summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/netlist/solver/nld_ms_sor_mat.h
blob: f725213228c59178fba3f25d0b66bb6472878cea (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// license:GPL-2.0+
// copyright-holders:Couriersud

#ifndef NLD_MS_SOR_MAT_H_
#define NLD_MS_SOR_MAT_H_

///
/// \file nld_ms_sor.h
///
/// Generic successive over relaxation solver.
///
/// For w==1 we will do the classic Gauss-Seidel approach
///

#include "nld_matrix_solver_ext.h"
#include "nld_ms_direct.h"

#include <algorithm>

namespace netlist
{
namespace solver
{

	template <typename FT, int SIZE>
	class matrix_solver_SOR_mat_t: public matrix_solver_direct_t<FT, SIZE>
	{
	public:

		using float_type = FT;

		matrix_solver_SOR_mat_t(netlist_state_t &anetlist, const pstring &name,
			const matrix_solver_t::net_list_t &nets,
			const solver_parameters_t *params, std::size_t size)
			: matrix_solver_direct_t<FT, SIZE>(anetlist, name, nets, params, size)
			, m_omega(*this, "m_omega", static_cast<float_type>(params->m_gs_sor))
			{
			}

		void vsolve_non_dynamic() override;

	private:
		state_var<float_type> m_omega;
	};

	// ----------------------------------------------------------------------------------------
	// matrix_solver - Gauss - Seidel
	// ----------------------------------------------------------------------------------------

	template <typename FT, int SIZE>
	void matrix_solver_SOR_mat_t<FT, SIZE>::vsolve_non_dynamic()
	{
		// The matrix based code looks a lot nicer but actually is 30% slower than
		// the optimized code which works directly on the data structures.
		// Need something like that for gaussian elimination as well.

		const std::size_t iN = this->size();

		this->clear_square_mat(this->m_A);
		this->fill_matrix_and_rhs();

		bool resched = false;

		unsigned resched_cnt = 0;

	#if 0
		static int ws_cnt = 0;
		ws_cnt++;
		if (1 && ws_cnt % 200 == 0)
		{
			// update omega
			float_type lambdaN = 0;
			float_type lambda1 = 1e9;
			for (int k = 0; k < iN; k++)
			{
		#if 0
				float_type akk = plib::abs(this->m_A[k][k]);
				if ( akk > lambdaN)
					lambdaN = akk;
				if (akk < lambda1)
					lambda1 = akk;
		#else
				float_type akk = plib::abs(this->m_A[k][k]);
				float_type s = 0.0;
				for (int i=0; i<iN; i++)
					s = s + plib::abs(this->m_A[k][i]);
				akk = s / akk - 1.0;
				if ( akk > lambdaN)
					lambdaN = akk;
				if (akk < lambda1)
					lambda1 = akk;
		#endif
			}

			//ws = 2.0 / (2.0 - lambdaN - lambda1);
			m_omega = 2.0 / (2.0 - lambda1);
		}
	#endif

		for (std::size_t k = 0; k < iN; k++)
			this->m_new_V[k] = static_cast<float_type>(this->m_terms[k].getV());

		do {
			resched = false;
			FT cerr = plib::constants<FT>::zero();

			for (std::size_t k = 0; k < iN; k++)
			{
				float_type Idrive = 0;

				const auto *p = this->m_terms[k].m_nz.data();
				const std::size_t e = this->m_terms[k].m_nz.size();

				for (std::size_t i = 0; i < e; i++)
					Idrive = Idrive + this->m_A[k][p[i]] * this->m_new_V[p[i]];

				FT w = m_omega / this->m_A[k][k];
				if (this->m_params.m_use_gabs)
				{
					FT gabs_t = plib::constants<FT>::zero();
					for (std::size_t i = 0; i < e; i++)
						if (p[i] != k)
							gabs_t = gabs_t + plib::abs(this->m_A[k][p[i]]);

					gabs_t *= plib::constants<FT>::one(); // derived by try and error
					if (gabs_t > this->m_A[k][k])
					{
						w = plib::constants<FT>::one() / (this->m_A[k][k] + gabs_t);
					}
				}

				const float_type delta = w * (this->m_RHS[k] - Idrive) ;
				cerr = std::max(cerr, plib::abs(delta));
				this->m_new_V[k] += delta;
			}

			if (cerr > static_cast<float_type>(this->m_params.m_accuracy))
			{
				resched = true;
			}
			resched_cnt++;
		} while (resched && (resched_cnt < this->m_params.m_gs_loops));

		this->m_iterative_total += resched_cnt;

		if (resched)
		{
			this->m_iterative_fail++;
			matrix_solver_direct_t<FT, SIZE>::solve_non_dynamic();
		}
	}

} // namespace solver
} // namespace netlist

#endif // NLD_MS_SOR_MAT_