summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/util/coretmpl.h
blob: 011fb28264b3d7a0740f077ad46169953939fb2a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
// license:BSD-3-Clause
// copyright-holders:Aaron Giles, Vas Crabb
/***************************************************************************

    coretmpl.h

    Core templates for basic non-string types.

***************************************************************************/
#ifndef MAME_UTIL_CORETMPL_H
#define MAME_UTIL_CORETMPL_H

#pragma once

#include "osdcomm.h"
#include "osdcore.h"
#include "corealloc.h"

#include <array>
#include <cassert>
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>


// ======================> simple_list

// a simple_list is a singly-linked list whose 'next' pointer is owned
// by the object
template<class _ElementType>
class simple_list final
{
public:
	class auto_iterator
	{
	public:
		typedef int difference_type;
		typedef _ElementType value_type;
		typedef _ElementType *pointer;
		typedef _ElementType &reference;
		typedef std::forward_iterator_tag iterator_category;

		// construction/destruction
		auto_iterator() noexcept : m_current(nullptr) { }
		auto_iterator(_ElementType *ptr) noexcept : m_current(ptr) { }

		// required operator overloads
		bool operator==(const auto_iterator &iter) const noexcept { return m_current == iter.m_current; }
		bool operator!=(const auto_iterator &iter) const noexcept { return m_current != iter.m_current; }
		_ElementType &operator*() const noexcept { return *m_current; }
		_ElementType *operator->() const noexcept { return m_current; }
		// note that _ElementType::next() must not return a const ptr
		auto_iterator &operator++() noexcept { m_current = m_current->next(); return *this; }
		auto_iterator operator++(int) noexcept { auto_iterator result(*this); m_current = m_current->next(); return result; }

	private:
		// private state
		_ElementType *m_current;
	};

	// construction/destruction
	simple_list() noexcept
		: m_head(nullptr)
		, m_tail(nullptr)
		, m_count(0)
	{
	}
	~simple_list() noexcept { reset(); }

	// we don't support deep copying
	simple_list(const simple_list &) = delete;
	simple_list &operator=(const simple_list &) = delete;

	// but we do support cheap swap/move
	simple_list(simple_list &&list) : simple_list() { operator=(std::move(list)); }
	simple_list &operator=(simple_list &&list)
	{
		using std::swap;
		swap(m_head, list.m_head);
		swap(m_tail, list.m_tail);
		swap(m_count, list.m_count);
	}

	// simple getters
	_ElementType *first() const noexcept { return m_head; }
	_ElementType *last() const noexcept { return m_tail; }
	int count() const noexcept { return m_count; }
	bool empty() const noexcept { return m_count == 0; }

	// range iterators
	auto_iterator begin() const noexcept { return auto_iterator(m_head); }
	auto_iterator end() const noexcept { return auto_iterator(nullptr); }

	// remove (free) all objects in the list, leaving an empty list
	void reset() noexcept
	{
		while (m_head != nullptr)
			remove(*m_head);
	}

	// add the given object to the head of the list
	_ElementType &prepend(_ElementType &object) noexcept
	{
		object.m_next = m_head;
		m_head = &object;
		if (m_tail == nullptr)
			m_tail = m_head;
		m_count++;
		return object;
	}

	// add the given list to the head of the list
	void prepend_list(simple_list<_ElementType> &list) noexcept
	{
		int count = list.count();
		if (count == 0)
			return;
		_ElementType *tail = list.last();
		_ElementType *head = list.detach_all();
		tail->m_next = m_head;
		m_head = head;
		if (m_tail == nullptr)
			m_tail = tail;
		m_count += count;
	}

	// add the given object to the tail of the list
	_ElementType &append(_ElementType &object) noexcept
	{
		object.m_next = nullptr;
		if (m_tail != nullptr)
			m_tail = m_tail->m_next = &object;
		else
			m_tail = m_head = &object;
		m_count++;
		return object;
	}

	// add the given list to the tail of the list
	void append_list(simple_list<_ElementType> &list) noexcept
	{
		int count = list.count();
		if (count == 0)
			return;
		_ElementType *tail = list.last();
		_ElementType *head = list.detach_all();
		if (m_tail != nullptr)
			m_tail->m_next = head;
		else
			m_head = head;
		m_tail = tail;
		m_count += count;
	}

	// insert the given object after a particular object (nullptr means prepend)
	_ElementType &insert_after(_ElementType &object, _ElementType *insert_after) noexcept
	{
		if (insert_after == nullptr)
			return prepend(object);
		object.m_next = insert_after->m_next;
		insert_after->m_next = &object;
		if (m_tail == insert_after)
			m_tail = &object;
		m_count++;
		return object;
	}

	// insert the given object before a particular object (nullptr means append)
	_ElementType &insert_before(_ElementType &object, _ElementType *insert_before) noexcept
	{
		if (insert_before == nullptr)
			return append(object);
		for (_ElementType **curptr = &m_head; *curptr != nullptr; curptr = &(*curptr)->m_next)
			if (*curptr == insert_before)
			{
				object.m_next = insert_before;
				*curptr = &object;
				if (m_head == insert_before)
					m_head = &object;
				m_count++;
				return object;
			}
		return object;
	}

	// replace an item in the list at the same location, and remove it
	_ElementType &replace_and_remove(_ElementType &object, _ElementType &toreplace) noexcept
	{
		_ElementType *prev = nullptr;
		for (_ElementType *cur = m_head; cur != nullptr; prev = cur, cur = cur->m_next)
			if (cur == &toreplace)
			{
				if (prev != nullptr)
					prev->m_next = &object;
				else
					m_head = &object;
				if (m_tail == &toreplace)
					m_tail = &object;
				object.m_next = toreplace.m_next;
				global_free(&toreplace);
				return object;
			}
		return append(object);
	}

	// detach the head item from the list, but don't free its memory
	_ElementType *detach_head() noexcept
	{
		_ElementType *result = m_head;
		if (result != nullptr)
		{
			m_head = result->m_next;
			m_count--;
			if (m_head == nullptr)
				m_tail = nullptr;
		}
		return result;
	}

	// detach the given item from the list, but don't free its memory
	_ElementType &detach(_ElementType &object) noexcept
	{
		_ElementType *prev = nullptr;
		for (_ElementType *cur = m_head; cur != nullptr; prev = cur, cur = cur->m_next)
			if (cur == &object)
			{
				if (prev != nullptr)
					prev->m_next = object.m_next;
				else
					m_head = object.m_next;
				if (m_tail == &object)
					m_tail = prev;
				m_count--;
				return object;
			}
		return object;
	}

	// detach the entire list, returning the head, but don't free memory
	_ElementType *detach_all() noexcept
	{
		_ElementType *result = m_head;
		m_head = m_tail = nullptr;
		m_count = 0;
		return result;
	}

	// remove the given object and free its memory
	void remove(_ElementType &object) noexcept
	{
		global_free(&detach(object));
	}

	// find an object by index in the list
	_ElementType *find(int index) const noexcept
	{
		for (_ElementType *cur = m_head; cur != nullptr; cur = cur->m_next)
			if (index-- == 0)
				return cur;
		return nullptr;
	}

	// return the index of the given object in the list
	int indexof(const _ElementType &object) const noexcept
	{
		int index = 0;
		for (_ElementType *cur = m_head; cur != nullptr; cur = cur->m_next)
		{
			if (cur == &object)
				return index;
			index++;
		}
		return -1;
	}

private:
	// internal state
	_ElementType *  m_head;         // head of the singly-linked list
	_ElementType *  m_tail;         // tail of the singly-linked list
	int             m_count;        // number of objects in the list
};


// ======================> simple_list_wrapper

// a simple_list_wrapper wraps an existing object with a next pointer so it
// can live in a simple_list without requiring the object to have a next
// pointer
template<class _ObjectType>
class simple_list_wrapper
{
public:
	template<class U> friend class simple_list;

	// construction/destruction
	simple_list_wrapper(_ObjectType *object)
		: m_next(nullptr),
			m_object(object) { }

	// operators
	operator _ObjectType *() { return m_object; }
	operator _ObjectType *() const { return m_object; }
	_ObjectType *operator *() { return m_object; }
	_ObjectType *operator *() const { return m_object; }

	// getters
	simple_list_wrapper *next() const { return m_next; }
	_ObjectType *object() const { return m_object; }

private:
	// internal state
	simple_list_wrapper *   m_next;
	_ObjectType *           m_object;
};


// ======================> fixed_allocator

// a fixed_allocator is a simple class that maintains a free pool of objects
template<class _ItemType>
class fixed_allocator
{
	// we don't support deep copying
	fixed_allocator(const fixed_allocator &);
	fixed_allocator &operator=(const fixed_allocator &);

public:
	// construction/destruction
	fixed_allocator() { }

	// allocate a new item, either by recycling an old one, or by allocating a new one
	_ItemType *alloc()
	{
		_ItemType *result = m_freelist.detach_head();
		if (result == nullptr)
			result = global_alloc(_ItemType);
		return result;
	}

	// reclaim an item by adding it to the free list
	void reclaim(_ItemType *item) { if (item != nullptr) m_freelist.append(*item); }
	void reclaim(_ItemType &item) { m_freelist.append(item); }

	// reclaim all items from a list
	void reclaim_all(simple_list<_ItemType> &_list) { m_freelist.append_list(_list); }

private:
	// internal state
	simple_list<_ItemType>  m_freelist;     // list of free objects
};


// ======================> contiguous_sequence_wrapper

namespace util {

using osd::u8;
using osd::u16;
using osd::u32;
using osd::u64;

using osd::s8;
using osd::s16;
using osd::s32;
using osd::s64;


// wraps an existing sequence of values
template<typename T>
class contiguous_sequence_wrapper
{
public:
	typedef std::ptrdiff_t difference_type;
	typedef std::size_t size_type;
	typedef T value_type;
	typedef T &reference;
	typedef const T &const_reference;
	typedef T *pointer;
	typedef T *iterator;
	typedef const T *const_iterator;
	typedef std::reverse_iterator<iterator> reverse_iterator;
	typedef std::reverse_iterator<const_iterator> const_reverse_iterator;

	contiguous_sequence_wrapper(T *ptr, std::size_t size)
		: m_begin(ptr)
		, m_end(ptr + size)
	{
	}

	contiguous_sequence_wrapper(const contiguous_sequence_wrapper &that) = default;

	// iteration
	iterator begin() { return m_begin; }
	const_iterator begin() const { return m_begin; }
	const_iterator cbegin() const { return m_begin; }
	iterator end() { return m_end; }
	const_iterator end() const { return m_end; }
	const_iterator cend() const { return m_end; }

	// reverse iteration
	reverse_iterator rbegin() { return std::reverse_iterator<iterator>(end()); }
	const_reverse_iterator rbegin() const { return std::reverse_iterator<const_iterator>(end()); }
	const_reverse_iterator crbegin() const { return std::reverse_iterator<const_iterator>(cend()); }
	reverse_iterator rend() { return std::reverse_iterator<iterator>(begin()); }
	const_reverse_iterator rend() const { return std::reverse_iterator<iterator>(begin()); }
	const_reverse_iterator crend() const { return std::reverse_iterator<iterator>(begin()); }

	// capacity
	size_type size() const { return m_end - m_begin; }
	size_type max_size() const { return size(); }
	bool empty() const { return size() == 0; }

	// element access
	reference front() { return operator[](0); }
	const_reference front() const { return operator[](0); }
	reference back() { return operator[](size() - 1); }
	const_reference back() const { return operator[](size() - 1); }
	reference operator[] (size_type n) { return m_begin[n]; }
	const_reference operator[] (size_type n) const { return m_begin[n]; }
	reference at(size_type n) { check_in_bounds(n); return operator[](n); }
	const_reference at(size_type n) const { check_in_bounds(n); return operator[](n); }

private:
	iterator m_begin;
	iterator m_end;

	void check_in_bounds(size_type n)
	{
		if (n < 0 || n >= size())
			throw std::out_of_range("invalid contiguous_sequence_wrapper<T> subscript");
	}
};


// LRU cache that behaves like std::map with differences:
// * drops least-recently used items if necessary on insert to prevent size from exceeding max_size
// * operator[], at, insert, emplace and find freshen existing entries
// * iterates from least- to most-recently used rather than in order by key
// * iterators to dropped items are invalidated
// * not all map interfaces implemented
// * copyable and swappable but not movable
// * swap may invalidate past-the-end iterator, other iterators refer to new container
template <typename Key, typename T, typename Compare = std::less<Key>, class Allocator = std::allocator<std::pair<Key const, T> > >
class lru_cache_map
{
private:
	class iterator_compare;
	typedef std::list<std::pair<Key const, T>, Allocator> value_list;
	typedef typename std::allocator_traits<Allocator>::template rebind_alloc<typename value_list::iterator> iterator_allocator_type;
	typedef std::set<typename value_list::iterator, iterator_compare, iterator_allocator_type> iterator_set;

	class iterator_compare
	{
	public:
		typedef std::true_type is_transparent;
		iterator_compare(Compare const &comp) : m_comp(comp) { }
		iterator_compare(iterator_compare const &that) = default;
		iterator_compare(iterator_compare &&that) = default;
		Compare key_comp() const { return m_comp; }
		iterator_compare &operator=(iterator_compare const &that) = default;
		iterator_compare &operator=(iterator_compare &&that) = default;
		bool operator()(typename value_list::iterator const &lhs, typename value_list::iterator const &rhs) const { return m_comp(lhs->first, rhs->first); }
		template <typename K> bool operator()(typename value_list::iterator const &lhs, K const &rhs) const { return m_comp(lhs->first, rhs); }
		template <typename K> bool operator()(K const &lhs, typename value_list::iterator const &rhs) const { return m_comp(lhs, rhs->first); }
	private:
		Compare m_comp;
	};

public:
	typedef Key key_type;
	typedef T mapped_type;
	typedef std::pair<Key const, T> value_type;
	typedef typename value_list::size_type size_type;
	typedef typename value_list::difference_type difference_type;
	typedef Compare key_compare;
	typedef Allocator allocator_type;
	typedef value_type &reference;
	typedef value_type const &const_reference;
	typedef typename std::allocator_traits<Allocator>::pointer pointer;
	typedef typename std::allocator_traits<Allocator>::const_pointer const_pointer;
	typedef typename value_list::iterator iterator;
	typedef typename value_list::const_iterator const_iterator;
	typedef typename value_list::reverse_iterator reverse_iterator;
	typedef typename value_list::const_reverse_iterator const_reverse_iterator;

	explicit lru_cache_map(size_type max_size)
		: lru_cache_map(max_size, key_compare())
	{
	}
	lru_cache_map(size_type max_size, key_compare const &comp, allocator_type const &alloc = allocator_type())
		: m_max_size(max_size)
		, m_size(0U)
		, m_elements(alloc)
		, m_mapping(iterator_compare(comp), iterator_allocator_type(alloc))
	{
		assert(0U < m_max_size);
	}
	lru_cache_map(lru_cache_map const &that)
		: m_max_size(that.m_max_size)
		, m_size(that.m_size)
		, m_elements(that.m_elements)
		, m_mapping(that.m_mapping.key_comp(), that.m_mapping.get_allocator())
	{
		for (iterator it = m_elements.begin(); it != m_elements.end(); ++it)
			m_mapping.insert(it);
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
	}

	allocator_type get_allocator() const { return m_elements.get_allocator(); }

	iterator begin() { return m_elements.begin(); }
	const_iterator begin() const { return m_elements.cbegin(); }
	const_iterator cbegin() const { return m_elements.cbegin(); }
	iterator end() { return m_elements.end(); }
	const_iterator end() const { return m_elements.cend(); }
	const_iterator cend() const { return m_elements.cend(); }
	reverse_iterator rbegin() { return m_elements.rbegin(); }
	const_reverse_iterator rbegin() const { return m_elements.crbegin(); }
	const_reverse_iterator crbegin() const { return m_elements.crbegin(); }
	reverse_iterator rend() { return m_elements.end(); }
	const_reverse_iterator rend() const { return m_elements.crend(); }
	const_reverse_iterator crend() const { return m_elements.crend(); }

	bool empty() const { return !m_size; }
	size_type size() const { return m_size; }
	size_type max_size() const { return m_max_size; }

	mapped_type &operator[](key_type const &key)
	{
		typename iterator_set::iterator existing(m_mapping.lower_bound(key));
		if ((m_mapping.end() != existing) && !m_mapping.key_comp()(key, *existing))
		{
			m_elements.splice(m_elements.cend(), m_elements, *existing);
			return (*existing)->second;
		}
		make_space(existing);
		iterator const inserted(m_elements.emplace(m_elements.end(), std::piecewise_construct, std::forward_as_tuple(key), std::tuple<>()));
		m_mapping.insert(existing, inserted);
		++m_size;
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
		return inserted->second;
	}
	mapped_type &operator[](key_type &&key)
	{
		typename iterator_set::iterator existing(m_mapping.lower_bound(key));
		if ((m_mapping.end() != existing) && !m_mapping.key_comp()(key, *existing))
		{
			m_elements.splice(m_elements.cend(), m_elements, *existing);
			return (*existing)->second;
		}
		make_space(existing);
		iterator const inserted(m_elements.emplace(m_elements.end(), std::piecewise_construct, std::forward_as_tuple(std::move(key)), std::tuple<>()));
		m_mapping.insert(existing, inserted);
		++m_size;
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
		return inserted->second;
	}
	mapped_type &at(key_type const &key)
	{
		typename iterator_set::iterator existing(m_mapping.find(key));
		if (m_mapping.end() != existing)
		{
			m_elements.splice(m_elements.cend(), m_elements, *existing);
			return (*existing)->second;
		}
		else
		{
			throw std::out_of_range("lru_cache_map::at");
		}
	}
	mapped_type const &at(key_type const &key) const
	{
		typename iterator_set::iterator existing(m_mapping.find(key));
		if (m_mapping.end() != existing)
		{
			m_elements.splice(m_elements.cend(), m_elements, *existing);
			return (*existing)->second;
		}
		else
		{
			throw std::out_of_range("lru_cache_map::at");
		}
	}

	void clear()
	{
		m_size = 0U;
		m_elements.clear();
		m_mapping.clear();
	}
	std::pair<iterator, bool> insert(value_type const &value)
	{
		typename iterator_set::iterator existing(m_mapping.lower_bound(value.first));
		if ((m_mapping.end() != existing) && !m_mapping.key_comp()(value.first, *existing))
		{
			m_elements.splice(m_elements.cend(), m_elements, *existing);
			return std::pair<iterator, bool>(*existing, false);
		}
		make_space(existing);
		iterator const inserted(m_elements.emplace(m_elements.end(), value));
		m_mapping.insert(existing, inserted);
		++m_size;
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
		return std::pair<iterator, bool>(inserted, true);
	}
	std::pair<iterator, bool> insert(value_type &&value)
	{
		typename iterator_set::iterator existing(m_mapping.lower_bound(value.first));
		if ((m_mapping.end() != existing) && !m_mapping.key_comp()(value.first, *existing))
		{
			m_elements.splice(m_elements.cend(), m_elements, *existing);
			return std::pair<iterator, bool>(*existing, false);
		}
		make_space(existing);
		iterator const inserted(m_elements.emplace(m_elements.end(), std::move(value)));
		m_mapping.insert(existing, inserted);
		++m_size;
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
		return std::pair<iterator, bool>(inserted, true);
	}
	template <typename P>
	std::enable_if_t<std::is_constructible<value_type, P>::value, std::pair<iterator, bool> > insert(P &&value)
	{
		return emplace(std::forward<P>(value));
	}
	template <typename InputIt>
	void insert(InputIt first, InputIt last)
	{
		while (first != last)
		{
			insert(*first);
			++first;
		}
	}
	void insert(std::initializer_list<value_type> ilist)
	{
		for (value_type const &value : ilist)
			insert(value);
	}
	template <typename... Params>
	std::pair<iterator, bool> emplace(Params &&... args)
	{
		// TODO: is there a more efficient way than depending on value_type being efficiently movable?
		return insert(value_type(std::forward<Params>(args)...));
	}
	iterator erase(const_iterator pos)
	{
		m_mapping.erase(m_elements.erase(pos, pos));
		iterator const result(m_elements.erase(pos));
		--m_size;
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
		return result;
	}
	iterator erase(const_iterator first, const_iterator last)
	{
		iterator pos(m_elements.erase(first, first));
		while (pos != last)
		{
			m_mapping.erase(pos);
			pos = m_elements.erase(pos);
			--m_size;
		}
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
		return pos;
	}
	size_type erase(key_type const &key)
	{
		typename iterator_set::iterator const found(m_mapping.find(key));
		if (m_mapping.end() == found)
		{
			return 0U;
		}
		else
		{
			m_elements.erase(*found);
			m_mapping.erase(found);
			--m_size;
			assert(m_elements.size() == m_size);
			assert(m_mapping.size() == m_size);
			return 1U;
		}
	}
	void swap(lru_cache_map &that)
	{
		using std::swap;
		swap(m_max_size, that.m_max_size);
		swap(m_size, that.m_size);
		swap(m_elements, that.m_elements);
		swap(m_mapping, that.m_mapping);
	}

	size_type count(key_type const &key) const
	{
		// TODO: perhaps this should freshen an element
		return m_mapping.count(key);
	}
	template <typename K>
	size_type count(K const &x) const
	{
		// FIXME: should only enable this overload if Compare::is_transparent
		// TODO: perhaps this should freshen an element
		return m_mapping.count(x);
	}
	iterator find(key_type const &key)
	{
		typename iterator_set::const_iterator const found(m_mapping.find(key));
		if (m_mapping.end() == found)
		{
			return m_elements.end();
		}
		else
		{
			m_elements.splice(m_elements.cend(), m_elements, *found);
			return *found;
		}
	}
	iterator find(key_type const &key) const
	{
		typename iterator_set::const_iterator const found(m_mapping.find(key));
		if (m_mapping.end() == found)
		{
			return m_elements.end();
		}
		else
		{
			m_elements.splice(m_elements.cend(), m_elements, *found);
			return *found;
		}
	}
	template <typename K>
	iterator find(K const &x)
	{
		// FIXME: should only enable this overload if Compare::is_transparent
		typename iterator_set::const_iterator const found(m_mapping.find(x));
		if (m_mapping.end() == found)
		{
			return m_elements.end();
		}
		else
		{
			m_elements.splice(m_elements.cend(), m_elements, *found);
			return *found;
		}
	}
	template <typename K>
	iterator find(K const &x) const
	{
		// FIXME: should only enable this overload if Compare::is_transparent
		typename iterator_set::const_iterator const found(m_mapping.find(x));
		if (m_mapping.end() == found)
		{
			return m_elements.end();
		}
		else
		{
			m_elements.splice(m_elements.cend(), m_elements, *found);
			return *found;
		}
	}

	key_compare key_comp() const
	{
		return m_mapping.key_comp().key_comp();
	}

	lru_cache_map &operator=(lru_cache_map const &that)
	{
		m_max_size = that.m_max_size;
		m_size = that.m_size;
		m_elements = that.m_elements;
		m_mapping.clear();
		for (iterator it = m_elements.begin(); it != m_elements.end(); ++it)
			m_mapping.insert(it);
		assert(m_elements.size() == m_size);
		assert(m_mapping.size() == m_size);
	}

private:
	void make_space(typename iterator_set::iterator &existing)
	{
		while (m_max_size <= m_size)
		{
			if ((m_mapping.end() != existing) && (m_elements.begin() == *existing))
				existing = m_mapping.erase(existing);
			else
				m_mapping.erase(m_elements.begin());
			m_elements.erase(m_elements.begin());
			--m_size;
		}
	}

	size_type           m_max_size;
	size_type           m_size;
	mutable value_list  m_elements;
	iterator_set        m_mapping;
};

template <typename Key, typename T, typename Compare, class Allocator>
void swap(lru_cache_map<Key, T, Compare, Allocator> &lhs, lru_cache_map<Key, T, Compare, Allocator> &rhs)
{
	lhs.swap(rhs);
}


template <typename T, std::size_t N, bool WriteWrap = false, bool ReadWrap = WriteWrap>
class fifo : protected std::array<T, N>
{
public:
	fifo()
		: std::array<T, N>()
		, m_head(this->begin())
		, m_tail(this->begin())
		, m_empty(true)
	{
		static_assert(0U < N, "FIFO must have at least one element");
	}
	fifo(fifo<T, N, WriteWrap, ReadWrap> const &) = delete;
	fifo(fifo<T, N, WriteWrap, ReadWrap> &&) = delete;
	fifo<T, N, WriteWrap, ReadWrap> &operator=(fifo<T, N, WriteWrap, ReadWrap> const &) = delete;
	fifo<T, N, WriteWrap, ReadWrap> &operator=(fifo<T, N, WriteWrap, ReadWrap> &&) = delete;

	template <bool W, bool R>
	fifo(fifo<T, N, W, R> const &that)
		: std::array<T, N>(that)
		, m_head(std::advance(this->begin(), std::distance(that.begin(), that.m_head)))
		, m_tail(std::advance(this->begin(), std::distance(that.begin(), that.m_tail)))
		, m_empty(that.m_empty)
	{
	}

	template <bool W, bool R>
	fifo(fifo<T, N, W, R> &&that)
		: std::array<T, N>(std::move(that))
		, m_head(std::advance(this->begin(), std::distance(that.begin(), that.m_head)))
		, m_tail(std::advance(this->begin(), std::distance(that.begin(), that.m_tail)))
		, m_empty(that.m_empty)
	{
	}

	template <bool W, bool R>
	fifo<T, N, WriteWrap, ReadWrap> &operator=(fifo<T, N, W, R> const &that)
	{
		std::array<T, N>::operator=(that);
		m_head = std::advance(this->begin(), std::distance(that.begin(), that.m_head));
		m_tail = std::advance(this->begin(), std::distance(that.begin(), that.m_tail));
		m_empty = that.m_empty;
		return *this;
	}

	template <bool W, bool R>
	fifo<T, N, WriteWrap, ReadWrap> &operator=(fifo<T, N, WriteWrap, ReadWrap> &&that)
	{
		std::array<T, N>::operator=(std::move(that));
		m_head = std::advance(this->begin(), std::distance(that.begin(), that.m_head));
		m_tail = std::advance(this->begin(), std::distance(that.begin(), that.m_tail));
		m_empty = that.m_empty;
		return *this;
	}

	bool full() const { return !m_empty && (m_head == m_tail); }
	bool empty() const { return m_empty; }

	void enqueue(T const &v)
	{
		if (WriteWrap || m_empty || (m_head != m_tail))
		{
			*m_tail = v;
			if (this->end() == ++m_tail)
				m_tail = this->begin();
			m_empty = false;
		}
	}

	void enqueue(T &&v)
	{
		if (WriteWrap || m_empty || (m_head != m_tail))
		{
			*m_tail = std::move(v);
			if (this->end() == ++m_tail)
				m_tail = this->begin();
			m_empty = false;
		}
	}

	T const &dequeue()
	{
		T const &result(*m_head);
		if (ReadWrap || !m_empty)
		{
			if (this->end() == ++m_head)
				m_head = this->begin();
			m_empty = (m_head == m_tail);
		}
		return result;
	}

	void poke(T &v)
	{
		*m_tail = v;
	}

	void poke(T &&v)
	{
		*m_tail = std::move(v);
	}

	T const &peek() const
	{
		return *m_head;
	}

	void clear()
	{
		m_head = m_tail = this->begin();
		m_empty = true;
	}

private:
	typename fifo::iterator m_head, m_tail;
	bool                    m_empty;
};

}; // namespace util

#endif // MAME_UTIL_CORETMPL_H