summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/util/sha1.c
blob: 732828d9ccfcc5af624b7a920aa5c01002df9158 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// license:LGPL-2.1+
// copyright-holders:Peter Gutmann, Andrew Kuchling, Niels Moeller
/* sha1.h
 *
 * The sha1 hash function.
 */

/* nettle, low-level cryptographics library
 *
 * Copyright 2001 Peter Gutmann, Andrew Kuchling, Niels Moeller
 *
 * The nettle library is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 *
 * The nettle library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
 * License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with the nettle library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
 * MA 02111-1307, USA.
 */

#include "sha1.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>

static unsigned int READ_UINT32(const UINT8* data)
{
	return ((UINT32)data[0] << 24) |
		((UINT32)data[1] << 16) |
		((UINT32)data[2] << 8) |
		((UINT32)data[3]);
}

static void WRITE_UINT32(unsigned char* data, UINT32 val)
{
	data[0] = (val >> 24) & 0xFF;
	data[1] = (val >> 16) & 0xFF;
	data[2] = (val >> 8) & 0xFF;
	data[3] = (val >> 0) & 0xFF;
}


/* A block, treated as a sequence of 32-bit words. */
#define SHA1_DATA_LENGTH 16

/* The SHA f()-functions.  The f1 and f3 functions can be optimized to
   save one boolean operation each - thanks to Rich Schroeppel,
   rcs@cs.arizona.edu for discovering this */

/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) )            Rounds  0-19 */
#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )           /* Rounds  0-19 */
#define f2(x,y,z)   ( x ^ y ^ z )                       /* Rounds 20-39 */
/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */
#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
#define f4(x,y,z)   ( x ^ y ^ z )                       /* Rounds 60-79 */

/* The SHA Mysterious Constants */

#define K1  0x5A827999L                                 /* Rounds  0-19 */
#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */

/* SHA initial values */

#define h0init  0x67452301L
#define h1init  0xEFCDAB89L
#define h2init  0x98BADCFEL
#define h3init  0x10325476L
#define h4init  0xC3D2E1F0L

/* 32-bit rotate left - kludged with shifts */
#ifdef _MSC_VER
#define ROTL(n,X)  _lrotl(X, n)
#else
#define ROTL(n,X)  ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
#endif

/* The initial expanding function.  The hash function is defined over an
   80-word expanded input array W, where the first 16 are copies of the input
   data, and the remaining 64 are defined by

        W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]

   This implementation generates these values on the fly in a circular
   buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
   optimization.

   The updated SHA changes the expanding function by adding a rotate of 1
   bit.  Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
   for this information */

#define expand(W,i) ( W[ i & 15 ] = \
				ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
					W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )


/* The prototype SHA sub-round.  The fundamental sub-round is:

        a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
        b' = a;
        c' = ROTL( 30, b );
        d' = c;
        e' = d;

   but this is implemented by unrolling the loop 5 times and renaming the
   variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
   This code is then replicated 20 times for each of the 4 functions, using
   the next 20 values from the W[] array each time */

#define subRound(a, b, c, d, e, f, k, data) \
	( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )

/* Initialize the SHA values */

/**
 * @fn	void sha1_init(struct sha1_ctx *ctx)
 *
 * @brief	Sha 1 initialise.
 *
 * @param [in,out]	ctx	If non-null, the context.
 */

void
sha1_init(struct sha1_ctx *ctx)
{
	/* Set the h-vars to their initial values */
	ctx->digest[ 0 ] = h0init;
	ctx->digest[ 1 ] = h1init;
	ctx->digest[ 2 ] = h2init;
	ctx->digest[ 3 ] = h3init;
	ctx->digest[ 4 ] = h4init;

	/* Initialize bit count */
	ctx->count_low = ctx->count_high = 0;

	/* Initialize buffer */
	ctx->index = 0;
}

/* Perform the SHA transformation.  Note that this code, like MD5, seems to
   break some optimizing compilers due to the complexity of the expressions
   and the size of the basic block.  It may be necessary to split it into
   sections, e.g. based on the four subrounds

   Note that this function destroys the data area */

/**
 * @fn	static void sha1_transform(UINT32 *state, UINT32 *data)
 *
 * @brief	Sha 1 transform.
 *
 * @param [in,out]	state	If non-null, the state.
 * @param [in,out]	data 	If non-null, the data.
 */

static void
sha1_transform(UINT32 *state, UINT32 *data)
{
	UINT32 A, B, C, D, E;     /* Local vars */

	/* Set up first buffer and local data buffer */
	A = state[0];
	B = state[1];
	C = state[2];
	D = state[3];
	E = state[4];

	/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
	subRound( A, B, C, D, E, f1, K1, data[ 0] );
	subRound( E, A, B, C, D, f1, K1, data[ 1] );
	subRound( D, E, A, B, C, f1, K1, data[ 2] );
	subRound( C, D, E, A, B, f1, K1, data[ 3] );
	subRound( B, C, D, E, A, f1, K1, data[ 4] );
	subRound( A, B, C, D, E, f1, K1, data[ 5] );
	subRound( E, A, B, C, D, f1, K1, data[ 6] );
	subRound( D, E, A, B, C, f1, K1, data[ 7] );
	subRound( C, D, E, A, B, f1, K1, data[ 8] );
	subRound( B, C, D, E, A, f1, K1, data[ 9] );
	subRound( A, B, C, D, E, f1, K1, data[10] );
	subRound( E, A, B, C, D, f1, K1, data[11] );
	subRound( D, E, A, B, C, f1, K1, data[12] );
	subRound( C, D, E, A, B, f1, K1, data[13] );
	subRound( B, C, D, E, A, f1, K1, data[14] );
	subRound( A, B, C, D, E, f1, K1, data[15] );
	subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
	subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
	subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
	subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );

	subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
	subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
	subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
	subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
	subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
	subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
	subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
	subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
	subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
	subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
	subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
	subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
	subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
	subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
	subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
	subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
	subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
	subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
	subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
	subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );

	subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
	subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
	subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
	subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
	subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
	subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
	subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
	subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
	subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
	subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
	subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
	subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
	subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
	subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
	subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
	subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
	subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
	subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
	subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
	subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );

	subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
	subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
	subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
	subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
	subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
	subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
	subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
	subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
	subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
	subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
	subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
	subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
	subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
	subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
	subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
	subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
	subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
	subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
	subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
	subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );

	/* Build message digest */
	state[0] += A;
	state[1] += B;
	state[2] += C;
	state[3] += D;
	state[4] += E;
}

/**
 * @fn	static void sha1_block(struct sha1_ctx *ctx, const UINT8 *block)
 *
 * @brief	Sha 1 block.
 *
 * @param [in,out]	ctx	If non-null, the context.
 * @param	block	   	The block.
 */

static void
sha1_block(struct sha1_ctx *ctx, const UINT8 *block)
{
	UINT32 data[SHA1_DATA_LENGTH];
	int i;

	/* Update block count */
	if (!++ctx->count_low)
	++ctx->count_high;

	/* Endian independent conversion */
	for (i = 0; i<SHA1_DATA_LENGTH; i++, block += 4)
	data[i] = READ_UINT32(block);

	sha1_transform(ctx->digest, data);
}

/**
 * @fn	void sha1_update(struct sha1_ctx *ctx, unsigned length, const UINT8 *buffer)
 *
 * @brief	Sha 1 update.
 *
 * @param [in,out]	ctx	If non-null, the context.
 * @param	length	   	The length.
 * @param	buffer	   	The buffer.
 */

void
sha1_update(struct sha1_ctx *ctx,
		unsigned length, const UINT8 *buffer)
{
	if (ctx->index)
	{ /* Try to fill partial block */
		unsigned left = SHA1_DATA_SIZE - ctx->index;
		if (length < left)
	{
		memcpy(ctx->block + ctx->index, buffer, length);
		ctx->index += length;
		return; /* Finished */
	}
		else
	{
		memcpy(ctx->block + ctx->index, buffer, left);
		sha1_block(ctx, ctx->block);
		buffer += left;
		length -= left;
	}
	}
	while (length >= SHA1_DATA_SIZE)
	{
		sha1_block(ctx, buffer);
		buffer += SHA1_DATA_SIZE;
		length -= SHA1_DATA_SIZE;
	}
	ctx->index = length;
	if (length)
	/* Buffer leftovers */
	memcpy(ctx->block, buffer, length);
}

/* Final wrapup - pad to SHA1_DATA_SIZE-byte boundary with the bit pattern
   1 0* (64-bit count of bits processed, MSB-first) */

/**
 * @fn	void sha1_final(struct sha1_ctx *ctx)
 *
 * @brief	Sha 1 final.
 *
 * @param [in,out]	ctx	If non-null, the context.
 */

void
sha1_final(struct sha1_ctx *ctx)
{
	UINT32 data[SHA1_DATA_LENGTH];
	int i;
	int words;

	i = ctx->index;

	/* Set the first char of padding to 0x80.  This is safe since there is
	 always at least one byte free */

	assert(i < SHA1_DATA_SIZE);
	ctx->block[i++] = 0x80;

	/* Fill rest of word */
	for( ; i & 3; i++)
	ctx->block[i] = 0;

	/* i is now a multiple of the word size 4 */
	words = i >> 2;
	for (i = 0; i < words; i++)
	data[i] = READ_UINT32(ctx->block + 4*i);

	if (words > (SHA1_DATA_LENGTH-2))
	{ /* No room for length in this block. Process it and
       * pad with another one */
		for (i = words ; i < SHA1_DATA_LENGTH; i++)
	data[i] = 0;
		sha1_transform(ctx->digest, data);
		for (i = 0; i < (SHA1_DATA_LENGTH-2); i++)
	data[i] = 0;
	}
	else
	for (i = words ; i < SHA1_DATA_LENGTH - 2; i++)
		data[i] = 0;

	/* There are 512 = 2^9 bits in one block */
	data[SHA1_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
	data[SHA1_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
	sha1_transform(ctx->digest, data);
}

/**
 * @fn	void sha1_digest(const struct sha1_ctx *ctx, unsigned length, UINT8 *digest)
 *
 * @brief	Sha 1 digest.
 *
 * @param	ctx			  	The context.
 * @param	length		  	The length.
 * @param [in,out]	digest	If non-null, the digest.
 */

void
sha1_digest(const struct sha1_ctx *ctx,
		unsigned length,
		UINT8 *digest)
{
	unsigned i;
	unsigned words;
	unsigned leftover;

	assert(length <= SHA1_DIGEST_SIZE);

	words = length / 4;
	leftover = length % 4;

	for (i = 0; i < words; i++, digest += 4)
	WRITE_UINT32(digest, ctx->digest[i]);

	if (leftover)
	{
		UINT32 word;
		unsigned j = leftover;

		assert(i < _SHA1_DIGEST_LENGTH);

		word = ctx->digest[i];

		switch (leftover)
	{
	default:
		/* this is just here to keep the compiler happy; it can never happen */
	case 3:
		digest[--j] = (word >> 8) & 0xff;
		/* Fall through */
	case 2:
		digest[--j] = (word >> 16) & 0xff;
		/* Fall through */
	case 1:
		digest[--j] = (word >> 24) & 0xff;
	}
	}
}