1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
// license:GPL-2.0+
// copyright-holders:Couriersud
#include "solver/nld_solver.h"
#include "nl_factory.h"
#include "nlid_fourterm.h"
namespace netlist
{
namespace analog
{
// ----------------------------------------------------------------------------------------
// nld_VCCS
// ----------------------------------------------------------------------------------------
NETLIB_RESET(VCCS)
{
const nl_fptype m_mult = m_G() * m_gfac; // 1.0 ==> 1V ==> 1A
const nl_fptype GI = plib::reciprocal(m_RI());
m_IP.set_conductivity(GI);
m_IN.set_conductivity(GI);
m_OP.set_go_gt(-m_mult, nlconst::zero());
m_OP1.set_go_gt(m_mult, nlconst::zero());
m_ON.set_go_gt(m_mult, nlconst::zero());
m_ON1.set_go_gt(-m_mult, nlconst::zero());
}
NETLIB_HANDLER(VCCS, termhandler)
{
solver::matrix_solver_t *solv = nullptr;
// only called if connected to a rail net ==> notify the solver to recalculate
if ((solv = m_IP.solver()) != nullptr)
solv->solve_now();
else if ((solv = m_IN.solver()) != nullptr)
solv->solve_now();
else if ((solv = m_OP.solver()) != nullptr)
solv->solve_now();
else if ((solv = m_ON.solver()) != nullptr)
solv->solve_now();
}
// ----------------------------------------------------------------------------------------
// nld_LVCCS
// ----------------------------------------------------------------------------------------
NETLIB_RESET(LVCCS)
{
NETLIB_NAME(VCCS)::reset();
}
NETLIB_UPDATE_PARAM(LVCCS)
{
NETLIB_NAME(VCCS)::update_param();
}
NETLIB_UPDATE_TERMINALS(LVCCS)
{
const nl_fptype m_mult = m_G() * get_gfac(); // 1.0 ==> 1V ==> 1A
const nl_fptype vi = m_IP.net().Q_Analog() - m_IN.net().Q_Analog();
const auto c1(nlconst::magic(0.2));
if (plib::abs(m_mult / m_cur_limit() * vi) > nlconst::half())
m_vi = m_vi + c1 * plib::tanh((vi - m_vi) / c1);
else
m_vi = vi;
const nl_fptype x = m_mult / m_cur_limit() * m_vi;
const nl_fptype tanhx = plib::tanh(x);
const nl_fptype beta = m_mult * (nlconst::one() - tanhx*tanhx);
const nl_fptype I = m_cur_limit() * tanhx - beta * m_vi;
m_OP.set_go_gt_I(-beta, nlconst::zero(), I);
m_OP1.set_go_gt(beta, nlconst::zero());
m_ON.set_go_gt_I(beta, nlconst::zero(), -I);
m_ON1.set_go_gt(-beta, nlconst::zero());
}
// ----------------------------------------------------------------------------------------
// nld_CCCS
// ----------------------------------------------------------------------------------------
NETLIB_RESET(CCCS)
{
NETLIB_NAME(VCCS)::reset();
}
NETLIB_UPDATE_PARAM(CCCS)
{
NETLIB_NAME(VCCS)::update_param();
}
// ----------------------------------------------------------------------------------------
// nld_VCVS
// ----------------------------------------------------------------------------------------
NETLIB_RESET(VCVS)
{
const auto gfac(plib::reciprocal(m_RO()));
set_gfac(gfac);
NETLIB_NAME(VCCS)::reset();
m_OP2.set_conductivity(gfac);
m_ON2.set_conductivity(gfac);
}
// ----------------------------------------------------------------------------------------
// nld_CCVS
// ----------------------------------------------------------------------------------------
NETLIB_RESET(CCVS)
{
const auto gfac(plib::reciprocal(m_RO()));
set_gfac(gfac);
NETLIB_NAME(VCCS)::reset();
m_OP2.set_conductivity(gfac);
m_ON2.set_conductivity(gfac);
}
} //namespace analog
namespace devices {
NETLIB_DEVICE_IMPL_NS(analog, VCVS, "VCVS", "G")
NETLIB_DEVICE_IMPL_NS(analog, VCCS, "VCCS", "G")
NETLIB_DEVICE_IMPL_NS(analog, CCCS, "CCCS", "G")
NETLIB_DEVICE_IMPL_NS(analog, CCVS, "CCVS", "G")
NETLIB_DEVICE_IMPL_NS(analog, LVCCS, "LVCCS", "")
} // namespace devices
} // namespace netlist
|