summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/netlist/solver/nld_ms_direct.h
blob: 16e13cbc4ab912cfbba67ede37ab23b86b31f9c0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// license:GPL-2.0+
// copyright-holders:Couriersud
/*
 * nld_ms_direct.h
 *
 */

#ifndef NLD_MS_DIRECT_H_
#define NLD_MS_DIRECT_H_

#include "nld_matrix_solver.h"
#include "nld_solver.h"
#include "plib/parray.h"
#include "plib/vector_ops.h"

#include <algorithm>
#include <cmath>

namespace netlist
{
namespace devices
{

	template <typename FT, int SIZE>
	class matrix_solver_direct_t: public matrix_solver_t
	{
		friend class matrix_solver_t;
	public:

		using float_type = FT;

		matrix_solver_direct_t(netlist_state_t &anetlist, const pstring &name, const solver_parameters_t *params, const std::size_t size);

		void vsetup(analog_net_t::list_t &nets) override;
		void reset() override { matrix_solver_t::reset(); }

	protected:
		unsigned vsolve_non_dynamic(const bool newton_raphson) override;
		unsigned solve_non_dynamic(const bool newton_raphson);

		constexpr std::size_t size() const { return (SIZE > 0) ? static_cast<std::size_t>(SIZE) : m_dim; }

		void LE_solve();

		template <typename T>
		void LE_back_subst(T & x);

		FT &A(std::size_t r, std::size_t c) { return m_A[r * m_pitch + c]; }
		FT &RHS(std::size_t r) { return m_A[r * m_pitch + size()]; }
		plib::parray<FT, SIZE>  m_new_V;

	private:
		static constexpr const std::size_t SIZEABS = plib::parray<FT, SIZE>::SIZEABS();
		static constexpr const std::size_t m_pitch_ABS = (((SIZEABS + 1) + 7) / 8) * 8;

		const std::size_t m_dim;
		const std::size_t m_pitch;
		plib::parray<FT, SIZE * int(m_pitch_ABS)> m_A;

	};

	// ----------------------------------------------------------------------------------------
	// matrix_solver_direct
	// ----------------------------------------------------------------------------------------

	template <typename FT, int SIZE>
	void matrix_solver_direct_t<FT, SIZE>::vsetup(analog_net_t::list_t &nets)
	{
		matrix_solver_t::setup_base(nets);

		/* add RHS element */
		for (std::size_t k = 0; k < size(); k++)
		{
			terms_for_net_t * t = m_terms[k].get();

			if (!plib::container::contains(t->m_nzrd, static_cast<unsigned>(size())))
				t->m_nzrd.push_back(static_cast<unsigned>(size()));
		}

		// FIXME: This shouldn't be necessary ...
		for (std::size_t k = 0; k < size(); k++)
			state().save(*this, RHS(k), this->name(), plib::pfmt("RHS.{1}")(k));
	}

	template <typename FT, int SIZE>
	void matrix_solver_direct_t<FT, SIZE>::LE_solve()
	{
		const std::size_t kN = size();
		if (!m_params.m_pivot)
		{
			for (std::size_t i = 0; i < kN; i++)
			{
				/* FIXME: Singular matrix? */
				const FT f = 1.0 / A(i,i);
				const auto &nzrd = m_terms[i]->m_nzrd;
				const auto &nzbd = m_terms[i]->m_nzbd;

				for (const std::size_t j : nzbd)
				{
					const FT f1 = -f * A(j, i);
					for (const std::size_t k : nzrd)
						A(j, k) += A(i, k) * f1;
					//RHS(j) += RHS(i) * f1;
				}
			}
		}
		else
		{
			for (std::size_t i = 0; i < kN; i++)
			{
				/* Find the row with the largest first value */
				std::size_t maxrow = i;
				for (std::size_t j = i + 1; j < kN; j++)
				{
					//if (std::abs(m_A[j][i]) > std::abs(m_A[maxrow][i]))
					if (A(j,i) * A(j,i) > A(maxrow,i) * A(maxrow,i))
						maxrow = j;
				}

				if (maxrow != i)
				{
					/* Swap the maxrow and ith row */
					for (std::size_t k = 0; k < kN + 1; k++) {
						std::swap(A(i,k), A(maxrow,k));
					}
					//std::swap(RHS(i), RHS(maxrow));
				}
				/* FIXME: Singular matrix? */
				const FT f = 1.0 / A(i,i);

				/* Eliminate column i from row j */

				for (std::size_t j = i + 1; j < kN; j++)
				{
					const FT f1 = - A(j,i) * f;
					if (f1 != plib::constants<FT>::zero())
					{
						const FT * pi = &A(i,i+1);
						FT * pj = &A(j,i+1);
	#if 1
						plib::vec_add_mult_scalar_p(kN-i,pj, pi,f1);
	#else
						vec_add_mult_scalar_p1(kN-i-1,pj,pi,f1);
						//for (unsigned k = i+1; k < kN; k++)
						//  pj[k] = pj[k] + pi[k] * f1;
						//for (unsigned k = i+1; k < kN; k++)
							//A(j,k) += A(i,k) * f1;
						RHS(j) += RHS(i) * f1;
	#endif
					}
				}
			}
		}
	}

	template <typename FT, int SIZE>
	template <typename T>
	void matrix_solver_direct_t<FT, SIZE>::LE_back_subst(
			T & x)
	{
		const std::size_t kN = size();

		/* back substitution */
		if (m_params.m_pivot)
		{
			for (std::size_t j = kN; j-- > 0; )
			{
				FT tmp = 0;
				for (std::size_t k = j+1; k < kN; k++)
					tmp += A(j,k) * x[k];
				x[j] = (RHS(j) - tmp) / A(j,j);
			}
		}
		else
		{
			for (std::size_t j = kN; j-- > 0; )
			{
				FT tmp = 0;
				const auto &nzrd = m_terms[j]->m_nzrd;
				const auto e = nzrd.size() - 1; /* exclude RHS element */
				for ( std::size_t k = 0; k < e; k++)
					tmp += A(j, nzrd[k]) * x[nzrd[k]];
				x[j] = (RHS(j) - tmp) / A(j,j);
			}
		}
	}

	template <typename FT, int SIZE>
	unsigned matrix_solver_direct_t<FT, SIZE>::solve_non_dynamic(const bool newton_raphson)
	{
		this->LE_solve();
		this->LE_back_subst(m_new_V);

		const FT err = (newton_raphson ? delta(m_new_V) : 0.0);
		store(m_new_V);
		return (err > this->m_params.m_accuracy) ? 2 : 1;
	}

	template <typename FT, int SIZE>
	unsigned matrix_solver_direct_t<FT, SIZE>::vsolve_non_dynamic(const bool newton_raphson)
	{
		this->build_LE_A(*this);
		this->build_LE_RHS(*this);

		this->m_stat_calculations++;
		return this->solve_non_dynamic(newton_raphson);
	}

	template <typename FT, int SIZE>
	matrix_solver_direct_t<FT, SIZE>::matrix_solver_direct_t(netlist_state_t &anetlist, const pstring &name,
			const solver_parameters_t *params, const std::size_t size)
	: matrix_solver_t(anetlist, name, params)
	, m_new_V(size)
	, m_dim(size)
	, m_pitch(m_pitch_ABS ? m_pitch_ABS : (((m_dim + 1) + 7) / 8) * 8)
	, m_A(size * m_pitch)
	{
	}

} // namespace devices
} // namespace netlist

#endif /* NLD_MS_DIRECT_H_ */