summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/netlist/solver/nld_ms_sor.h
blob: 6b1a21afd39ac53d4cfb7e1c32d6f4934a237a47 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// license:GPL-2.0+
// copyright-holders:Couriersud

#ifndef NLD_MS_SOR_H_
#define NLD_MS_SOR_H_

///
/// \file nld_ms_sor.h
///
/// Generic successive over relaxation solver.
///
/// Fow w==1 we will do the classic Gauss-Seidel approach.
///

#include "nld_matrix_solver_ext.h"
#include "nld_ms_direct.h"

#include <algorithm>

namespace netlist
{
namespace solver
{

	template <typename FT, int SIZE>
	class matrix_solver_SOR_t: public matrix_solver_direct_t<FT, SIZE>
	{
	public:

		using float_type = FT;

		matrix_solver_SOR_t(netlist_state_t &anetlist, const pstring &name,
			analog_net_t::list_t &nets,
			const solver_parameters_t *params, const std::size_t size)
			: matrix_solver_direct_t<FT, SIZE>(anetlist, name, nets, params, size)
			, m_lp_fact(*this, "m_lp_fact", 0)
			, w(size, plib::constants<FT>::zero())
			, one_m_w(size, plib::constants<FT>::zero())
			{
			}

		void vsolve_non_dynamic() override;

	private:
		state_var<float_type> m_lp_fact;
		std::vector<float_type> w;
		std::vector<float_type> one_m_w;
	};

	// ----------------------------------------------------------------------------------------
	// matrix_solver - Gauss - Seidel
	// ----------------------------------------------------------------------------------------

	template <typename FT, int SIZE>
	void matrix_solver_SOR_t<FT, SIZE>::vsolve_non_dynamic()
	{
		const std::size_t iN = this->size();
		bool resched = false;
		unsigned resched_cnt = 0;

		// ideally, we could get an estimate for the spectral radius of
		// Inv(D - L) * U
		//
		// and estimate using
		//
		// omega = 2.0 / (1.0 + std::sqrt(1-rho))
		//

		const auto ws(static_cast<float_type>(this->m_params.m_gs_sor));

		for (std::size_t k = 0; k < iN; k++)
		{

			const std::size_t term_count = this->m_terms[k].count();
			const auto * const gt = this->m_gtn[k];
			const auto * const go = this->m_gonn[k];
			const auto * const Idr = this->m_Idrn[k];
			auto other_cur_analog = this->m_connected_net_Vn[k];

			using fpaggtype = std::remove_reference_t<std::remove_cv_t<decltype(this->m_gtn[0][0])>>;

			fpaggtype gtot_t = nlconst_base<fpaggtype>::zero();
			fpaggtype gabs_t = nlconst_base<fpaggtype>::zero();
			fpaggtype RHS_t  = nlconst_base<fpaggtype>::zero();

			this->m_new_V[k] = static_cast<float_type>(this->m_terms[k].getV());

			for (std::size_t i = 0; i < term_count; i++)
			{
				gtot_t = gtot_t + gt[i];
				RHS_t = RHS_t + Idr[i];
			}

			for (std::size_t i = this->m_terms[k].railstart(); i < term_count; i++)
				RHS_t = RHS_t  - go[i] * *other_cur_analog[i];

			this->m_RHS[k] = static_cast<float_type>(RHS_t);

			if (this->m_params.m_use_gabs)
			{
				for (std::size_t i = 0; i < term_count; i++)
					gabs_t = gabs_t + plib::abs(go[i]);

				gabs_t *= nlconst::half(); // derived by try and error
				if (gabs_t <= gtot_t)
				{
					w[k] = ws / static_cast<float_type>(gtot_t);
					one_m_w[k] = plib::constants<FT>::one() - ws;
				}
				else
				{
					w[k] = plib::reciprocal(static_cast<float_type>(gtot_t + gabs_t));
					one_m_w[k] = plib::constants<FT>::one() - plib::constants<FT>::one() * static_cast<FT>(gtot_t / (gtot_t + gabs_t));
				}
			}
			else
			{
				w[k] = ws / static_cast<float_type>(gtot_t);
				one_m_w[k] = plib::constants<FT>::one() - ws;
			}
		}

		const auto accuracy(static_cast<float_type>(this->m_params.m_accuracy));

		do {
			resched = false;
			float_type err = 0;
			for (std::size_t k = 0; k < iN; k++)
			{
				const int * net_other = this->m_terms[k].m_connected_net_idx.data();
				const std::size_t railstart = this->m_terms[k].railstart();
				const auto * go = this->m_gonn[k];

				float_type Idrive = plib::constants<float_type>::zero();
				for (std::size_t i = 0; i < railstart; i++)
					Idrive = Idrive - static_cast<float_type>(go[i]) * this->m_new_V[static_cast<std::size_t>(net_other[i])];

				const float_type new_val = this->m_new_V[k] * one_m_w[k] + (Idrive + this->m_RHS[k]) * w[k];

				err = std::max(plib::abs(new_val - this->m_new_V[k]), err);
				this->m_new_V[k] = new_val;
			}

			if (err > accuracy)
				resched = true;

			resched_cnt++;
		} while (resched && (resched_cnt < this->m_params.m_gs_loops));

		this->m_iterative_total += resched_cnt;

		if (resched)
		{
			// Fallback to direct solver ...
			this->m_iterative_fail++;
			matrix_solver_direct_t<FT, SIZE>::vsolve_non_dynamic();
		}

	}

} // namespace solver
} // namespace netlist

#endif // NLD_MS_SOR_H_