summaryrefslogtreecommitdiffstatshomepage
path: root/src/lib/netlist/analog/nld_bjt.cpp
blob: 0785ba56b372395a34b96bf7e31c86e1585f4576 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
// license:GPL-2.0+
// copyright-holders:Couriersud
/*
 * nld_bjt.c
 *
 */

#include "netlist/solver/nld_solver.h"
#include "netlist/nl_setup.h"
#include "nlid_twoterm.h"

namespace netlist
{
namespace analog
{
	class diode
	{
	public:
		diode()
		: m_Is(nlconst::magic(1e-15))
		, m_VT(nlconst::magic(0.0258))
		, m_VT_inv(plib::reciprocal(m_VT))
		{}

		diode(const nl_fptype Is, const nl_fptype n)
		{
			m_Is = Is;
			m_VT = nlconst::magic(0.0258) * n;
			m_VT_inv = plib::reciprocal(m_VT);
		}
		void set(const nl_fptype Is, const nl_fptype n)
		{
			m_Is = Is;
			m_VT = nlconst::magic(0.0258) * n;
			m_VT_inv = plib::reciprocal(m_VT);
		}
		nl_fptype I(const nl_fptype V) const { return m_Is * plib::exp(V * m_VT_inv) - m_Is; }
		nl_fptype g(const nl_fptype V) const { return m_Is * m_VT_inv * plib::exp(V * m_VT_inv); }
		nl_fptype V(const nl_fptype I) const { return plib::log1p(I / m_Is) * m_VT; } // log1p(x)=log(1.0 + x)
		nl_fptype gI(const nl_fptype I) const { return m_VT_inv * (I + m_Is); }

	private:
		nl_fptype m_Is;
		nl_fptype m_VT;
		nl_fptype m_VT_inv;
	};

	// -----------------------------------------------------------------------------
	// nld_Q - Base classes
	// -----------------------------------------------------------------------------

	/*! Class representing the bjt model parameters.
	 *
	 *  This is the model representation of the bjt model. Typically, SPICE uses
	 *  the following parameters. A "Y" in the first column indicates that the
	 *  parameter is actually used in netlist.
	 *
	 * | NL? | name | parameter                                                             | units |  default |         example | area |
	 * |:---:|------|-----------------------------------------------------------------------|-------|---------:|----------------:|:----:|
	 * |  Y  | IS   | transport saturation current                                          | A     |   1E-016 |          1E-015 |   *  |
	 * |  Y  | BF   | ideal maximum forward beta                                            | -     |      100 |             100 |      |
	 * |  Y  | NF   | forward current emission coefficient                                  | -     |        1 |               1 |      |
	 * |     | VAF  | forward Early voltage                                                 | V     | infinite |             200 |      |
	 * |     | IKF  | corner for forward beta high current roll-off                         | A     | infinite |            0.01 |   *  |
	 * |     | ISE  | B-E leakage saturation current                                        | A     |        0 | 0.0000000000001 |   *  |
	 * |     | NE   | B-E leakage emission coefficient                                      | -     |      1.5 |               2 |      |
	 * |  Y  | BR   | ideal maximum reverse beta                                            | -     |        1 |             0.1 |      |
	 * |  Y  | NR   | reverse current emission coefficient                                  | -     |        1 |               1 |      |
	 * |     | VAR  | reverse Early voltage                                                 | V     | infinite |             200 |      |
	 * |     | IKR  | corner for reverse beta high current roll-off                         | A     | infinite |            0.01 |   *  |
	 * |     | ISC  | leakage saturation current                                            | A     |        0 |               8 |      |
	 * |     | NC   | leakage emission coefficient                                          | -     |        2 |             1.5 |      |
	 * |     | RB   | zero bias base resistance                                             |       |        0 |             100 |   *  |
	 * |     | IRB  | current where base resistance falls halfway to its min value          | A     | infinite |             0.1 |   *  |
	 * |     | RBM  | minimum base resistance at high currents                              |       |       RB |              10 |   *  |
	 * |     | RE   | emitter resistance                                                    |       |        0 |               1 |   *  |
	 * |     | RC   | collector resistance                                                  |       |        0 |              10 |   *  |
	 * |  Y  | CJE  | B-E zero-bias depletion capacitance                                   | F     |        0 |             2pF |   *  |
	 * |     | VJE  | B-E built-in potential                                                | V     |     0.75 |             0.6 |      |
	 * |     | MJE  | B-E junction exponential factor                                       | -     |     0.33 |            0.33 |      |
	 * |     | TF   | ideal forward transit time                                            | sec   |        0 |           0.1ns |      |
	 * |     | XTF  | coefficient for bias dependence of TF                                 | -     |        0 |                 |      |
	 * |     | VTF  | voltage describing VBC  dependence of TF                              | V     | infinite |                 |      |
	 * |     | ITF  | high-current parameter  for effect on TF                              | A     |        0 |                 |   *  |
	 * |     | PTF  | excess phase at freq=1.0/(TF*2PI) Hz                                  | deg   |        0 |                 |      |
	 * |  Y  | CJC  | B-C zero-bias depletion capacitance                                   | F     |        0 |             2pF |   *  |
	 * |     | VJC  | B-C built-in potential                                                | V     |     0.75 |             0.5 |      |
	 * |     | MJC  | B-C junction exponential factor                                       | -     |     0.33 |             0.5 |      |
	 * |     | XCJC | fraction of B-C depletion capacitance connected to internal base node | -     |        1 |                 |      |
	 * |     | TR   | ideal reverse transit time                                            | sec   |        0 |            10ns |      |
	 * |     | CJS  | zero-bias collector-substrate capacitance                             | F     |        0 |             2pF |   *  |
	 * |     | VJS  | substrate junction built-in potential                                 | V     |     0.75 |                 |      |
	 * |     | MJS  | substrate junction exponential factor                                 | -     |        0 |             0.5 |      |
	 * |     | XTB  | forward and reverse beta temperature exponent                         | -     |        0 |                 |      |
	 * |     | EG   | energy gap for temperature effect on IS                               | eV    |     1.11 |                 |      |
	 * |     | XTI  | temperature exponent for effect on IS                                 | -     |        3 |                 |      |
	 * |     | KF   | flicker-noise coefficient                                             | -     |        0 |                 |      |
	 * |     | AF   | flicker-noise exponent                                                | -     |        1 |                 |      |
	 * |     | FC   | coefficient for forward-bias depletion capacitance formula            | -     |      0.5 |                 |      |
	 * |     | TNOM | Parameter measurement temperature                                     | C     |       27 |              50 |      |
	 * */

	class bjt_model_t : public param_model_t
	{
	public:
		bjt_model_t(device_t &device, const pstring &name, const pstring &val)
		: param_model_t(device, name, val)
		, m_IS (*this, "IS")
		, m_BF (*this, "BF")
		, m_NF (*this, "NF")
		, m_BR (*this, "BR")
		, m_NR (*this, "NR")
		, m_CJE(*this, "CJE")
		, m_CJC(*this, "CJC")
		{}

		value_t m_IS;  //!< transport saturation current
		value_t m_BF;  //!< ideal maximum forward beta
		value_t m_NF;  //!< forward current emission coefficient
		value_t m_BR;  //!< ideal maximum reverse beta
		value_t m_NR;  //!< reverse current emission coefficient
		value_t m_CJE; //!< B-E zero-bias depletion capacitance
		value_t m_CJC; //!< B-C zero-bias depletion capacitance

	};

	// Have a common start for transistors

	NETLIB_OBJECT(QBJT)
	{
	public:
		enum q_type {
			BJT_NPN,
			BJT_PNP
		};

		NETLIB_CONSTRUCTOR_EX(QBJT, const pstring &model = "NPN")
		, m_model(*this, "MODEL", model)
		, m_qtype(BJT_NPN)
		{
		}

		NETLIB_IS_DYNAMIC(true)

		//NETLIB_RESETI();
		NETLIB_UPDATEI();

		q_type qtype() const { return m_qtype; }
		bool is_qtype(q_type atype) const { return m_qtype == atype; }
		void set_qtype(q_type atype) { m_qtype = atype; }
	protected:

		bjt_model_t m_model;
	private:
		q_type m_qtype;
	};

	// -----------------------------------------------------------------------------
	// nld_QBJT_switch
	// -----------------------------------------------------------------------------


	/*
	 *         + -              C
	 *   B ----VVV----+         |
	 *                |         |
	 *                Rb        Rc
	 *                Rb        Rc
	 *                Rb        Rc
	 *                |         |
	 *                +----+----+
	 *                     |
	 *                     E
	 */

	NETLIB_OBJECT_DERIVED(QBJT_switch, QBJT)
	{
		NETLIB_CONSTRUCTOR_DERIVED(QBJT_switch, QBJT)
			, m_RB(*this, "m_RB", true)
			, m_RC(*this, "m_RC", true)
			, m_BC(*this, "m_BC", true)
			, m_gB(nlconst::magic(1e-9))
			, m_gC(nlconst::magic(1e-9))
			, m_V(nlconst::zero())
			, m_state_on(*this, "m_state_on", 0)
		{
			register_subalias("B", m_RB.m_P);
			register_subalias("E", m_RB.m_N);
			register_subalias("C", m_RC.m_P);

			connect(m_RB.m_N, m_RC.m_N);
			connect(m_RB.m_P, m_BC.m_P);
			connect(m_RC.m_P, m_BC.m_N);
		}

		NETLIB_RESETI();
		NETLIB_UPDATEI();
		NETLIB_UPDATE_PARAMI();
		NETLIB_UPDATE_TERMINALSI();

	private:
		nld_twoterm m_RB;
		nld_twoterm m_RC;
		nld_twoterm m_BC;

		nl_fptype m_gB; // base conductance / switch on
		nl_fptype m_gC; // collector conductance / switch on
		nl_fptype m_V; // internal voltage source
		state_var<unsigned> m_state_on;

	private:
	};

	// -----------------------------------------------------------------------------
	// nld_QBJT_EB
	// -----------------------------------------------------------------------------


	NETLIB_OBJECT_DERIVED(QBJT_EB, QBJT)
	{
	public:
		NETLIB_CONSTRUCTOR_DERIVED(QBJT_EB, QBJT)
		, m_gD_BC(*this, "m_D_BC")
		, m_gD_BE(*this, "m_D_BE")
		, m_D_CB(*this, "m_D_CB", true)
		, m_D_EB(*this, "m_D_EB", true)
		, m_D_EC(*this, "m_D_EC", true)
		, m_alpha_f(0)
		, m_alpha_r(0)
		{
			register_subalias("E", m_D_EB.m_P);   // Cathode
			register_subalias("B", m_D_EB.m_N);   // Anode

			register_subalias("C", m_D_CB.m_P);   // Cathode

			connect(m_D_EB.m_P, m_D_EC.m_P);
			connect(m_D_EB.m_N, m_D_CB.m_N);
			connect(m_D_CB.m_P, m_D_EC.m_N);

			if (m_model.m_CJE > nlconst::zero())
			{
				create_and_register_subdevice("m_CJE", m_CJE);
				connect("B", "m_CJE.1");
				connect("E", "m_CJE.2");
			}
			if (m_model.m_CJC > nlconst::zero())
			{
				create_and_register_subdevice("m_CJC", m_CJC);
				connect("B", "m_CJC.1");
				connect("C", "m_CJC.2");
			}

		}

	protected:

		NETLIB_RESETI();
		NETLIB_UPDATEI();
		NETLIB_UPDATE_PARAMI();
		NETLIB_UPDATE_TERMINALSI();

	private:
		generic_diode<diode_e::BIPOLAR> m_gD_BC;
		generic_diode<diode_e::BIPOLAR> m_gD_BE;

		nld_twoterm m_D_CB;  // gcc, gce - gcc, gec - gcc, gcc - gce | Ic
		nld_twoterm m_D_EB;  // gee, gec - gee, gce - gee, gee - gec | Ie
		nld_twoterm m_D_EC;  // 0, -gec, -gcc, 0 | 0

		nl_fptype m_alpha_f;
		nl_fptype m_alpha_r;

		NETLIB_SUB_UPTR(analog, C) m_CJE;
		NETLIB_SUB_UPTR(analog, C) m_CJC;
	};


	// ----------------------------------------------------------------------------------------
	// nld_Q
	// ----------------------------------------------------------------------------------------

	NETLIB_UPDATE(QBJT)
	{
	//    netlist().solver()->schedule1();
	}

	// ----------------------------------------------------------------------------------------
	// nld_QBJT_switch
	// ----------------------------------------------------------------------------------------


	NETLIB_RESET(QBJT_switch)
	{
		NETLIB_NAME(QBJT)::reset();
		const auto zero(nlconst::zero());

		m_state_on = 0;

		m_RB.set_G_V_I(exec().gmin(), zero, zero);
		m_RC.set_G_V_I(exec().gmin(), zero, zero);

		m_BC.set_G_V_I(exec().gmin() / nlconst::magic(10.0), zero, zero);

	}

	NETLIB_UPDATE(QBJT_switch)
	{
		// FIXME: this should never be called
		if (!m_RB.m_P.net().isRailNet())
			m_RB.m_P.solve_now();   // Basis
		else if (!m_RB.m_N.net().isRailNet())
			m_RB.m_N.solve_now();   // Emitter
		else if (!m_RC.m_P.net().isRailNet())
			m_RC.m_P.solve_now();   // Collector
	}


	NETLIB_UPDATE_PARAM(QBJT_switch)
	{
		nl_fptype IS = m_model.m_IS;
		nl_fptype BF = m_model.m_BF;
		nl_fptype NF = m_model.m_NF;
		//nl_fptype VJE = m_model.dValue("VJE", 0.75);

		set_qtype((m_model.type() == "NPN") ? BJT_NPN : BJT_PNP);

		nl_fptype alpha = BF / (nlconst::one() + BF);

		diode d(IS, NF);

		// Assume 5mA Collector current for switch operation

		const auto cc(nlconst::magic(0.005));
		m_V = d.V(cc / alpha);

		/* Base current is 0.005 / beta
		 * as a rough estimate, we just scale the conductance down */

		m_gB = plib::reciprocal((m_V/(cc / BF)));

		//m_gB = d.gI(0.005 / alpha);

		if (m_gB < exec().gmin())
			m_gB = exec().gmin();
		m_gC =  d.gI(cc); // very rough estimate
	}

	NETLIB_UPDATE_TERMINALS(QBJT_switch)
	{
		const nl_fptype m = (is_qtype( BJT_NPN) ? 1 : -1);

		const unsigned new_state = (m_RB.deltaV() * m > m_V ) ? 1 : 0;
		if (m_state_on ^ new_state)
		{
			const auto zero(nlconst::zero());
			const nl_fptype gb = new_state ? m_gB : exec().gmin();
			const nl_fptype gc = new_state ? m_gC : exec().gmin();
			const nl_fptype v  = new_state ? m_V * m : zero;

			m_RB.set_G_V_I(gb,   v,   zero);
			m_RC.set_G_V_I(gc, zero, zero);
			m_state_on = new_state;
		}
	}


	// ----------------------------------------------------------------------------------------
	// nld_Q - Ebers Moll
	// ----------------------------------------------------------------------------------------


	NETLIB_UPDATE(QBJT_EB)
	{
		// FIXME: this should never be called
		if (!m_D_EB.m_P.net().isRailNet())
			m_D_EB.m_P.solve_now();   // Basis
		else if (!m_D_EB.m_N.net().isRailNet())
			m_D_EB.m_N.solve_now();   // Emitter
		else
			m_D_CB.m_N.solve_now();   // Collector
	}

	NETLIB_RESET(QBJT_EB)
	{
		NETLIB_NAME(QBJT)::reset();
		if (m_CJE)
		{
			m_CJE->reset();
			m_CJE->m_C.setTo(m_model.m_CJE);
		}
		if (m_CJC)
		{
			m_CJC->reset();
			m_CJC->m_C.setTo(m_model.m_CJC);
		}

	}

	NETLIB_UPDATE_TERMINALS(QBJT_EB)
	{
		const nl_fptype polarity = nlconst::magic(qtype() == BJT_NPN ? 1.0 : -1.0);

		m_gD_BE.update_diode(-m_D_EB.deltaV() * polarity);
		m_gD_BC.update_diode(-m_D_CB.deltaV() * polarity);

		const nl_fptype gee = m_gD_BE.G();
		const nl_fptype gcc = m_gD_BC.G();
		const nl_fptype gec =  m_alpha_r * gcc;
		const nl_fptype gce =  m_alpha_f * gee;
		const nl_fptype sIe = -m_gD_BE.I() + m_alpha_r * m_gD_BC.I();
		const nl_fptype sIc = m_alpha_f * m_gD_BE.I() - m_gD_BC.I();
		const nl_fptype Ie = (sIe + gee * m_gD_BE.Vd() - gec * m_gD_BC.Vd()) * polarity;
		const nl_fptype Ic = (sIc - gce * m_gD_BE.Vd() + gcc * m_gD_BC.Vd()) * polarity;

		// "Circuit Design", page 174

		m_D_EB.set_mat(      gee, gec - gee,  -Ie,
					   gce - gee, gee - gec,   Ie);
		m_D_CB.set_mat(      gcc, gce - gcc,  -Ic,
					   gec - gcc, gcc - gce,   Ic);
		m_D_EC.set_mat(        0,      -gec,    0,
							-gce,         0,    0);
	}


	NETLIB_UPDATE_PARAM(QBJT_EB)
	{
		nl_fptype IS = m_model.m_IS;
		nl_fptype BF = m_model.m_BF;
		nl_fptype NF = m_model.m_NF;
		nl_fptype BR = m_model.m_BR;
		nl_fptype NR = m_model.m_NR;
		//nl_fptype VJE = m_model.dValue("VJE", 0.75);

		set_qtype((m_model.type() == "NPN") ? BJT_NPN : BJT_PNP);

		m_alpha_f = BF / (nlconst::one() + BF);
		m_alpha_r = BR / (nlconst::one() + BR);

		m_gD_BE.set_param(IS / m_alpha_f, NF, exec().gmin(), nlconst::T0());
		m_gD_BC.set_param(IS / m_alpha_r, NR, exec().gmin(), nlconst::T0());
	}

} // namespace analog

namespace devices {
	NETLIB_DEVICE_IMPL_NS(analog, QBJT_EB, "QBJT_EB", "MODEL")
	NETLIB_DEVICE_IMPL_NS(analog, QBJT_switch, "QBJT_SW", "MODEL")
} // namespace devices

} // namespace netlist