summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/netlist/devices/nlid_proxy.cpp
blob: ddf76b2788715ce80b5fea4ced0d43862b5e0136 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// license:GPL-2.0+
// copyright-holders:Couriersud
/*
 * nlid_proxy.cpp
 *
 */

#include "nlid_proxy.h"
#include "netlist/solver/nld_solver.h"

namespace netlist
{
	namespace devices
	{

	// -----------------------------------------------------------------------------
	// nld_base_proxy
	// -----------------------------------------------------------------------------

	nld_base_proxy::nld_base_proxy(netlist_state_t &anetlist, const pstring &name,
			logic_t *inout_proxied, detail::core_terminal_t *proxy_inout)
			: device_t(anetlist, name)
	{
		m_logic_family = inout_proxied->logic_family();
		m_term_proxied = inout_proxied;
		m_proxy_term = proxy_inout;
	}

	// ----------------------------------------------------------------------------------------
	// nld_a_to_d_proxy
	// ----------------------------------------------------------------------------------------

	nld_base_a_to_d_proxy::nld_base_a_to_d_proxy(netlist_state_t &anetlist, const pstring &name,
			logic_input_t *in_proxied, detail::core_terminal_t *in_proxy)
			: nld_base_proxy(anetlist, name, in_proxied, in_proxy)
	, m_Q(*this, "Q")
	{
	}

	nld_a_to_d_proxy::nld_a_to_d_proxy(netlist_state_t &anetlist, const pstring &name, logic_input_t *in_proxied)
			: nld_base_a_to_d_proxy(anetlist, name, in_proxied, &m_I)
	, m_I(*this, "I")
	{
	}

	NETLIB_RESET(a_to_d_proxy)
	{
	}

	NETLIB_UPDATE(a_to_d_proxy)
	{
		nl_assert(m_logic_family != nullptr);
		// FIXME: Variable supply voltage!
		nl_fptype supply_V = logic_family()->fixed_V();
		if (supply_V == nlconst::zero()) supply_V = nlconst::magic(5.0);

		if (m_I.Q_Analog() > logic_family()->high_thresh_V(nlconst::zero(), supply_V))
			out().push(1, netlist_time::quantum());
		else if (m_I.Q_Analog() < logic_family()->low_thresh_V(nlconst::zero(), supply_V))
			out().push(0, netlist_time::quantum());
		else
		{
			// do nothing
		}
	}

	// ----------------------------------------------------------------------------------------
	// nld_d_to_a_proxy
	// ----------------------------------------------------------------------------------------

	nld_base_d_to_a_proxy::nld_base_d_to_a_proxy(netlist_state_t &anetlist, const pstring &name,
			logic_output_t *out_proxied, detail::core_terminal_t &proxy_out)
	: nld_base_proxy(anetlist, name, out_proxied, &proxy_out)
	, m_I(*this, "I")
	{
	}

	nld_d_to_a_proxy::nld_d_to_a_proxy(netlist_state_t &anetlist, const pstring &name, logic_output_t *out_proxied)
	: nld_base_d_to_a_proxy(anetlist, name, out_proxied, m_RN.m_P)
	, m_RP(*this, "RP")
	, m_RN(*this, "RN")
	, m_last_state(*this, "m_last_var", -1)
	, m_is_timestep(false)
	{
		const std::vector<std::pair<pstring, pstring>> power_syms = { {"VCC", "VEE"}, {"VCC", "GND"}, {"VDD", "VSS"}};

		register_subalias("Q", m_RN.m_P);

		bool f = false;
		detail::core_terminal_t *tp(nullptr);
		detail::core_terminal_t *tn(nullptr);
		for (auto & pwr_sym : power_syms)
		{
			pstring devname = out_proxied->device().name();
			auto tp_t = anetlist.setup().find_terminal(devname + "." + pwr_sym.first,
					/*detail::terminal_type::INPUT,*/ false);
			auto tn_t = anetlist.setup().find_terminal(devname + "." + pwr_sym.second,
					/*detail::terminal_type::INPUT,*/ false);
			if (f && (tp_t != nullptr && tn_t != nullptr))
				log().warning(MI_MULTIPLE_POWER_TERMINALS_ON_DEVICE(out_proxied->device().name(),
					tp->name(), tn->name(),
					tp_t ? tp_t->name() : "",
					tn_t ? tn_t->name() : ""));
			else if (tp_t != nullptr && tn_t != nullptr)
			{
				/* alternative logic */
				tp = tp_t;
				tn = tn_t;
				f = true;
			}
		}
		//FIXME: Use power terminals and change info to warning or error
		if (!f)
		{
			if (logic_family()->fixed_V() == nlconst::zero())
				log().error(MI_NO_POWER_TERMINALS_ON_DEVICE_1(anetlist.setup().de_alias(out_proxied->device().name())));
			else
				log().info(MI_NO_POWER_TERMINALS_ON_DEVICE_1(anetlist.setup().de_alias(out_proxied->device().name())));
			m_GNDHack = plib::make_unique<analog_output_t>(*this, "_QGND");
			m_VCCHack = plib::make_unique<analog_output_t>(*this, "_QVCC");

			connect(m_RN.m_N, *m_GNDHack);
			connect(m_RP.m_P, *m_VCCHack);
			connect(m_RN.m_P, m_RP.m_N);
		}
		else
		{
			log().verbose("D/A Proxy: Found power terminals on device {1}", out_proxied->device().name());
			if (anetlist.setup().is_extended_validation())
			{
				// During validation, don't connect to terminals found
				// This will cause terminals not connected to a rail net to
				// fail connection stage.
				connect(m_RN.m_N, m_RP.m_P);
			}
			else
			{
				connect(m_RN.m_N, *tn);
				connect(m_RP.m_P, *tp);
			}
			connect(m_RN.m_P, m_RP.m_N);
		}
		//printf("vcc: %f\n", logic_family()->fixed_V());
	}


	void nld_d_to_a_proxy::reset()
	{
		// FIXME: Variable voltage
		nl_fptype supply_V = logic_family()->fixed_V();
		// FIXME: comparison to zero
		if (supply_V == nlconst::zero())
			supply_V = nlconst::magic(5.0);

		//m_Q.initial(0.0);
		m_last_state = -1;
		m_RN.reset();
		m_RP.reset();
		if (m_GNDHack)
			m_GNDHack->initial(0);
		if (m_VCCHack)
			m_VCCHack->initial(supply_V);
		m_is_timestep = m_RN.m_P.net().solver()->has_timestep_devices();
		m_RN.set_G_V_I(plib::reciprocal(logic_family()->R_low()),
				logic_family()->low_offset_V(), nlconst::zero());
		m_RP.set_G_V_I(G_OFF,
			nlconst::zero(),
			nlconst::zero());
	}

	NETLIB_UPDATE(d_to_a_proxy)
	{
		const auto state = static_cast<int>(m_I());
		if (state != m_last_state)
		{
			// We only need to update the net first if this is a time stepping net
			if (m_is_timestep)
			{
				m_RN.update(); // RN, RP are connected ...
			}
			if (state)
			{
				m_RN.set_G_V_I(G_OFF,
					nlconst::zero(),
					nlconst::zero());
				m_RP.set_G_V_I(plib::reciprocal(logic_family()->R_high()),
						logic_family()->high_offset_V(), nlconst::zero());
			}
			else
			{
				m_RN.set_G_V_I(plib::reciprocal(logic_family()->R_low()),
						logic_family()->low_offset_V(), nlconst::zero());
				m_RP.set_G_V_I(G_OFF,
					nlconst::zero(),
					nlconst::zero());
			}
			m_RN.solve_later(); // RN, RP are connected ...
			m_last_state = state;
		}
	}


	} //namespace devices
} // namespace netlist