the z80 is halted while words are being spoken
*
***********************************************************************

Talking Chess Challenger (VCC)
Advanced Talking Chess Challenger (UVC)
(which both share the same hardware)
----------------------

The CPU is a Z80 running at 4MHz.  The TSI chip runs at around 25KHz, using a
470K / 100pf RC network.  This system is very very basic, and is composed of just
the Z80, 4 ROMs, the TSI chip, and an 8255.


The Z80's interrupt inputs are all pulled to VCC, so no interrupts are used.

Reset is connected to a power-on reset circuit and a button on the keypad (marked RE).

The TSI chip connects to a 4K ROM.  All of the 'Voiced' Chess Challengers
use this same ROM  (three or four).  The later chess boards use a slightly different part
number, but the contents are identical.

Memory map (VCC):
-----------
0000-0FFF: 4K 2332 ROM 101-32103
1000-1FFF: 4K 2332 ROM VCC2
2000-2FFF: 4K 2332 ROM VCC3
4000-5FFF: 1K RAM (2114 SRAM x2)
6000-FFFF: empty

Memory map (UVC):
-----------
0000-1FFF: 8K 2364 ROM 101-64017
2000-2FFF: 4K 2332 ROM 101-32010
4000-5FFF: 1K RAM (2114 SRAM x2)
6000-FFFF: empty

I/O map:
--------
00-03: 8255 port chip, mirrored over the 00-FF range; program accesses F4-F7


8255 connections:
-----------------

PA.0 - segment G, TSI A0 (W)
PA.1 - segment F, TSI A1 (W)
PA.2 - segment E, TSI A2 (W)
PA.3 - segment D, TSI A3 (W)
PA.4 - segment C, TSI A4 (W)
PA.5 - segment B, TSI A5 (W)
PA.6 - segment A, language latch Data (W)
PA.7 - TSI START line, language latch clock (W, see below)

PB.0 - dot commons (W)
PB.1 - NC
PB.2 - digit 0, bottom dot (W)
PB.3 - digit 1, top dot (W)
PB.4 - digit 2 (W)
PB.5 - digit 3 (W)
PB.6 - enable language switches (W, see below)
PB.7 - TSI DONE line (R)

(button rows pulled up to 5V through 2.2K resistors)
PC.0 - button row 0, German language jumper (R)
PC.1 - button row 1, French language jumper (R)
PC.2 - button row 2, Spanish language jumper (R)
PC.3 - button row 3, special language jumper (R)
PC.4 - button column A (W)
PC.5 - button column B (W)
PC.6 - button column C (W)
PC.7 - button column D (W)


language switches:
------------------

When PB.6 is pulled low, the language switches can be read.  There are four.
They connect to the button rows.  When enabled, the row(s) will read low if
the jumper is present.  English only VCC's do not have the 367 or any pads stuffed.
The jumpers are labelled: French, German, Spanish, and special.


language latch:
---------------

There's an unstuffed 7474 on the board that connects to PA.6 and PA.7.  It allows
one to latch the state of A12 to the speech ROM.  The English version has the chip
missing, and a jumper pulling "A12" to ground.  This line is really a negative
enable.

To make the VCC multi-language, one would install the 74367 (note: it must be a 74367
or possibly a 74LS367.  A 74HC367 would not work since they rely on the input current
to keep the inputs pulled up), solder a piggybacked ROM to the existing English
speech ROM, and finally install a 7474 dual flipflop.

This way, the game can then detect which secondary language is present, and then it can
automatically select the correct ROM(s).  I have to test whether it will do automatic
determination and give you a language option on power up or something.


***********************************************************************

Chess Challenger 3/10
----------------------

This is an earlier hardware upon which the VCC and UVC above were based on;
The hardware is nearly the same; in fact the only significant differences are
the RAM being located in a different place, the lack of a speech chip, and
the connections to ports A and B on the PPI:

8255 connections:
-----------------

PA.0 - segment G (W)
PA.1 - segment F (W)
PA.2 - segment E (W)
PA.3 - segment D (W)
PA.4 - segment C (W)
PA.5 - segment B (W)
PA.6 - segment A (W)
PA.7 - 'beeper' direct speaker output (W)

PB.0 - dot commons (W)
PB.1 - NC
PB.2 - digit 0, bottom dot (W)
PB.3 - digit 1, top dot (W)
PB.4 - digit 2 (W)
PB.5 - digit 3 (W)
PB.6 - NC
PB.7 - Mode select (cc3 vs cc10, R)

(button rows pulled up to 5V through 2.2K resistors)
PC.0 - button row 0 (R)
PC.1 - button row 1 (R)
PC.2 - button row 2 (R)
PC.3 - button row 3 (R)
PC.4 - button column A (W)
PC.5 - button column B (W)
PC.6 - button column C (W)
PC.7 - button column D (W)


******************************************************************************

Voice Bridge Challenger (Model VBRC, later reissued as Model 7002)
and Bridge Challenger 3 (Model 7014)
(which both share the same* hardware)
--------------------------------
* The Bridge Challenger 3 does not actually have the 8 LEDs nor the
latches which operate them populated and the plastic indicator cap locations
are instead are covered by a piece of plastic, but they do work if manually
added.

This unit is similar in construction kinda to the chess challengers, however it
has an 8041 which does ALL of the system I/O.  The Z80 has NO IO AT ALL other than
what is performed through the 8041!

The main CPU is a Z80 running at 2.5MHz

INT connects to VCC (not used)
NMI connects to VCC (not used)
RST connects to power on reset, and reset button

The 8041 runs at 5MHz.

Memory Map:
-----------

0000-1FFF: 8K 101-64108 ROM
2000-3FFF: 8K 101-64109 ROM
4000-5FFF: 8K 101-64110 ROM
6000-7FFF: 1K of RAM (2114 * 2)
8000-DFFF: unused
E000-FFFF: write to TSI chip

NOTE: when the TSI chip is written to, the CPU IS STOPPED.  The CPU will run again
when the word is done being spoken.  This is because D0-D5 run to the TSI chip directly.

The TSI chip's ROM is 4K, and is marked 101-32118.  The clock is the same as the Chess
Challengers- 470K/100pf which gives a frequency around 25KHz or so.

I/O Map:
--------

00-FF: 8041 I/O ports (A0 selects between the two)


8041 pinout:
------------

(note: columns are pulled up with 10K resistors)

P10 - column H, RD LED, VFD grid 0
P11 - column G, DB LED, VFD grid 1
P12 - column F, <>V LED, VFD grid 2
P13 - column E, ^V LED, VFD grid 3
P14 - column D, W LED, VFD grid 4
P15 - column C, S LED, VFD grid 5
P16 - column B, E LED, VFD grid 6
P17 - column A, N LED, VFD grid 7

P20 - I/O expander
P21 - I/O expander
P22 - I/O expander
P23 - I/O expander
P24 - row 0 through inverter
P25 - row 1 through inverter
P26 - row 2 through inverter
P27 - row 3 through inverter

PROG - I/O expander

T0 - optical card sensor (high = bright/reflective, low = dark/non reflective)
T1 - connects to inverter, then nothing


D8243C I/O expander:
--------------------

P4.0 - segment M
P4.1 - segment L
P4.2 - segment N
P4.3 - segment E

P5.0 - segment D
P5.1 - segment I
P5.2 - segment K
P5.3 - segment J

P6.0 - segment A
P6.1 - segment B
P6.2 - segment F
P6.3 - segment G

P7.0 - LED enable (high = LEDs can be lit.  low = LEDs will not light)
P7.1 - goes through inverter, to pads that are not used
P7.2 - segment C
P7.3 - segment H


button matrix:
--------------

the matrix is composed of 8 columns by 4 rows.

     A  B  C  D     E  F  G  H
     -------------------------
0-   RE xx CL EN    J  Q  K  A
1-   BR PB DB SC    7  8  9 10
2-   DL CV VL PL    3  4  5  6
3-   cl di he sp   NT  P  1  2

xx - speaker symbol
cl - clubs symbol
di - diamonds symbol
he - hearts symbol
sp - spades symbol

NOTE: RE is not wired into the matrix, and is run separately out.

There are 8 LEDs, and an 8 digit 14 segment VFD with commas and periods.
This display is the same one as can be found on the speak and spell.

       A       * comma
  ***********  *
 * *I  *J K* *
F*  *  *  *  *B
 *   * * *   *
  G**** *****H
 *   * * *   *
E*  *  *  *  *C
 * *N  *M L* *
  ***********  *decimal point
       D

The digits of the display are numbered left to right, 0 through 7 and are controlled
by the grids.  hi = grid on, hi = segment on.

A detailed description of the hardware can be found also in the patent 4,373,719.


******************************************************************************

Sensory Chess Challenger champion (6502 based, implementation is in drivers/csc.cpp)
---------------------------------

Memory map:
-----------
0000-07FF: 2K of RAM
0800-0FFF: 1K of RAM (note: mirrored twice)
1000-17FF: PIA 0 (display, TSI speech chip)
1800-1FFF: PIA 1 (keypad, LEDs)
2000-3FFF: 101-64019 ROM (also used on the regular sensory chess challenger)
4000-7FFF: mirror of 0000-3FFF
8000-9FFF: not used
A000-BFFF: 101-1025A03 ROM
C000-DFFF: 101-1025A02 ROM
E000-FDFF: 101-1025A01 ROM
FE00-FFFF: 512 byte 74S474 PROM

CPU is a 6502 running at 1.95MHz (3.9MHz resonator, divided by 2)

NMI is not used.
IRQ is connected to a 600Hz oscillator (38.4KHz divided by 64).
Reset is connected to a power-on reset circuit.


PIA 0:
------

PA0 - 7seg segments H, TSI A0
PA1 - 7seg segments G, TSI A1
PA2 - 7seg segments C, TSI A2
PA3 - 7seg segments B, TSI A3
PA4 - 7seg segments A, TSI A4
PA5 - 7seg segments F, TSI A5
PA6 - 7seg segments E
PA7 - 7seg segments D

PB0 - A12 on speech ROM (if used... not used on this model, ROM is 4K)
PB1 - START line on S14001A
PB2 - white wire
PB3 - DONE line from S14001A
PB4 - Tone line (toggle to make a tone in the speaker)
PB5 - button column I
PB6 - selection jumper (resistor to 5V)
PB7 - selection jumper (resistor to ground)

CA1 - NC
CA2 - violet wire

CB1 - NC
CB2 - NC (connects to pin 14 of soldered connector)


PIA 1:
------

PA0 - button row 1
PA1 - button row 2
PA2 - button row 3
PA3 - button row 4
PA4 - button row 5
PA5 - button row 6
PA6 - 7442 selector bit 0
PA7 - 7442 selector bit 1

PB0 - LED row 1
PB1 - LED row 2
PB2 - LED row 3
PB3 - LED row 4
PB4 - LED row 5
PB5 - LED row 6
PB6 - LED row 7
PB7 - LED row 8

CA1 - button row 7
CA2 - selector bit 3

CB1 - button row 8
CB2 - selector bit 2


Selector: (attached to PIA 1, outputs 1 of 10 pins low.  7442)
---------

output # (selected turns this column on, and all others off)
0 - LED column A, button column A, 7seg digit 1
1 - LED column B, button column B, 7seg digit 2
2 - LED column C, button column C, 7seg digit 3
3 - LED column D, button column D, 7seg digit 4
4 - LED column E, button column E
5 - LED column F, button column F
6 - LED column G, button column G
7 - LED column H, button column H
8 - button column I
9 -

The rows/columns are indicated on the game board:

 ABCDEFGH   I
--------------
|            | 8
|            | 7
|            | 6
|            | 5
|            | 4
|            | 3
|            | 2
|            | 1
--------------

The "lone LED" is above the control column.
column I is the "control column" on the right for starting a new game, etc.

The upper 6 buttons are connected as such:

column A - speak
column B - RV
column C - TM
column D - LV
column E - DM
column F - ST

these 6 buttons use row 9 (connects to PIA 0)


LED display:
------------

43 21 (digit number)
-----
88:88

The LED display is four 7 segment digits.  normal ABCDEFG lettering is used for segments.

The upper dot is connected to digit 3 common
The lower dot is connected to digit 4 common
The lone LED is connected to digit 1 common

All three of the above are called "segment H".


***********************************************************************

Sensory Chess Challenger
------------------------

The display/button/LED/speech technology is identical to the above product.
Only the CPU board was changed.  As such, it works the same but is interfaced
to different port chips this time.

Hardware:
---------

On the board are 13 chips.

The CPU is a Z80A running at 3.9MHz, with 20K of ROM and 1K of RAM mapped.
I/O is composed of an 8255 triple port adaptor, and a Z80A PIO parallel I/O
interface.

There's the usual TSI S14001A speech synth with its requisite 4K ROM which is the
same as on the other talking chess boards.  The TSI chip is running at 26.37KHz.
It uses a 470K resistor and a 100pf capacitor.

The "perfect" clock would be 1/RC most likely (actually this will be skewed a tad by
duty cycle of the oscillator) which with those parts values gives 21.27KHz.  The
formula is probably more likely to be 1/1.2RC or so.

Rounding out the hardware are three driver chips for the LEDs, a 7404 inverter to
run the crystal osc, a 555 timer to generate a clock, and a 74138 selector.

NMI runs to a 555 oscillator that generates a 600Hz clock (measured: 598.9Hz.  It has a multiturn pot to adjust).
INT is pulled to 5V
RST connects to a power-on reset circuit

Memory map:
-----------

0000-1FFF: 8K ROM 101-64018
2000-3FFF: 8K ROM 101-64019 (also used on the sensory champ. chess challenger)
4000-5FFF: 4K ROM 101-32024
6000-7FFF: 1K of RAM (2114 * 2)
8000-FFFF: not used, maps to open bus

I/O map:
--------

There's only two chips in the I/O map, an 8255 triple port chip, and a Z80A PIO
parallel input/output device.

Decoding isn't performed using a selector, but instead address lines are used.

A2 connects to /CE on the 8255
A3 connects to /CE on the Z80A PIO

A0 connects to port A/B select on PIO & A0 of 8255
A1 connects to control/data select on PIO & A1 of 8255

So to enable only the 8255, you'd write/read to 08-0Bh for example
To enable only the PIO, you'd write/read to 04-07h for example.

writing to 00-03h will enable and write to BOTH chips, and reading 00-03h
will return data from BOTH chips (and cause a bus conflict).  The code probably
never does either of these things.

Likewise, writing/reading to 0Ch-0Fh will result in open bus, because neither chip's
enable line will be low.

This sequence repeats every 16 addresses.  So to recap:

00-03: both chips enabled (probably not used)
04-07: PIO enabled
08-0B: 8255 enabled
0C-0F: neither enabled

10-FF: mirrors of 00-0F.

Refer to the Sensory Champ. Chess Chall. above for explanations of the below
I/O names and labels.  It's the same.


8255:
-----

PA.0 - segment D, TSI A0
PA.1 - segment E, TSI A1
PA.2 - segment F, TSI A2
PA.3 - segment A, TSI A3
PA.4 - segment B, TSI A4
PA.5 - segment C, TSI A5
PA.6 - segment G
PA.7 - segment H

PB.0 - LED row 1
PB.1 - LED row 2
PB.2 - LED row 3
PB.3 - LED row 4
PB.4 - LED row 5
PB.5 - LED row 6
PB.6 - LED row 7
PB.7 - LED row 8

PC.0 - LED column A, button column A, 7seg digit 1
PC.1 - LED column B, button column B, 7seg digit 2
PC.2 - LED column C, button column C, 7seg digit 3
PC.3 - LED column D, button column D, 7seg digit 4
PC.4 - LED column E, button column E
PC.5 - LED column F, button column F
PC.6 - LED column G, button column G
PC.7 - LED column H, button column H


Z80A PIO:
---------

PA.0 - button row 1
PA.1 - button row 2
PA.2 - button row 3
PA.3 - button row 4
PA.4 - button row 5
PA.5 - button row 6
PA.6 - button row 7
PA.7 - button row 8

PB.0 - button column I
PB.1 - button row 9
PB.2 - Tone line (toggle to make tone in the speaker)
PB.3 - violet wire
PB.4 - white wire (and TSI done line)
PB.5 - selection jumper input (see below)
PB.6 - TSI start line
PB.7 - TSI ROM D0 line


selection jumpers:
------------------

These act like another row of buttons.  It is composed of two diode locations,
so there's up to 4 possible configurations.  My board does not have either diode
stuffed, so this most likely is "English".  I suspect it selects which language to use
for the speech synth.  Of course you need the other speech ROMs for this to function
properly.

Anyways, the two jumpers are connected to button columns A and B and the common
connects to Z80A PIO PB.5, which basically makes a 10th button row.  I would
expect that the software reads these once on startup only.

******************************************************************************/

#include "emu.h"
#include "cpu/z80/z80.h"
#include "cpu/mcs48/mcs48.h"
#include "machine/i8255.h"
#include "machine/i8243.h"
#include "machine/z80pio.h"
#include "sound/speaker.h"
#include "sound/s14001a.h"

// internal artwork
#include "fidel_cc.lh"
#include "fidel_vcc.lh"
#include "fidel_vsc.lh"
#include "fidel_vbrc.lh"


class fidelz80_state : public driver_device
{
public:
	fidelz80_state(const machine_config &mconfig, device_type type, std::string tag)
		: driver_device(mconfig, type, tag),
		m_maincpu(*this, "maincpu"),
		m_mcu(*this, "mcu"),
		m_z80pio(*this, "z80pio"),
		m_ppi8255(*this, "ppi8255"),
		m_i8243(*this, "i8243"),
		m_inp_matrix(*this, "IN"),
		m_speech(*this, "speech"),
		m_speaker(*this, "speaker"),
		m_display_wait(33),
		m_display_maxy(1),
		m_display_maxx(0)
	{ }

	// devices/pointers
	required_device<cpu_device> m_maincpu;
	optional_device<i8041_device> m_mcu;
	optional_device<z80pio_device> m_z80pio;
	optional_device<i8255_device> m_ppi8255;
	optional_device<i8243_device> m_i8243;
	optional_ioport_array<10> m_inp_matrix; // max 10
	optional_device<s14001a_device> m_speech;
	optional_device<speaker_sound_device> m_speaker;

	// misc common
	UINT16 m_inp_mux;                   // multiplexed keypad/leds mask
	UINT16 m_led_select;             // 5 bit selects for 7 seg leds and for common other leds, bits are (7seg leds are 0 1 2 3, common other leds are C) 0bxx3210xc
	UINT16 m_7seg_data;            // data for seg leds
	UINT16 m_led_data;

	UINT16 read_inputs(int columns);
	DECLARE_INPUT_CHANGED_MEMBER(reset_button);

	// display common
	int m_display_wait;                 // led/lamp off-delay in microseconds (default 33ms)
	int m_display_maxy;                 // display matrix number of rows
	int m_display_maxx;                 // display matrix number of columns (max 31 for now)

	UINT32 m_display_state[0x20];       // display matrix rows data (last bit is used for always-on)
	UINT16 m_display_segmask[0x20];     // if not 0, display matrix row is a digit, mask indicates connected segments
	UINT32 m_display_cache[0x20];       // (internal use)
	UINT8 m_display_decay[0x20][0x20];  // (internal use)

	TIMER_DEVICE_CALLBACK_MEMBER(display_decay_tick);
	void display_update();
	void set_display_size(int maxx, int maxy);
	void display_matrix(int maxx, int maxy, UINT32 setx, UINT32 sety);

	// model VCC/UVC
	void vcc_prepare_display();
	DECLARE_WRITE8_MEMBER(vcc_ppi_porta_w);
	DECLARE_READ8_MEMBER(vcc_ppi_portb_r);
	DECLARE_WRITE8_MEMBER(vcc_ppi_portb_w);
	DECLARE_READ8_MEMBER(vcc_ppi_portc_r);
	DECLARE_WRITE8_MEMBER(vcc_ppi_portc_w);
	DECLARE_WRITE8_MEMBER(cc10_ppi_porta_w);

	// model VSC
	void vsc_prepare_display();
	DECLARE_READ8_MEMBER(vsc_io_trampoline_r);
	DECLARE_WRITE8_MEMBER(vsc_io_trampoline_w);
	DECLARE_WRITE8_MEMBER(vsc_ppi_porta_w);
	DECLARE_WRITE8_MEMBER(vsc_ppi_portb_w);
	DECLARE_WRITE8_MEMBER(vsc_ppi_portc_w);
	DECLARE_READ8_MEMBER(vsc_pio_porta_r);
	DECLARE_READ8_MEMBER(vsc_pio_portb_r);
	DECLARE_WRITE8_MEMBER(vsc_pio_portb_w);

	// model 7014 and VBC
	DECLARE_WRITE8_MEMBER(bridgec_speech_w);
	DECLARE_WRITE8_MEMBER(kp_matrix_w);
	DECLARE_READ8_MEMBER(unknown_r);
	DECLARE_READ8_MEMBER(unknown2_r);
	DECLARE_READ8_MEMBER(exp_i8243_p2_r);
	DECLARE_WRITE8_MEMBER(exp_i8243_p2_w);
	DECLARE_WRITE8_MEMBER(mcu_data_w);
	DECLARE_WRITE8_MEMBER(mcu_command_w);
	DECLARE_READ8_MEMBER(mcu_data_r);
	DECLARE_READ8_MEMBER(mcu_status_r);
	DECLARE_WRITE8_MEMBER(digit_w);

protected:
	virtual void machine_start() override;
	virtual void machine_reset() override;
};


// machine start/reset

void fidelz80_state::machine_start()
{
	// zerofill
	memset(m_display_state, 0, sizeof(m_display_state));
	memset(m_display_cache, ~0, sizeof(m_display_cache));
	memset(m_display_decay, 0, sizeof(m_display_decay));
	memset(m_display_segmask, 0, sizeof(m_display_segmask));

	m_inp_mux = 0;
	m_led_select = 0;
	m_led_data = 0;
	m_7seg_data = 0;

	// register for savestates
	save_item(NAME(m_display_maxy));
	save_item(NAME(m_display_maxx));
	save_item(NAME(m_display_wait));

	save_item(NAME(m_display_state));
	/* save_item(NAME(m_display_cache)); */ // don't save!
	save_item(NAME(m_display_decay));
	save_item(NAME(m_display_segmask));

	save_item(NAME(m_inp_mux));
	save_item(NAME(m_led_select));
	save_item(NAME(m_led_data));
	save_item(NAME(m_7seg_data));
}

void fidelz80_state::machine_reset()
{
}



/***************************************************************************

  Helper Functions

***************************************************************************/

// The device may strobe the outputs very fast, it is unnoticeable to the user.
// To prevent flickering here, we need to simulate a decay.

void fidelz80_state::display_update()
{
	UINT32 active_state[0x20];

	for (int y = 0; y < m_display_maxy; y++)
	{
		active_state[y] = 0;

		for (int x = 0; x <= m_display_maxx; x++)
		{
			// turn on powered segments
			if (m_display_state[y] >> x & 1)
				m_display_decay[y][x] = m_display_wait;

			// determine active state
			UINT32 ds = (m_display_decay[y][x] != 0) ? 1 : 0;
			active_state[y] |= (ds << x);
		}
	}

	// on difference, send to output
	for (int y = 0; y < m_display_maxy; y++)
		if (m_display_cache[y] != active_state[y])
		{
			if (m_display_segmask[y] != 0)
				output().set_digit_value(y, active_state[y] & m_display_segmask[y]);

			const int mul = (m_display_maxx <= 10) ? 10 : 100;
			for (int x = 0; x <= m_display_maxx; x++)
			{
				int state = active_state[y] >> x & 1;
				char buf1[0x10]; // lampyx
				char buf2[0x10]; // y.x

				if (x == m_display_maxx)
				{
					// always-on if selected
					sprintf(buf1, "lamp%da", y);
					sprintf(buf2, "%d.a", y);
				}
				else
				{
					sprintf(buf1, "lamp%d", y * mul + x);
					sprintf(buf2, "%d.%d", y, x);
				}
				output().set_value(buf1, state);
				output().set_value(buf2, state);
			}
		}

	memcpy(m_display_cache, active_state, sizeof(m_display_cache));
}

TIMER_DEVICE_CALLBACK_MEMBER(fidelz80_state::display_decay_tick)
{
	// slowly turn off unpowered segments
	for (int y = 0; y < m_display_maxy; y++)
		for (int x = 0; x <= m_display_maxx; x++)
			if (m_display_decay[y][x] != 0)
				m_display_decay[y][x]--;

	display_update();
}

void fidelz80_state::set_display_size(int maxx, int maxy)
{
	m_display_maxx = maxx;
	m_display_maxy = maxy;
}

void fidelz80_state::display_matrix(int maxx, int maxy, UINT32 setx, UINT32 sety)
{
	set_display_size(maxx, maxy);

	// update current state
	UINT32 mask = (1 << maxx) - 1;
	for (int y = 0; y < maxy; y++)
		m_display_state[y] = (sety >> y & 1) ? ((setx & mask) | (1 << maxx)) : 0;

	display_update();
}


// generic input handlers

UINT16 fidelz80_state::read_inputs(int columns)
{
	UINT16 ret = 0;

	// read selected input rows
	for (int i = 0; i < columns; i++)
		if (m_inp_mux >> i & 1)
			ret |= m_inp_matrix[i]->read();

	return ret;
}

INPUT_CHANGED_MEMBER(fidelz80_state::reset_button)
{
	// when RE button is directly wired to RESET pin(s)
	m_maincpu->set_input_line(INPUT_LINE_RESET, newval ? ASSERT_LINE : CLEAR_LINE);
	
	if (m_mcu)
		m_mcu->set_input_line(INPUT_LINE_RESET, newval ? CLEAR_LINE : ASSERT_LINE);
}



// Devices, I/O

/******************************************************************************
    I8255 Device, for VCC/UVC
******************************************************************************/

void fidelz80_state::vcc_prepare_display()
{
	// 4 7seg leds
	for (int i = 0; i < 4; i++)
		m_display_segmask[i] = 0x7f;
	
	// note: d0 for extra leds
	display_matrix(8, 4, m_7seg_data | (m_led_select << 7 & 0x80), m_led_select >> 2 & 0xf);
}

WRITE8_MEMBER(fidelz80_state::vcc_ppi_porta_w)
{
	// data for the 4 7seg leds, bits are xABCDEFG
	m_7seg_data = BITSWAP8(data,7,0,1,2,3,4,5,6) & 0x7f;
	vcc_prepare_display();
	
	// d0-d5: TSI A0-A5
	// d7: TSI START line
	m_speech->set_volume(15); // hack, s14001a core should assume a volume of 15 unless otherwise stated...
	m_speech->reg_w(data & 0x3f);
	m_speech->rst_w(data >> 7 & 1);
	
	// d6: language latch data
	// d7: language latch clock
}

READ8_MEMBER(fidelz80_state::vcc_ppi_portb_r)
{
	// d7: TSI DONE line
	return (m_speech->bsy_r()) ? 0x80 : 0x00;
}

WRITE8_MEMBER(fidelz80_state::vcc_ppi_portb_w)
{
	// d0,d2-d5: digit/led select
	m_led_select = data;
	vcc_prepare_display();

	// _d6: enable language switches (TODO)
}

READ8_MEMBER(fidelz80_state::vcc_ppi_portc_r)
{
	// d0-d3: multiplexed inputs (inverted)
	return ~read_inputs(4) & 0xf;
}

WRITE8_MEMBER(fidelz80_state::vcc_ppi_portc_w)
{
	// d4-d7: input mux (inverted)
	m_inp_mux = ~data >> 4 & 0xf;
}

// CC10-specific (no speech roms, 1-bit beeper instead)

WRITE8_MEMBER(fidelz80_state::cc10_ppi_porta_w)
{
	// d0-d6: digit segment data (same as VCC)
	m_7seg_data = BITSWAP8(data,7,0,1,2,3,4,5,6) & 0x7f;
	vcc_prepare_display();

	// d7: beeper output
	m_speaker->level_w(data >> 7 & 1);
}


/******************************************************************************
    I8255 Device, for VSC
******************************************************************************/

void fidelz80_state::vsc_prepare_display()
{
	// 4 7seg leds + H
	for (int i = 0; i < 4; i++)
	{
		m_display_segmask[i] = 0x7f;
		m_display_state[i] = (m_led_select >> i & 1) ? m_7seg_data : 0;
	}
	
	// 8*8 chessboard leds
	for (int i = 0; i < 8; i++)
		m_display_state[i+4] = (m_led_select >> i & 1) ? m_led_data : 0;

	set_display_size(8, 12);
	display_update();
}

WRITE8_MEMBER(fidelz80_state::vsc_ppi_porta_w)
{
	// d0-d5: TSI A0-A5
	m_speech->reg_w(data & 0x3f);

	// d0-d7: data for the 4 7seg leds, bits are HGCBAFED (H is extra led)
	m_7seg_data = BITSWAP8(data,7,6,2,1,0,5,4,3);
	vsc_prepare_display();
}

WRITE8_MEMBER(fidelz80_state::vsc_ppi_portb_w)
{
	// d0-d7: led row data
	m_led_data = data;
	vsc_prepare_display();
}

WRITE8_MEMBER(fidelz80_state::vsc_ppi_portc_w)
{
	// d0-d3: select digits
	// d0-d7: select leds, input mux low bits
	m_inp_mux = (m_inp_mux & 0x300) | data;
	m_led_select = data;
	vsc_prepare_display();
}


/******************************************************************************
    Z80 PIO Device, for VSC
******************************************************************************/

READ8_MEMBER(fidelz80_state::vsc_pio_porta_r)
{
	// multiplexed inputs
	return read_inputs(10);
}

READ8_MEMBER(fidelz80_state::vsc_pio_portb_r)
{
	UINT8 ret = 0;
	
	// d4: TSI DONE line
	ret |= (m_speech->bsy_r()) ? 0 : 0x10;
	
	return ret;
}

WRITE8_MEMBER(fidelz80_state::vsc_pio_portb_w)
{
	// d0,d1: input mux highest bits
	m_inp_mux = (m_inp_mux & 0xff) | (data << 8 & 0x300);

	// d2: tone line
	m_speaker->level_w(data >> 2 & 1);

	// d6: TSI START line
	m_speech->set_volume(15); // hack, s14001a core should assume a volume of 15 unless otherwise stated...
	m_speech->rst_w(data >> 6 & 1);
}


/******************************************************************************
    I8243 I/O Expander Device, for VBRC
******************************************************************************/

WRITE8_MEMBER(fidelz80_state::digit_w)
{
//	if (m_digit_line_status[offset])
//		return;

//	m_digit_line_status[offset&3] = 1;

	switch (offset)
	{
	case 0:
		m_7seg_data = (m_7seg_data&(~0x000f)) | ((data<<0)&0x000f);
		break;
	case 1:
		m_7seg_data = (m_7seg_data&(~0x00f0)) | ((data<<4)&0x00f0);
		break;
	case 2:
		m_7seg_data = (m_7seg_data&(~0x0f00)) | ((data<<8)&0x0f00);
		break;
	case 3:
		m_7seg_data = (m_7seg_data&(~0xf000)) | ((data<<12)&0xf000);
		break;
	}
}


/******************************************************************************
    I8041 MCU, for VBRC
******************************************************************************/

WRITE8_MEMBER(fidelz80_state::kp_matrix_w)
{
	UINT16 out_data = BITSWAP16(m_7seg_data,12,13,1,6,5,2,0,7,15,11,10,14,4,3,9,8);
	UINT16 out_digit = out_data & 0x3fff;
	UINT8 out_led = BIT(out_data, 15) ? 0 : 1;

	// output the digit before update the matrix
	if (m_inp_mux & 0x01)
	{
		output().set_digit_value(1, out_digit);
		output().set_led_value(8, out_led);
	}
	if (m_inp_mux & 0x02)
	{
		output().set_digit_value(2, out_digit);
		output().set_led_value(7, out_led);
	}
	if (m_inp_mux & 0x04)
	{
		output().set_digit_value(3, out_digit);
		output().set_led_value(6, out_led);
	}
	if (m_inp_mux & 0x08)
	{
		output().set_digit_value(4, out_digit);
		output().set_led_value(5, out_led);
	}
	if (m_inp_mux & 0x10)
	{
		output().set_digit_value(5, out_digit);
		output().set_led_value(4, out_led);
	}
	if (m_inp_mux & 0x20)
	{
		output().set_digit_value(6, out_digit);
		output().set_led_value(3, out_led);
	}
	if (m_inp_mux & 0x40)
	{
		output().set_digit_value(7, out_digit);
		output().set_led_value(2, out_led);
	}
	if (m_inp_mux & 0x80)
	{
		output().set_digit_value(8, out_digit);
		output().set_led_value(1, out_led);
	}

//	memset(m_digit_line_status, 0, sizeof(m_digit_line_status));

	m_inp_mux = data;
}

READ8_MEMBER(fidelz80_state::exp_i8243_p2_r)
{
	UINT8 inp = 0xff;

	for (int i = 0; i < 4; i++)
		if (m_inp_mux >> i & 1)
			inp &= m_inp_matrix[i]->read();

	return (m_i8243->i8243_p2_r(space, offset)&0x0f) | (inp<<4&0xf0);
}

WRITE8_MEMBER(fidelz80_state::exp_i8243_p2_w)
{
	m_i8243->i8243_p2_w(space, offset, data&0x0f);
}

// probably related to the card scanner
READ8_MEMBER(fidelz80_state::unknown_r)
{
	return 0;
}

READ8_MEMBER(fidelz80_state::unknown2_r)
{
	return machine().rand();
}

/******************************************************************************
    basic machine
******************************************************************************/

WRITE8_MEMBER(fidelz80_state::mcu_data_w)
{
	m_mcu->upi41_master_w(space, 0, data);
}

WRITE8_MEMBER(fidelz80_state::mcu_command_w)
{
	m_mcu->upi41_master_w(space, 1, data);
}

READ8_MEMBER(fidelz80_state::mcu_data_r)
{
	return m_mcu->upi41_master_r(space, 0);
}

READ8_MEMBER(fidelz80_state::mcu_status_r)
{
	return m_mcu->upi41_master_r(space, 1);
}

WRITE8_MEMBER(fidelz80_state::bridgec_speech_w)
{
	// todo: HALT THE z80 here, and set up a callback to poll the s14001a DONE line to resume z80
	m_speech->set_volume(15); // hack, s14001a core should assume a volume of 15 unless otherwise stated...
	m_speech->reg_w(data & 0x3f);
	m_speech->rst_w(BIT(data, 7));
}






/******************************************************************************
    Address Maps
******************************************************************************/

// CC10 and VCC/UVC

static ADDRESS_MAP_START( cc10_map, AS_PROGRAM, 8, fidelz80_state )
	ADDRESS_MAP_UNMAP_HIGH
	AM_RANGE(0x0000, 0x0fff) AM_ROM
	AM_RANGE(0x3000, 0x31ff) AM_RAM
ADDRESS_MAP_END

static ADDRESS_MAP_START( vcc_map, AS_PROGRAM, 8, fidelz80_state )
	ADDRESS_MAP_UNMAP_HIGH
	AM_RANGE(0x0000, 0x2fff) AM_ROM
	AM_RANGE(0x4000, 0x43ff) AM_RAM AM_MIRROR(0x1c00)
ADDRESS_MAP_END

static ADDRESS_MAP_START( vcc_io, AS_IO, 8, fidelz80_state )
	ADDRESS_MAP_GLOBAL_MASK(0xff)
	AM_RANGE(0x00, 0x03) AM_MIRROR(0xfc) AM_DEVREADWRITE("ppi8255", i8255_device, read, write)
ADDRESS_MAP_END


// VSC

static ADDRESS_MAP_START( vsc_map, AS_PROGRAM, 8, fidelz80_state )
	ADDRESS_MAP_UNMAP_HIGH
	AM_RANGE(0x0000, 0x5fff) AM_ROM
	AM_RANGE(0x6000, 0x63ff) AM_RAM AM_MIRROR(0x1c00)
ADDRESS_MAP_END

// VSC io: A2 is 8255 _CE, A3 is Z80 PIO _CE - in theory, both chips can be accessed simultaneously
READ8_MEMBER(fidelz80_state::vsc_io_trampoline_r)
{
	UINT8 ret = 0xff; // open bus
	if (~offset & 4)
		ret &= m_ppi8255->read(space, offset & 3);
	if (~offset & 8)
		ret &= m_z80pio->read(space, offset & 3);
	
	return ret;
}

WRITE8_MEMBER(fidelz80_state::vsc_io_trampoline_w)
{
	if (~offset & 4)
		m_ppi8255->write(space, offset & 3, data);
	if (~offset & 8)
		m_z80pio->write(space, offset & 3, data);
}

static ADDRESS_MAP_START( vsc_io, AS_IO, 8, fidelz80_state )
	ADDRESS_MAP_GLOBAL_MASK(0xff)
	AM_RANGE(0x00, 0x0f) AM_MIRROR(0xf0) AM_READWRITE(vsc_io_trampoline_r, vsc_io_trampoline_w)
ADDRESS_MAP_END


// VBRC

static ADDRESS_MAP_START( vbrc_main_map, AS_PROGRAM, 8, fidelz80_state )
	AM_RANGE(0xe000, 0xe000) AM_WRITE(bridgec_speech_w) AM_MIRROR(0x1fff) // write to speech chip, halts cpu
	AM_IMPORT_FROM( vsc_map )
ADDRESS_MAP_END



static ADDRESS_MAP_START( vbrc_main_io, AS_IO, 8, fidelz80_state )
	ADDRESS_MAP_UNMAP_HIGH
	ADDRESS_MAP_GLOBAL_MASK(0xff)
	AM_RANGE(0x00, 0x00) AM_READWRITE(mcu_data_r, mcu_data_w)
	AM_RANGE(0x01, 0x01) AM_READWRITE(mcu_status_r, mcu_command_w)
ADDRESS_MAP_END

static ADDRESS_MAP_START( vbrc_mcu_map, AS_IO, 8, fidelz80_state )
	ADDRESS_MAP_UNMAP_LOW
	AM_RANGE(MCS48_PORT_P1, MCS48_PORT_P1) AM_WRITE(kp_matrix_w)
	AM_RANGE(MCS48_PORT_P2, MCS48_PORT_P2) AM_READWRITE(exp_i8243_p2_r, exp_i8243_p2_w)
	AM_RANGE(MCS48_PORT_PROG, MCS48_PORT_PROG) AM_DEVWRITE("i8243", i8243_device, i8243_prog_w)

	// related to the card scanner, probably clock and data optical
	AM_RANGE(MCS48_PORT_T0, MCS48_PORT_T0) AM_READ(unknown_r)
	AM_RANGE(MCS48_PORT_T1, MCS48_PORT_T1) AM_READ(unknown2_r)
ADDRESS_MAP_END



/******************************************************************************
    Input Ports
******************************************************************************/

static INPUT_PORTS_START( fidelz80 )
	PORT_START("IN.0")
	PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_UNUSED)
	PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("LV") PORT_CODE(KEYCODE_V)
	PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("A1") PORT_CODE(KEYCODE_1) PORT_CODE(KEYCODE_A)
	PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("E5") PORT_CODE(KEYCODE_5) PORT_CODE(KEYCODE_E)

	PORT_START("IN.1")
	PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("CB") PORT_CODE(KEYCODE_Z)
	PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("DM") PORT_CODE(KEYCODE_M)
	PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("B2") PORT_CODE(KEYCODE_2) PORT_CODE(KEYCODE_B)
	PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("F6") PORT_CODE(KEYCODE_6) PORT_CODE(KEYCODE_F)

	PORT_START("IN.2")
	PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("CL") PORT_CODE(KEYCODE_DEL)
	PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("PB") PORT_CODE(KEYCODE_P)
	PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("C3") PORT_CODE(KEYCODE_3) PORT_CODE(KEYCODE_C)
	PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("G7") PORT_CODE(KEYCODE_7) PORT_CODE(KEYCODE_G)

	PORT_START("IN.3")
	PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("EN") PORT_CODE(KEYCODE_ENTER)
	PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("PV") PORT_CODE(KEYCODE_O)
	PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("D4") PORT_CODE(KEYCODE_4) PORT_CODE(KEYCODE_D)
	PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("H8") PORT_CODE(KEYCODE_8) PORT_CODE(KEYCODE_H)

	PORT_START("RESET") // is not on matrix IN.0 d0
	PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("RE") PORT_CODE(KEYCODE_R) PORT_CHANGED_MEMBER(DEVICE_SELF, fidelz80_state, reset_button, 0)

	PORT_START("LEVEL") // cc10 only
	PORT_CONFNAME( 0x80, 0x00, "Number of levels" )
	PORT_CONFSETTING( 0x00, "10" )
	PORT_CONFSETTING( 0x80, "3" )
INPUT_PORTS_END

static INPUT_PORTS_START( vsc )
	PORT_START("IN.0")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.1")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.2")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.3")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.4")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.5")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.6")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.7")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_TOGGLE

	PORT_START("IN.8") // buttons on the right
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Pawn") PORT_CODE(KEYCODE_1)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Rook") PORT_CODE(KEYCODE_2)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Knight") PORT_CODE(KEYCODE_3)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Bishop") PORT_CODE(KEYCODE_4)
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Queen") PORT_CODE(KEYCODE_5)
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("King") PORT_CODE(KEYCODE_6)
		PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("CL") PORT_CODE(KEYCODE_DEL)
		PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("RE") PORT_CODE(KEYCODE_R)
		PORT_BIT(0x100, IP_ACTIVE_HIGH, IPT_UNUSED)

	PORT_START("IN.9") // buttons beside the display
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("TM") PORT_CODE(KEYCODE_T)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("RV") PORT_CODE(KEYCODE_V)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Speak") PORT_CODE(KEYCODE_SPACE)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("LV") PORT_CODE(KEYCODE_L)
		PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("DM") PORT_CODE(KEYCODE_M)
		PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("ST") PORT_CODE(KEYCODE_S)
		PORT_BIT(0xc0, IP_ACTIVE_HIGH, IPT_UNUSED)
INPUT_PORTS_END

static INPUT_PORTS_START( bridgec )
	PORT_START("IN.0")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("A") PORT_CODE(KEYCODE_A)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("10") PORT_CODE(KEYCODE_0)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("6") PORT_CODE(KEYCODE_6)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("2") PORT_CODE(KEYCODE_2)

	PORT_START("IN.1")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("K") PORT_CODE(KEYCODE_K)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("9") PORT_CODE(KEYCODE_9)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("5") PORT_CODE(KEYCODE_5)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("1") PORT_CODE(KEYCODE_1)

	PORT_START("IN.2")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Q") PORT_CODE(KEYCODE_Q)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("8") PORT_CODE(KEYCODE_8)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("4") PORT_CODE(KEYCODE_4)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("P") PORT_CODE(KEYCODE_Z)

	PORT_START("IN.3")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("J") PORT_CODE(KEYCODE_J)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("7") PORT_CODE(KEYCODE_7)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("3") PORT_CODE(KEYCODE_3)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("NT") PORT_CODE(KEYCODE_N)

	PORT_START("IN.4")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("EN") PORT_CODE(KEYCODE_E)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("SC") PORT_CODE(KEYCODE_S)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("PL") PORT_CODE(KEYCODE_X)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Spades") PORT_CODE(KEYCODE_1_PAD)

	PORT_START("IN.5")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("CL") PORT_CODE(KEYCODE_C)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("DB") PORT_CODE(KEYCODE_D)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("VL") PORT_CODE(KEYCODE_V)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Hearts") PORT_CODE(KEYCODE_2_PAD)

	PORT_START("IN.6")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Beep on/off") PORT_CODE(KEYCODE_SPACE)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("PB") PORT_CODE(KEYCODE_B)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("CV") PORT_CODE(KEYCODE_G)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Diamonds") PORT_CODE(KEYCODE_3_PAD)

	PORT_START("IN.7")
		PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_UNUSED)
		PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("BR") PORT_CODE(KEYCODE_T)
		PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("DL") PORT_CODE(KEYCODE_L)
		PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("Clubs") PORT_CODE(KEYCODE_4_PAD)

	PORT_START("RESET") // is not on matrix IN.7 d0
	PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYPAD) PORT_NAME("RE") PORT_CODE(KEYCODE_R) PORT_CHANGED_MEMBER(DEVICE_SELF, fidelz80_state, reset_button, 0)
INPUT_PORTS_END



/******************************************************************************
    Machine Drivers
******************************************************************************/

static MACHINE_CONFIG_START( cc10, fidelz80_state )

	/* basic machine hardware */
	MCFG_CPU_ADD("maincpu", Z80, XTAL_4MHz)
	MCFG_CPU_PROGRAM_MAP(cc10_map)
	MCFG_CPU_IO_MAP(vcc_io)

	MCFG_DEVICE_ADD("ppi8255", I8255, 0)
	MCFG_I8255_OUT_PORTA_CB(WRITE8(fidelz80_state, cc10_ppi_porta_w))
	MCFG_I8255_IN_PORTB_CB(IOPORT("LEVEL"))
	MCFG_I8255_OUT_PORTB_CB(WRITE8(fidelz80_state, vcc_ppi_portb_w))
	MCFG_I8255_IN_PORTC_CB(READ8(fidelz80_state, vcc_ppi_portc_r))
	MCFG_I8255_OUT_PORTC_CB(WRITE8(fidelz80_state, vcc_ppi_portc_w))

	MCFG_TIMER_DRIVER_ADD_PERIODIC("display_decay", fidelz80_state, display_decay_tick, attotime::from_msec(1))
	MCFG_DEFAULT_LAYOUT(layout_fidel_cc)

	/* sound hardware */
	MCFG_SPEAKER_STANDARD_MONO("mono")
	MCFG_SOUND_ADD("speaker", SPEAKER_SOUND, 0)
	MCFG_SOUND_ROUTE(ALL_OUTPUTS, "mono", 0.25)
MACHINE_CONFIG_END

static MACHINE_CONFIG_START( vcc, fidelz80_state )

	/* basic machine hardware */
	MCFG_CPU_ADD("maincpu", Z80, XTAL_4MHz)
	MCFG_CPU_PROGRAM_MAP(vcc_map)
	MCFG_CPU_IO_MAP(vcc_io)

	MCFG_DEVICE_ADD("ppi8255", I8255, 0)
	MCFG_I8255_OUT_PORTA_CB(WRITE8(fidelz80_state, vcc_ppi_porta_w))
	MCFG_I8255_IN_PORTB_CB(READ8(fidelz80_state, vcc_ppi_portb_r))
	MCFG_I8255_OUT_PORTB_CB(WRITE8(fidelz80_state, vcc_ppi_portb_w))
	MCFG_I8255_IN_PORTC_CB(READ8(fidelz80_state, vcc_ppi_portc_r))
	MCFG_I8255_OUT_PORTC_CB(WRITE8(fidelz80_state, vcc_ppi_portc_w))

	MCFG_TIMER_DRIVER_ADD_PERIODIC("display_decay", fidelz80_state, display_decay_tick, attotime::from_msec(1))
	MCFG_DEFAULT_LAYOUT(layout_fidel_vcc)

	/* sound hardware */
	MCFG_SPEAKER_STANDARD_MONO("mono")
	MCFG_SOUND_ADD("speech", S14001A, 25000) // R/C circuit, around 25khz
	MCFG_SOUND_ROUTE(ALL_OUTPUTS, "mono", 0.25)
MACHINE_CONFIG_END

static MACHINE_CONFIG_START( vsc, fidelz80_state )

	/* basic machine hardware */
	MCFG_CPU_ADD("maincpu", Z80, XTAL_4MHz)
	MCFG_CPU_PROGRAM_MAP(vsc_map)
	MCFG_CPU_IO_MAP(vsc_io)
	MCFG_CPU_PERIODIC_INT_DRIVER(fidelz80_state, nmi_line_pulse, 600) // 555 timer, approx 600hz

	MCFG_DEVICE_ADD("ppi8255", I8255, 0)
	MCFG_I8255_OUT_PORTA_CB(WRITE8(fidelz80_state, vsc_ppi_porta_w))
	MCFG_I8255_OUT_PORTB_CB(WRITE8(fidelz80_state, vsc_ppi_portb_w))
	MCFG_I8255_OUT_PORTC_CB(WRITE8(fidelz80_state, vsc_ppi_portc_w))

	MCFG_DEVICE_ADD("z80pio", Z80PIO, XTAL_4MHz)
	MCFG_Z80PIO_IN_PA_CB(READ8(fidelz80_state, vsc_pio_porta_r))
	MCFG_Z80PIO_IN_PB_CB(READ8(fidelz80_state, vsc_pio_portb_r))
	MCFG_Z80PIO_OUT_PB_CB(WRITE8(fidelz80_state, vsc_pio_portb_w))

	MCFG_TIMER_DRIVER_ADD_PERIODIC("display_decay", fidelz80_state, display_decay_tick, attotime::from_msec(1))
	MCFG_DEFAULT_LAYOUT(layout_fidel_vsc)

	/* sound hardware */
	MCFG_SPEAKER_STANDARD_MONO("mono")
	MCFG_SOUND_ADD("speech", S14001A, 25000) // R/C circuit, around 25khz
	MCFG_SOUND_ROUTE(ALL_OUTPUTS, "mono", 0.25)

	MCFG_SOUND_ADD("speaker", SPEAKER_SOUND, 0)
	MCFG_SOUND_ROUTE(ALL_OUTPUTS, "mono", 0.25)
MACHINE_CONFIG_END

static MACHINE_CONFIG_START( bridgec, fidelz80_state )

	/* basic machine hardware */
	MCFG_CPU_ADD("maincpu", Z80, XTAL_5MHz/2) // 2.5MHz
	MCFG_CPU_PROGRAM_MAP(vbrc_main_map)
	MCFG_CPU_IO_MAP(vbrc_main_io)
	MCFG_QUANTUM_PERFECT_CPU("maincpu")

	MCFG_CPU_ADD("mcu", I8041, XTAL_5MHz) // 5MHz
	MCFG_CPU_IO_MAP(vbrc_mcu_map)

	MCFG_I8243_ADD("i8243", NOOP, WRITE8(fidelz80_state, digit_w))

	MCFG_TIMER_DRIVER_ADD_PERIODIC("display_decay", fidelz80_state, display_decay_tick, attotime::from_msec(1))
	MCFG_DEFAULT_LAYOUT(layout_fidel_vbrc)

	/* sound hardware */
	MCFG_SPEAKER_STANDARD_MONO("mono")
	MCFG_SOUND_ADD("speech", S14001A, 25000) // R/C circuit, around 25khz
	MCFG_SOUND_ROUTE(ALL_OUTPUTS, "mono", 1.00)
MACHINE_CONFIG_END



/******************************************************************************
    ROM Definitions
******************************************************************************/

ROM_START( cc10 )
	ROM_REGION( 0x10000, "maincpu", ROMREGION_ERASEFF )
	ROM_LOAD( "cc10.bin", 0x0000, 0x1000, CRC(bb9e6055) SHA1(18276e57cf56465a6352239781a828c5f3d5ba63) )
ROM_END


ROM_START( vcc )
	ROM_REGION( 0x10000, "maincpu", ROMREGION_ERASEFF )
	ROM_LOAD("101-32103.bin", 0x0000, 0x1000, CRC(257bb5ab) SHA1(f7589225bb8e5f3eac55f23e2bd526be780b38b5) ) // 32014.VCC??? at location b3?
	ROM_LOAD("vcc2.bin", 0x1000, 0x1000, CRC(f33095e7) SHA1(692fcab1b88c910b74d04fe4d0660367aee3f4f0) ) // at location a2?
	ROM_LOAD("vcc3.bin", 0x2000, 0x1000, CRC(624f0cd5) SHA1(7c1a4f4497fe5882904de1d6fecf510c07ee6fc6) ) // at location a1?

	ROM_REGION( 0x2000, "speech", 0 )
	ROM_LOAD("vcc-engl.bin", 0x0000, 0x1000, CRC(f35784f9) SHA1(348e54a7fa1e8091f89ac656b4da22f28ca2e44d) ) // at location c4?
ROM_END

ROM_START( vccsp )
	ROM_REGION( 0x10000, "maincpu", ROMREGION_ERASEFF )
	ROM_LOAD("101-32103.bin", 0x0000, 0x1000, CRC(257bb5ab) SHA1(f7589225bb8e5f3eac55f23e2bd526be780b38b5) ) // 32014.VCC??? at location b3?
	ROM_LOAD("vcc2.bin", 0x1000, 0x1000, CRC(f33095e7) SHA1(692fcab1b88c910b74d04fe4d0660367aee3f4f0) ) // at location a2?
	ROM_LOAD("vcc3.bin", 0x2000, 0x1000, CRC(624f0cd5) SHA1(7c1a4f4497fe5882904de1d6fecf510c07ee6fc6) ) // at location a1?

	ROM_REGION( 0x2000, "speech", 0 )
	ROM_LOAD("vcc-spanish.bin", 0x0000, 0x2000, CRC(8766e128) SHA1(78c7413bf240159720b131ab70bfbdf4e86eb1e9) ) // at location c4?
ROM_END


ROM_START( uvc )
	ROM_REGION( 0x10000, "maincpu", ROMREGION_ERASEFF )
	ROM_LOAD("101-64017.b3", 0x0000, 0x2000, CRC(f1133abf) SHA1(09dd85051c4e7d364d43507c1cfea5c2d08d37f4) ) // "MOS // 101-64017 // 3880"
	ROM_LOAD("101-32010.a1", 0x2000, 0x1000, CRC(624f0cd5) SHA1(7c1a4f4497fe5882904de1d6fecf510c07ee6fc6) ) // "NEC P9Z021 // D2332C 228 // 101-32010", == vcc3.bin on vcc

	ROM_REGION( 0x2000, "speech", 0 )
	ROM_LOAD("101-32107.c4", 0x0000, 0x1000, CRC(f35784f9) SHA1(348e54a7fa1e8091f89ac656b4da22f28ca2e44d) ) // "NEC P9Y019 // D2332C 229 // 101-32107", == vcc-engl.bin on vcc
ROM_END


ROM_START( vsc )
	ROM_REGION( 0x10000, "maincpu", ROMREGION_ERASEFF )
	ROM_LOAD("101-64108.bin", 0x0000, 0x2000, CRC(c9c98490) SHA1(e6db883df088d60463e75db51433a4b01a3e7626) )
	ROM_LOAD("101-64109.bin", 0x2000, 0x2000, CRC(08a3577c) SHA1(69fe379d21a9d4b57c84c3832d7b3e7431eec341) )
	ROM_LOAD("101-32024.bin", 0x4000, 0x1000, CRC(2a078676) SHA1(db2f0aba7e8ac0f84a17bae7155210cdf0813afb) )
	ROM_RELOAD(               0x5000, 0x1000 )

	ROM_REGION( 0x2000, "speech", 0 )
	ROM_LOAD("101-32107.bin", 0x0000, 0x1000, CRC(f35784f9) SHA1(348e54a7fa1e8091f89ac656b4da22f28ca2e44d) )
ROM_END


ROM_START( vbrc ) // AKA model 7002
	ROM_REGION( 0x10000, "maincpu", ROMREGION_ERASEFF )
	// nec 2364 mask roms; pin 27 (PGM, probably NC here due to mask roms) goes to the pcb
	ROM_LOAD("101-64108.g3", 0x0000, 0x2000, CRC(08472223) SHA1(859865b13c908dbb474333263dc60f6a32461141) )
	ROM_LOAD("101-64109.f3", 0x2000, 0x2000, CRC(320afa0f) SHA1(90edfe0ac19b108d232cda376b03a3a24befad4c) )
	ROM_LOAD("101-64110.e3", 0x4000, 0x2000, CRC(3040d0bd) SHA1(caa55fc8d9196e408fb41e7171a68e5099519813) )

	ROM_REGION( 0x1000, "mcu", 0 )
	ROM_LOAD("100-1009.a3", 0x0000, 0x0400, CRC(60eb343f) SHA1(8a63e95ebd62e123bdecc330c0484a47c354bd1a) )

	ROM_REGION( 0x2000, "speech", 0 )
	ROM_LOAD("101-32118.i2", 0x0000, 0x1000, CRC(a0b8bb8f) SHA1(f56852108928d5c6caccfc8166fa347d6760a740) )
ROM_END

ROM_START( bridgec3 ) // 510-1016 Rev.1 PCB has neither locations nor ic labels, so I declare the big heatsink is at C1, numbers count on the shorter length of pcb
	ROM_REGION( 0x10000, "maincpu", ROMREGION_ERASEFF )
	// TMM2764AD-20 EPROMS with tiny hole-punch sized colored stickers (mostly) covering the quartz windows. pin 27 (PGM) is tied to vcc with small rework wires and does not connect to pcb.
	ROM_LOAD("7014_white.g3", 0x0000, 0x2000, CRC(eb1620ef) SHA1(987a9abc8c685f1a68678ea4ee65ec4a99419179) ) // white sticker
	ROM_LOAD("7014_red.f3", 0x2000, 0x2000, CRC(74af0019) SHA1(8dc05950c254ca050b95b93e5d0cf48f913a6d49) ) // red sticker
	ROM_LOAD("7014_blue.e3", 0x4000, 0x2000, CRC(341d9ca6) SHA1(370876573bb9408e75f4fc797304b6c64af0590a) ) // blue sticker

	ROM_REGION( 0x1000, "mcu", 0 )
	ROM_LOAD("100-1009.a3", 0x0000, 0x0400, CRC(60eb343f) SHA1(8a63e95ebd62e123bdecc330c0484a47c354bd1a) ) // "NEC P07021-027 || D8041C 563 100-1009"

	ROM_REGION( 0x2000, "speech", 0 )
	ROM_LOAD("101-32118.i2", 0x0000, 0x1000, CRC(a0b8bb8f) SHA1(f56852108928d5c6caccfc8166fa347d6760a740) ) // "ea 101-32118 || (C) 1980 || EA 8332A247-4 || 8034"
ROM_END



/******************************************************************************
    Drivers
******************************************************************************/

/*    YEAR  NAME      PARENT  COMPAT  MACHINE  INPUT     INIT              COMPANY, FULLNAME, FLAGS */
COMP( 1978, cc10,     0,      0,      cc10,    fidelz80, driver_device, 0, "Fidelity Electronics", "Chess Challenger 10/3 (Model CC10/BCC)", MACHINE_NOT_WORKING )
COMP( 1979, vcc,      0,      0,      vcc,     fidelz80, driver_device, 0, "Fidelity Electronics", "Talking Chess Challenger (model VCC)", MACHINE_NOT_WORKING )
COMP( 1979, vccsp,    vcc,    0,      vcc,     fidelz80, driver_device, 0, "Fidelity Electronics", "Talking Chess Challenger (model VCC, Spanish)", MACHINE_NOT_WORKING )
COMP( 1980, uvc,      vcc,    0,      vcc,     fidelz80, driver_device, 0, "Fidelity Electronics", "Advanced Talking Chess Challenger (model UVC)", MACHINE_NOT_WORKING )

COMP( 1980, vsc,      0,      0,      vsc,     vsc,      driver_device, 0, "Fidelity Electronics", "Voice Sensory Chess Challenger (model VSC)", MACHINE_NOT_WORKING | MACHINE_CLICKABLE_ARTWORK )

COMP( 1979, vbrc,     0,      0,      bridgec, bridgec,  driver_device, 0, "Fidelity Electronics", "Bridge Challenger (model VBRC/7002)",  MACHINE_NOT_WORKING )
COMP( 1980, bridgec3, vbrc,   0,      bridgec, bridgec,  driver_device, 0, "Fidelity Electronics", "Bridge Challenger 3 (model 7014)", MACHINE_NOT_WORKING )