summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/validity.cpp
blob: 0353072772187a885e7fbfef1ceb355c4f1c90a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
// license:BSD-3-Clause
// copyright-holders:Aaron Giles, Paul Priest
/***************************************************************************

    validity.cpp

    Validity checks on internal data structures.

***************************************************************************/

#include "emu.h"
#include "validity.h"

#include "emuopts.h"
#include "romload.h"
#include "video/rgbutil.h"

#include <ctype.h>
#include <type_traits>
#include <typeinfo>


//**************************************************************************
//  TYPE DEFINITIONS
//**************************************************************************

//**************************************************************************
//  INLINE FUNCTIONS
//**************************************************************************

//-------------------------------------------------
//  ioport_string_from_index - return an indexed
//  string from the I/O port system
//-------------------------------------------------

inline const char *validity_checker::ioport_string_from_index(u32 index)
{
	return ioport_configurer::string_from_token((const char *)(uintptr_t)index);
}


//-------------------------------------------------
//  get_defstr_index - return the index of the
//  string assuming it is one of the default
//  strings
//-------------------------------------------------

inline int validity_checker::get_defstr_index(const char *string, bool suppress_error)
{
	// check for strings that should be DEF_STR
	auto strindex = m_defstr_map.find(string);
	if (!suppress_error && strindex != m_defstr_map.end() && string != ioport_string_from_index(strindex->second))
		osd_printf_error("Must use DEF_STR( %s )\n", string);
	return (strindex != m_defstr_map.end()) ? strindex->second : 0;
}


//-------------------------------------------------
//  random_u64
//  random_s64
//  random_u32
//  random_s32
//-------------------------------------------------
#undef rand
inline s32 validity_checker::random_i32() { return s32(random_u32()); }
inline u32 validity_checker::random_u32() { return rand() ^ (rand() << 15); }
inline s64 validity_checker::random_i64() { return s64(random_u64()); }
inline u64 validity_checker::random_u64() { return u64(random_u32()) ^ (u64(random_u32()) << 30); }



//-------------------------------------------------
//  validate_tag - ensure that the given tag
//  meets the general requirements
//-------------------------------------------------

void validity_checker::validate_tag(const char *tag)
{
	// some common names that are now deprecated
	if (strcmp(tag, "main") == 0 || strcmp(tag, "audio") == 0 || strcmp(tag, "sound") == 0 || strcmp(tag, "left") == 0 || strcmp(tag, "right") == 0)
		osd_printf_error("Invalid generic tag '%s' used\n", tag);

	// scan for invalid characters
	static const char *validchars = "abcdefghijklmnopqrstuvwxyz0123456789_.:^$";
	for (const char *p = tag; *p != 0; p++)
	{
		// only lower-case permitted
		if (*p != tolower(u8(*p)))
		{
			osd_printf_error("Tag '%s' contains upper-case characters\n", tag);
			break;
		}
		if (*p == ' ')
		{
			osd_printf_error("Tag '%s' contains spaces\n", tag);
			break;
		}
		if (strchr(validchars, *p) == nullptr)
		{
			osd_printf_error("Tag '%s' contains invalid character '%c'\n",  tag, *p);
			break;
		}
	}

	// find the start of the final tag
	const char *begin = strrchr(tag, ':');
	if (begin == nullptr)
		begin = tag;
	else
		begin += 1;

	// 0-length = bad
	if (*begin == 0)
		osd_printf_error("Found 0-length tag\n");

	// too short/too long = bad
	if (strlen(begin) < MIN_TAG_LENGTH)
		osd_printf_error("Tag '%s' is too short (must be at least %d characters)\n", tag, MIN_TAG_LENGTH);
}



//**************************************************************************
//  VALIDATION FUNCTIONS
//**************************************************************************

//-------------------------------------------------
//  validity_checker - constructor
//-------------------------------------------------

validity_checker::validity_checker(emu_options &options)
	: m_drivlist(options)
	, m_errors(0)
	, m_warnings(0)
	, m_print_verbose(options.verbose())
	, m_current_driver(nullptr)
	, m_current_config(nullptr)
	, m_current_device(nullptr)
	, m_current_ioport(nullptr)
	, m_validate_all(false)
{
	// pre-populate the defstr map with all the default strings
	for (int strnum = 1; strnum < INPUT_STRING_COUNT; strnum++)
	{
		const char *string = ioport_string_from_index(strnum);
		if (string != nullptr)
			m_defstr_map.insert(std::make_pair(string, strnum));
	}
}

//-------------------------------------------------
//  validity_checker - destructor
//-------------------------------------------------

validity_checker::~validity_checker()
{
	validate_end();
}

//-------------------------------------------------
//  check_driver - check a single driver
//-------------------------------------------------

void validity_checker::check_driver(const game_driver &driver)
{
	// simply validate the one driver
	validate_begin();
	validate_one(driver);
	validate_end();
}


//-------------------------------------------------
//  check_shared_source - check all drivers that
//  share the same source file as the given driver
//-------------------------------------------------

void validity_checker::check_shared_source(const game_driver &driver)
{
	// initialize
	validate_begin();

	// then iterate over all drivers and check the ones that share the same source file
	m_drivlist.reset();
	while (m_drivlist.next())
		if (strcmp(driver.type.source(), m_drivlist.driver().type.source()) == 0)
			validate_one(m_drivlist.driver());

	// cleanup
	validate_end();
}


//-------------------------------------------------
//  check_all_matching - check all drivers whose
//  names match the given string
//-------------------------------------------------

bool validity_checker::check_all_matching(const char *string)
{
	// start by checking core stuff
	validate_begin();
	validate_core();
	validate_inlines();
	validate_rgb();

	// if we had warnings or errors, output
	if (m_errors > 0 || m_warnings > 0 || !m_verbose_text.empty())
	{
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "Core: %d errors, %d warnings\n", m_errors, m_warnings);
		if (m_errors > 0)
			output_indented_errors(m_error_text, "Errors");
		if (m_warnings > 0)
			output_indented_errors(m_warning_text, "Warnings");
		if (!m_verbose_text.empty())
			output_indented_errors(m_verbose_text, "Messages");
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "\n");
	}

	// then iterate over all drivers and check them
	m_drivlist.reset();
	bool validated_any = false;
	while (m_drivlist.next())
	{
		if (m_drivlist.matches(string, m_drivlist.driver().name))
		{
			validate_one(m_drivlist.driver());
			validated_any = true;
		}
	}

	// validate devices
	if (!string)
		validate_device_types();

	// cleanup
	validate_end();

	// if we failed to match anything, it
	if (string && !validated_any)
		throw emu_fatalerror(EMU_ERR_NO_SUCH_GAME, "No matching systems found for '%s'", string);

	return !(m_errors > 0 || m_warnings > 0);
}


//-------------------------------------------------
//  validate_begin - prepare for validation by
//  taking over the output callbacks and resetting
//  our internal state
//-------------------------------------------------

void validity_checker::validate_begin()
{
	// take over error and warning outputs
	osd_output::push(this);

	// reset all our maps
	m_names_map.clear();
	m_descriptions_map.clear();
	m_roms_map.clear();
	m_defstr_map.clear();
	m_region_map.clear();

	// reset internal state
	m_errors = 0;
	m_warnings = 0;
	m_already_checked.clear();
}


//-------------------------------------------------
//  validate_end - restore output callbacks and
//  clean up
//-------------------------------------------------

void validity_checker::validate_end()
{
	// restore the original output callbacks
	osd_output::pop(this);
}


//-------------------------------------------------
//  validate_drivers - master validity checker
//-------------------------------------------------

void validity_checker::validate_one(const game_driver &driver)
{
	// help verbose validation detect configuration-related crashes
	if (m_print_verbose)
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "Validating driver %s (%s)...\n", driver.name, core_filename_extract_base(driver.type.source()).c_str());

	// set the current driver
	m_current_driver = &driver;
	m_current_config = nullptr;
	m_current_device = nullptr;
	m_current_ioport = nullptr;
	m_region_map.clear();

	// reset error/warning state
	int start_errors = m_errors;
	int start_warnings = m_warnings;
	m_error_text.clear();
	m_warning_text.clear();
	m_verbose_text.clear();

	// wrap in try/except to catch fatalerrors
	try
	{
		machine_config config(driver, m_blank_options);
		m_current_config = &config;
		validate_driver();
		validate_roms(m_current_config->root_device());
		validate_inputs();
		validate_devices();
		m_current_config = nullptr;
	}
	catch (emu_fatalerror &err)
	{
		osd_printf_error("Fatal error %s", err.string());
	}

	// if we had warnings or errors, output
	if (m_errors > start_errors || m_warnings > start_warnings || !m_verbose_text.empty())
	{
		if (!m_print_verbose)
			output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "Driver %s (file %s): ", driver.name, core_filename_extract_base(driver.type.source()).c_str());
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "%d errors, %d warnings\n", m_errors - start_errors, m_warnings - start_warnings);
		if (m_errors > start_errors)
			output_indented_errors(m_error_text, "Errors");
		if (m_warnings > start_warnings)
			output_indented_errors(m_warning_text, "Warnings");
		if (!m_verbose_text.empty())
			output_indented_errors(m_verbose_text, "Messages");
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "\n");
	}

	// reset the driver/device
	m_current_driver = nullptr;
	m_current_config = nullptr;
	m_current_device = nullptr;
	m_current_ioport = nullptr;
}


//-------------------------------------------------
//  validate_core - validate core internal systems
//-------------------------------------------------

void validity_checker::validate_core()
{
	// basic system checks
	if (~0 != -1) osd_printf_error("Machine must be two's complement\n");

	u8 a = 0xff;
	u8 b = a + 1;
	if (b > a) osd_printf_error("u8 must be 8 bits\n");

	// check size of core integer types
	if (sizeof(s8)  != 1) osd_printf_error("s8 must be 8 bits\n");
	if (sizeof(u8)  != 1) osd_printf_error("u8 must be 8 bits\n");
	if (sizeof(s16) != 2) osd_printf_error("s16 must be 16 bits\n");
	if (sizeof(u16) != 2) osd_printf_error("u16 must be 16 bits\n");
	if (sizeof(s32) != 4) osd_printf_error("s32 must be 32 bits\n");
	if (sizeof(u32) != 4) osd_printf_error("u32 must be 32 bits\n");
	if (sizeof(s64) != 8) osd_printf_error("s64 must be 64 bits\n");
	if (sizeof(u64) != 8) osd_printf_error("u64 must be 64 bits\n");

	// check signed right shift
	s8  a8 = -3;
	s16 a16 = -3;
	s32 a32 = -3;
	s64 a64 = -3;
	if (a8  >> 1 != -2) osd_printf_error("s8 right shift must be arithmetic\n");
	if (a16 >> 1 != -2) osd_printf_error("s16 right shift must be arithmetic\n");
	if (a32 >> 1 != -2) osd_printf_error("s32 right shift must be arithmetic\n");
	if (a64 >> 1 != -2) osd_printf_error("s64 right shift must be arithmetic\n");

	// check pointer size
#ifdef PTR64
	static_assert(sizeof(void *) == 8, "PTR64 flag enabled, but was compiled for 32-bit target\n");
#else
	static_assert(sizeof(void *) == 4, "PTR64 flag not enabled, but was compiled for 64-bit target\n");
#endif

	// TODO: check if this is actually working
	// check endianness definition
	u16 lsbtest = 0;
	*(u8 *)&lsbtest = 0xff;
#ifdef LSB_FIRST
	if (lsbtest == 0xff00) osd_printf_error("LSB_FIRST specified, but running on a big-endian machine\n");
#else
	if (lsbtest == 0x00ff) osd_printf_error("LSB_FIRST not specified, but running on a little-endian machine\n");
#endif
}


//-------------------------------------------------
//  validate_inlines - validate inline function
//  behaviors
//-------------------------------------------------

void validity_checker::validate_inlines()
{
	volatile u64 testu64a = random_u64();
	volatile s64 testi64a = random_i64();
	volatile u32 testu32a = random_u32();
	volatile u32 testu32b = random_u32();
	volatile s32 testi32a = random_i32();
	volatile s32 testi32b = random_i32();
	s32 resulti32, expectedi32;
	u32 resultu32, expectedu32;
	s64 resulti64, expectedi64;
	u64 resultu64, expectedu64;
	s32 remainder, expremainder;
	u32 uremainder, expuremainder, bigu32 = 0xffffffff;

	// use only non-zero, positive numbers
	if (testu64a == 0) testu64a++;
	if (testi64a == 0) testi64a++;
	else if (testi64a < 0) testi64a = -testi64a;
	if (testu32a == 0) testu32a++;
	if (testu32b == 0) testu32b++;
	if (testi32a == 0) testi32a++;
	else if (testi32a < 0) testi32a = -testi32a;
	if (testi32b == 0) testi32b++;
	else if (testi32b < 0) testi32b = -testi32b;

	resulti64 = mul_32x32(testi32a, testi32b);
	expectedi64 = s64(testi32a) * s64(testi32b);
	if (resulti64 != expectedi64)
		osd_printf_error("Error testing mul_32x32 (%08X x %08X) = %08X%08X (expected %08X%08X)\n", testi32a, testi32b, u32(resulti64 >> 32), u32(resulti64), u32(expectedi64 >> 32), u32(expectedi64));

	resultu64 = mulu_32x32(testu32a, testu32b);
	expectedu64 = u64(testu32a) * u64(testu32b);
	if (resultu64 != expectedu64)
		osd_printf_error("Error testing mulu_32x32 (%08X x %08X) = %08X%08X (expected %08X%08X)\n", testu32a, testu32b, u32(resultu64 >> 32), u32(resultu64), u32(expectedu64 >> 32), u32(expectedu64));

	resulti32 = mul_32x32_hi(testi32a, testi32b);
	expectedi32 = (s64(testi32a) * s64(testi32b)) >> 32;
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing mul_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", testi32a, testi32b, resulti32, expectedi32);

	resultu32 = mulu_32x32_hi(testu32a, testu32b);
	expectedu32 = (s64(testu32a) * s64(testu32b)) >> 32;
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing mulu_32x32_hi (%08X x %08X) = %08X (expected %08X)\n", testu32a, testu32b, resultu32, expectedu32);

	resulti32 = mul_32x32_shift(testi32a, testi32b, 7);
	expectedi32 = (s64(testi32a) * s64(testi32b)) >> 7;
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing mul_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", testi32a, testi32b, resulti32, expectedi32);

	resultu32 = mulu_32x32_shift(testu32a, testu32b, 7);
	expectedu32 = (s64(testu32a) * s64(testu32b)) >> 7;
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing mulu_32x32_shift (%08X x %08X) >> 7 = %08X (expected %08X)\n", testu32a, testu32b, resultu32, expectedu32);

	while (s64(testi32a) * s64(0x7fffffff) < testi64a)
		testi64a /= 2;
	while (u64(testu32a) * u64(bigu32) < testu64a)
		testu64a /= 2;

	resulti32 = div_64x32(testi64a, testi32a);
	expectedi32 = testi64a / s64(testi32a);
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing div_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", u32(testi64a >> 32), u32(testi64a), testi32a, resulti32, expectedi32);

	resultu32 = divu_64x32(testu64a, testu32a);
	expectedu32 = testu64a / u64(testu32a);
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing divu_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", u32(testu64a >> 32), u32(testu64a), testu32a, resultu32, expectedu32);

	resulti32 = div_64x32_rem(testi64a, testi32a, &remainder);
	expectedi32 = testi64a / s64(testi32a);
	expremainder = testi64a % s64(testi32a);
	if (resulti32 != expectedi32 || remainder != expremainder)
		osd_printf_error("Error testing div_64x32_rem (%08X%08X / %08X) = %08X,%08X (expected %08X,%08X)\n", u32(testi64a >> 32), u32(testi64a), testi32a, resulti32, remainder, expectedi32, expremainder);

	resultu32 = divu_64x32_rem(testu64a, testu32a, &uremainder);
	expectedu32 = testu64a / u64(testu32a);
	expuremainder = testu64a % u64(testu32a);
	if (resultu32 != expectedu32 || uremainder != expuremainder)
		osd_printf_error("Error testing divu_64x32_rem (%08X%08X / %08X) = %08X,%08X (expected %08X,%08X)\n", u32(testu64a >> 32), u32(testu64a), testu32a, resultu32, uremainder, expectedu32, expuremainder);

	resulti32 = mod_64x32(testi64a, testi32a);
	expectedi32 = testi64a % s64(testi32a);
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing mod_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", u32(testi64a >> 32), u32(testi64a), testi32a, resulti32, expectedi32);

	resultu32 = modu_64x32(testu64a, testu32a);
	expectedu32 = testu64a % u64(testu32a);
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing modu_64x32 (%08X%08X / %08X) = %08X (expected %08X)\n", u32(testu64a >> 32), u32(testu64a), testu32a, resultu32, expectedu32);

	while (s64(testi32a) * s64(0x7fffffff) < (s32(testi64a) << 3))
		testi64a /= 2;
	while (u64(testu32a) * u64(0xffffffff) < (u32(testu64a) << 3))
		testu64a /= 2;

	resulti32 = div_32x32_shift(s32(testi64a), testi32a, 3);
	expectedi32 = (s64(s32(testi64a)) << 3) / s64(testi32a);
	if (resulti32 != expectedi32)
		osd_printf_error("Error testing div_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", s32(testi64a), testi32a, resulti32, expectedi32);

	resultu32 = divu_32x32_shift(u32(testu64a), testu32a, 3);
	expectedu32 = (u64(u32(testu64a)) << 3) / u64(testu32a);
	if (resultu32 != expectedu32)
		osd_printf_error("Error testing divu_32x32_shift (%08X << 3) / %08X = %08X (expected %08X)\n", u32(testu64a), testu32a, resultu32, expectedu32);

	if (fabsf(recip_approx(100.0f) - 0.01f) > 0.0001f)
		osd_printf_error("Error testing recip_approx\n");

	for (int i = 0; i <= 32; i++)
	{
		u32 t = i < 32 ? (1 << (31 - i) | testu32a >> i) : 0;
		u8 resultu8 = count_leading_zeros(t);
		if (resultu8 != i)
			osd_printf_error("Error testing count_leading_zeros %08x=%02x (expected %02x)\n", t, resultu8, i);

		t ^= 0xffffffff;
		resultu8 = count_leading_ones(t);
		if (resultu8 != i)
			osd_printf_error("Error testing count_leading_ones %08x=%02x (expected %02x)\n", t, resultu8, i);
	}
}


//-------------------------------------------------
//  validate_rgb - validate optimised RGB utility
//  class
//-------------------------------------------------

void validity_checker::validate_rgb()
{
	/*
	    This performs cursory tests of most of the vector-optimised RGB
	    utilities, concentrating on the low-level maths.  It uses random
	    values most of the time for a quick go/no-go indication rather
	    than trying to exercise edge cases.  It doesn't matter too much
	    if the compiler optimises out some of the operations since it's
	    really intended to check for logic bugs in the vector code.  If
	    the compiler can work out that the code produces the expected
	    result, that's good enough.

	    The tests for bitwise logical operations are ordered to minimise
	    the chance of all-zero or all-one patterns producing a
	    misleading good result.

	    The following functions are not tested yet:
	    rgbaint_t()
	    clamp_and_clear(const u32)
	    sign_extend(const u32, const u32)
	    min(const s32)
	    max(const s32)
	    blend(const rgbaint_t&, u8)
	    scale_and_clamp(const rgbaint_t&)
	    scale_imm_and_clamp(const s32)
	    scale2_add_and_clamp(const rgbaint_t&, const rgbaint_t&, const rgbaint_t&)
	    scale_add_and_clamp(const rgbaint_t&, const rgbaint_t&);
	    scale_imm_add_and_clamp(const s32, const rgbaint_t&);
	    static bilinear_filter(u32, u32, u32, u32, u8, u8)
	    bilinear_filter_rgbaint(u32, u32, u32, u32, u8, u8)
	*/

	auto random_i32_nolimit = [this]
	{
		s32 result;
		do { result = random_i32(); } while ((result == std::numeric_limits<s32>::min()) || (result == std::numeric_limits<s32>::max()));
		return result;
	};

	volatile s32 expected_a, expected_r, expected_g, expected_b;
	volatile s32 actual_a, actual_r, actual_g, actual_b;
	volatile s32 imm;
	rgbaint_t rgb, other;
	rgb_t packed;
	auto check_expected = [&] (const char *desc)
	{
		const volatile s32 a = rgb.get_a32();
		const volatile s32 r = rgb.get_r32();
		const volatile s32 g = rgb.get_g32();
		const volatile s32 b = rgb.get_b32();
		if (a != expected_a) osd_printf_error("Error testing %s get_a32() = %d (expected %d)\n", desc, a, expected_a);
		if (r != expected_r) osd_printf_error("Error testing %s get_r32() = %d (expected %d)\n", desc, r, expected_r);
		if (g != expected_g) osd_printf_error("Error testing %s get_g32() = %d (expected %d)\n", desc, g, expected_g);
		if (b != expected_b) osd_printf_error("Error testing %s get_b32() = %d (expected %d)\n", desc, b, expected_b);
	};

	// check set/get
	expected_a = random_i32();
	expected_r = random_i32();
	expected_g = random_i32();
	expected_b = random_i32();
	rgb.set(expected_a, expected_r, expected_g, expected_b);
	check_expected("rgbaint_t::set(a, r, g, b)");

	// check construct/set
	expected_a = random_i32();
	expected_r = random_i32();
	expected_g = random_i32();
	expected_b = random_i32();
	rgb.set(rgbaint_t(expected_a, expected_r, expected_g, expected_b));
	check_expected("rgbaint_t::set(rgbaint_t)");

	packed = random_i32();
	expected_a = packed.a();
	expected_r = packed.r();
	expected_g = packed.g();
	expected_b = packed.b();
	rgb.set(packed);
	check_expected("rgbaint_t::set(const rgb_t& rgb)");

	// check construct/assign
	expected_a = random_i32();
	expected_r = random_i32();
	expected_g = random_i32();
	expected_b = random_i32();
	rgb = rgbaint_t(expected_a, expected_r, expected_g, expected_b);
	check_expected("rgbaint_t assignment");

	// check piecewise set
	rgb.set_a(expected_a = random_i32());
	check_expected("rgbaint_t::set_a");
	rgb.set_r(expected_r = random_i32());
	check_expected("rgbaint_t::set_r");
	rgb.set_g(expected_g = random_i32());
	check_expected("rgbaint_t::set_g");
	rgb.set_b(expected_b = random_i32());
	check_expected("rgbaint_t::set_b");

	// test merge_alpha
	expected_a = rand();
	rgb.merge_alpha(rgbaint_t(expected_a, rand(), rand(), rand()));
	check_expected("rgbaint_t::merge_alpha");

	// test RGB addition (method)
	expected_a += actual_a = random_i32();
	expected_r += actual_r = random_i32();
	expected_g += actual_g = random_i32();
	expected_b += actual_b = random_i32();
	rgb.add(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::add");

	// test RGB addition (operator)
	expected_a += actual_a = random_i32();
	expected_r += actual_r = random_i32();
	expected_g += actual_g = random_i32();
	expected_b += actual_b = random_i32();
	rgb += rgbaint_t(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::operator+=");

	// test offset addition (method)
	imm = random_i32();
	expected_a += imm;
	expected_r += imm;
	expected_g += imm;
	expected_b += imm;
	rgb.add_imm(imm);
	check_expected("rgbaint_t::add_imm");

	// test offset addition (operator)
	imm = random_i32();
	expected_a += imm;
	expected_r += imm;
	expected_g += imm;
	expected_b += imm;
	rgb += imm;
	check_expected("rgbaint_t::operator+=");

	// test immediate RGB addition
	expected_a += actual_a = random_i32();
	expected_r += actual_r = random_i32();
	expected_g += actual_g = random_i32();
	expected_b += actual_b = random_i32();
	rgb.add_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::add_imm_rgba");

	// test RGB subtraction (method)
	expected_a -= actual_a = random_i32();
	expected_r -= actual_r = random_i32();
	expected_g -= actual_g = random_i32();
	expected_b -= actual_b = random_i32();
	rgb.sub(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::sub");

	// test RGB subtraction (operator)
	expected_a -= actual_a = random_i32();
	expected_r -= actual_r = random_i32();
	expected_g -= actual_g = random_i32();
	expected_b -= actual_b = random_i32();
	rgb -= rgbaint_t(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::operator-=");

	// test offset subtraction
	imm = random_i32();
	expected_a -= imm;
	expected_r -= imm;
	expected_g -= imm;
	expected_b -= imm;
	rgb.sub_imm(imm);
	check_expected("rgbaint_t::sub_imm");

	// test immediate RGB subtraction
	expected_a -= actual_a = random_i32();
	expected_r -= actual_r = random_i32();
	expected_g -= actual_g = random_i32();
	expected_b -= actual_b = random_i32();
	rgb.sub_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::sub_imm_rgba");

	// test reversed RGB subtraction
	expected_a = (actual_a = random_i32()) - expected_a;
	expected_r = (actual_r = random_i32()) - expected_r;
	expected_g = (actual_g = random_i32()) - expected_g;
	expected_b = (actual_b = random_i32()) - expected_b;
	rgb.subr(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::subr");

	// test reversed offset subtraction
	imm = random_i32();
	expected_a = imm - expected_a;
	expected_r = imm - expected_r;
	expected_g = imm - expected_g;
	expected_b = imm - expected_b;
	rgb.subr_imm(imm);
	check_expected("rgbaint_t::subr_imm");

	// test reversed immediate RGB subtraction
	expected_a = (actual_a = random_i32()) - expected_a;
	expected_r = (actual_r = random_i32()) - expected_r;
	expected_g = (actual_g = random_i32()) - expected_g;
	expected_b = (actual_b = random_i32()) - expected_b;
	rgb.subr_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::subr_imm_rgba");

	// test RGB multiplication (method)
	expected_a *= actual_a = random_i32();
	expected_r *= actual_r = random_i32();
	expected_g *= actual_g = random_i32();
	expected_b *= actual_b = random_i32();
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::mul");

	// test RGB multiplication (operator)
	expected_a *= actual_a = random_i32();
	expected_r *= actual_r = random_i32();
	expected_g *= actual_g = random_i32();
	expected_b *= actual_b = random_i32();
	rgb *= rgbaint_t(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::operator*=");

	// test factor multiplication (method)
	imm = random_i32();
	expected_a *= imm;
	expected_r *= imm;
	expected_g *= imm;
	expected_b *= imm;
	rgb.mul_imm(imm);
	check_expected("rgbaint_t::mul_imm");

	// test factor multiplication (operator)
	imm = random_i32();
	expected_a *= imm;
	expected_r *= imm;
	expected_g *= imm;
	expected_b *= imm;
	rgb *= imm;
	check_expected("rgbaint_t::operator*=");

	// test immediate RGB multiplication
	expected_a *= actual_a = random_i32();
	expected_r *= actual_r = random_i32();
	expected_g *= actual_g = random_i32();
	expected_b *= actual_b = random_i32();
	rgb.mul_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::mul_imm_rgba");

	// test select alpha element multiplication
	expected_a *= actual_a = random_i32();
	expected_r *= actual_a;
	expected_g *= actual_a;
	expected_b *= actual_a;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_alpha32());
	check_expected("rgbaint_t::mul(select_alpha32)");

	// test select red element multiplication
	expected_a *= actual_r = random_i32();
	expected_r *= actual_r;
	expected_g *= actual_r;
	expected_b *= actual_r;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_red32());
	check_expected("rgbaint_t::mul(select_red32)");

	// test select green element multiplication
	expected_a *= actual_g = random_i32();
	expected_r *= actual_g;
	expected_g *= actual_g;
	expected_b *= actual_g;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_green32());
	check_expected("rgbaint_t::mul(select_green32)");

	// test select blue element multiplication
	expected_a *= actual_b = random_i32();
	expected_r *= actual_b;
	expected_g *= actual_b;
	expected_b *= actual_b;
	rgb.mul(rgbaint_t(actual_a, actual_r, actual_g, actual_b).select_blue32());
	check_expected("rgbaint_t::mul(select_blue32)");

	// test RGB and not
	expected_a &= ~(actual_a = random_i32());
	expected_r &= ~(actual_r = random_i32());
	expected_g &= ~(actual_g = random_i32());
	expected_b &= ~(actual_b = random_i32());
	rgb.andnot_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::andnot_reg");

	// test RGB or
	expected_a |= actual_a = random_i32();
	expected_r |= actual_r = random_i32();
	expected_g |= actual_g = random_i32();
	expected_b |= actual_b = random_i32();
	rgb.or_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::or_reg");

	// test RGB and
	expected_a &= actual_a = random_i32();
	expected_r &= actual_r = random_i32();
	expected_g &= actual_g = random_i32();
	expected_b &= actual_b = random_i32();
	rgb.and_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::and_reg");

	// test RGB xor
	expected_a ^= actual_a = random_i32();
	expected_r ^= actual_r = random_i32();
	expected_g ^= actual_g = random_i32();
	expected_b ^= actual_b = random_i32();
	rgb.xor_reg(rgbaint_t(actual_a, actual_r, actual_g, actual_b));
	check_expected("rgbaint_t::xor_reg");

	// test uniform or
	imm = random_i32();
	expected_a |= imm;
	expected_r |= imm;
	expected_g |= imm;
	expected_b |= imm;
	rgb.or_imm(imm);
	check_expected("rgbaint_t::or_imm");

	// test uniform and
	imm = random_i32();
	expected_a &= imm;
	expected_r &= imm;
	expected_g &= imm;
	expected_b &= imm;
	rgb.and_imm(imm);
	check_expected("rgbaint_t::and_imm");

	// test uniform xor
	imm = random_i32();
	expected_a ^= imm;
	expected_r ^= imm;
	expected_g ^= imm;
	expected_b ^= imm;
	rgb.xor_imm(imm);
	check_expected("rgbaint_t::xor_imm");

	// test immediate RGB or
	expected_a |= actual_a = random_i32();
	expected_r |= actual_r = random_i32();
	expected_g |= actual_g = random_i32();
	expected_b |= actual_b = random_i32();
	rgb.or_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::or_imm_rgba");

	// test immediate RGB and
	expected_a &= actual_a = random_i32();
	expected_r &= actual_r = random_i32();
	expected_g &= actual_g = random_i32();
	expected_b &= actual_b = random_i32();
	rgb.and_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::and_imm_rgba");

	// test immediate RGB xor
	expected_a ^= actual_a = random_i32();
	expected_r ^= actual_r = random_i32();
	expected_g ^= actual_g = random_i32();
	expected_b ^= actual_b = random_i32();
	rgb.xor_imm_rgba(actual_a, actual_r, actual_g, actual_b);
	check_expected("rgbaint_t::xor_imm_rgba");

	// test 8-bit get
	expected_a = s32(u32(expected_a) & 0x00ff);
	expected_r = s32(u32(expected_r) & 0x00ff);
	expected_g = s32(u32(expected_g) & 0x00ff);
	expected_b = s32(u32(expected_b) & 0x00ff);
	actual_a = s32(u32(rgb.get_a()));
	actual_r = s32(u32(rgb.get_r()));
	actual_g = s32(u32(rgb.get_g()));
	actual_b = s32(u32(rgb.get_b()));
	if (actual_a != expected_a) osd_printf_error("Error testing rgbaint_t::get_a() = %d (expected %d)\n", actual_a, expected_a);
	if (actual_r != expected_r) osd_printf_error("Error testing rgbaint_t::get_r() = %d (expected %d)\n", actual_r, expected_r);
	if (actual_g != expected_g) osd_printf_error("Error testing rgbaint_t::get_g() = %d (expected %d)\n", actual_g, expected_g);
	if (actual_b != expected_b) osd_printf_error("Error testing rgbaint_t::get_b() = %d (expected %d)\n", actual_b, expected_b);

	// test set from packed RGBA
	imm = random_i32();
	expected_a = s32((u32(imm) >> 24) & 0x00ff);
	expected_r = s32((u32(imm) >> 16) & 0x00ff);
	expected_g = s32((u32(imm) >> 8) & 0x00ff);
	expected_b = s32((u32(imm) >> 0) & 0x00ff);
	rgb.set(u32(imm));
	check_expected("rgbaint_t::set(u32)");

	// while we have a value loaded that we know doesn't exceed 8-bit range, check the non-clamping convert-to-rgba
	packed = rgb.to_rgba();
	if (u32(imm) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba() = %08x (expected %08x)\n", u32(packed), u32(imm));

	// test construct from packed RGBA and assign
	imm = random_i32();
	expected_a = s32((u32(imm) >> 24) & 0x00ff);
	expected_r = s32((u32(imm) >> 16) & 0x00ff);
	expected_g = s32((u32(imm) >> 8) & 0x00ff);
	expected_b = s32((u32(imm) >> 0) & 0x00ff);
	rgb = rgbaint_t(u32(imm));
	check_expected("rgbaint_t(u32)");

	// while we have a value loaded that we know doesn't exceed 8-bit range, check the non-clamping convert-to-rgba
	packed = rgb.to_rgba();
	if (u32(imm) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba() = %08x (expected %08x)\n", u32(packed), u32(imm));

	// test set with rgb_t
	packed = random_u32();
	expected_a = s32(u32(packed.a()));
	expected_r = s32(u32(packed.r()));
	expected_g = s32(u32(packed.g()));
	expected_b = s32(u32(packed.b()));
	rgb.set(packed);
	check_expected("rgbaint_t::set(rgba_t)");

	// test construct with rgb_t
	packed = random_u32();
	expected_a = s32(u32(packed.a()));
	expected_r = s32(u32(packed.r()));
	expected_g = s32(u32(packed.g()));
	expected_b = s32(u32(packed.b()));
	rgb = rgbaint_t(packed);
	check_expected("rgbaint_t::set(rgba_t)");

	// test clamping convert-to-rgba with hand-crafted values to catch edge cases
	rgb.set(std::numeric_limits<s32>::min(), -1, 0, 1);
	packed = rgb.to_rgba_clamp();
	if (u32(0x00000001) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0x00000001)\n", u32(packed));
	rgb.set(254, 255, 256, std::numeric_limits<s32>::max());
	packed = rgb.to_rgba_clamp();
	if (u32(0xfeffffff) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0xfeffffff)\n", u32(packed));
	rgb.set(std::numeric_limits<s32>::max(), std::numeric_limits<s32>::min(), 256, -1);
	packed = rgb.to_rgba_clamp();
	if (u32(0xff00ff00) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0xff00ff00)\n", u32(packed));
	rgb.set(0, 255, 1, 254);
	packed = rgb.to_rgba_clamp();
	if (u32(0x00ff01fe) != u32(packed))
		osd_printf_error("Error testing rgbaint_t::to_rgba_clamp() = %08x (expected 0x00ff01fe)\n", u32(packed));

	// test in-place clamping with hand-crafted values to catch edge cases
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 1;
	rgb.set(std::numeric_limits<s32>::min(), -1, 0, 1);
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");
	expected_a = 254;
	expected_r = 255;
	expected_g = 255;
	expected_b = 255;
	rgb.set(254, 255, 256, std::numeric_limits<s32>::max());
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");
	expected_a = 255;
	expected_r = 0;
	expected_g = 255;
	expected_b = 0;
	rgb.set(std::numeric_limits<s32>::max(), std::numeric_limits<s32>::min(), 256, -1);
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");
	expected_a = 0;
	expected_r = 255;
	expected_g = 1;
	expected_b = 254;
	rgb.set(0, 255, 1, 254);
	rgb.clamp_to_uint8();
	check_expected("rgbaint_t::clamp_to_uint8");

	// test shift left
	expected_a = (actual_a = random_i32()) << 19;
	expected_r = (actual_r = random_i32()) << 3;
	expected_g = (actual_g = random_i32()) << 21;
	expected_b = (actual_b = random_i32()) << 6;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shl(rgbaint_t(19, 3, 21, 6));
	check_expected("rgbaint_t::shl");

	// test shift left immediate
	expected_a = (actual_a = random_i32()) << 7;
	expected_r = (actual_r = random_i32()) << 7;
	expected_g = (actual_g = random_i32()) << 7;
	expected_b = (actual_b = random_i32()) << 7;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shl_imm(7);
	check_expected("rgbaint_t::shl_imm");

	// test logical shift right
	expected_a = s32(u32(actual_a = random_i32()) >> 8);
	expected_r = s32(u32(actual_r = random_i32()) >> 18);
	expected_g = s32(u32(actual_g = random_i32()) >> 26);
	expected_b = s32(u32(actual_b = random_i32()) >> 4);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr(rgbaint_t(8, 18, 26, 4));
	check_expected("rgbaint_t::shr");

	// test logical shift right with opposite signs
	expected_a = s32(u32(actual_a = -actual_a) >> 21);
	expected_r = s32(u32(actual_r = -actual_r) >> 13);
	expected_g = s32(u32(actual_g = -actual_g) >> 11);
	expected_b = s32(u32(actual_b = -actual_b) >> 17);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr(rgbaint_t(21, 13, 11, 17));
	check_expected("rgbaint_t::shr");

	// test logical shift right immediate
	expected_a = s32(u32(actual_a = random_i32()) >> 5);
	expected_r = s32(u32(actual_r = random_i32()) >> 5);
	expected_g = s32(u32(actual_g = random_i32()) >> 5);
	expected_b = s32(u32(actual_b = random_i32()) >> 5);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr_imm(5);
	check_expected("rgbaint_t::shr_imm");

	// test logical shift right immediate with opposite signs
	expected_a = s32(u32(actual_a = -actual_a) >> 15);
	expected_r = s32(u32(actual_r = -actual_r) >> 15);
	expected_g = s32(u32(actual_g = -actual_g) >> 15);
	expected_b = s32(u32(actual_b = -actual_b) >> 15);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.shr_imm(15);
	check_expected("rgbaint_t::shr_imm");

	// test arithmetic shift right
	expected_a = (actual_a = random_i32()) >> 16;
	expected_r = (actual_r = random_i32()) >> 20;
	expected_g = (actual_g = random_i32()) >> 14;
	expected_b = (actual_b = random_i32()) >> 2;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra(rgbaint_t(16, 20, 14, 2));
	check_expected("rgbaint_t::sra");

	// test arithmetic shift right with opposite signs
	expected_a = (actual_a = -actual_a) >> 1;
	expected_r = (actual_r = -actual_r) >> 29;
	expected_g = (actual_g = -actual_g) >> 10;
	expected_b = (actual_b = -actual_b) >> 22;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra(rgbaint_t(1, 29, 10, 22));
	check_expected("rgbaint_t::sra");

	// test arithmetic shift right immediate (method)
	expected_a = (actual_a = random_i32()) >> 12;
	expected_r = (actual_r = random_i32()) >> 12;
	expected_g = (actual_g = random_i32()) >> 12;
	expected_b = (actual_b = random_i32()) >> 12;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra_imm(12);
	check_expected("rgbaint_t::sra_imm");

	// test arithmetic shift right immediate with opposite signs (method)
	expected_a = (actual_a = -actual_a) >> 9;
	expected_r = (actual_r = -actual_r) >> 9;
	expected_g = (actual_g = -actual_g) >> 9;
	expected_b = (actual_b = -actual_b) >> 9;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.sra_imm(9);
	check_expected("rgbaint_t::sra_imm");

	// test arithmetic shift right immediate (operator)
	expected_a = (actual_a = random_i32()) >> 7;
	expected_r = (actual_r = random_i32()) >> 7;
	expected_g = (actual_g = random_i32()) >> 7;
	expected_b = (actual_b = random_i32()) >> 7;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb >>= 7;
	check_expected("rgbaint_t::operator>>=");

	// test arithmetic shift right immediate with opposite signs (operator)
	expected_a = (actual_a = -actual_a) >> 11;
	expected_r = (actual_r = -actual_r) >> 11;
	expected_g = (actual_g = -actual_g) >> 11;
	expected_b = (actual_b = -actual_b) >> 11;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb >>= 11;
	check_expected("rgbaint_t::operator>>=");

	// test RGB equality comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq(rgbaint_t(actual_a, actual_r - 1, actual_g + 1, std::numeric_limits<s32>::min()));
	check_expected("rgbaint_t::cmpeq");
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq(rgbaint_t(std::numeric_limits<s32>::max(), actual_r, actual_g - 1, actual_b + 1));
	check_expected("rgbaint_t::cmpeq");

	// test immediate equality comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = ~s32(0);
	expected_r = (actual_r == actual_a) ? ~s32(0) : 0;
	expected_g = (actual_g == actual_a) ? ~s32(0) : 0;
	expected_b = (actual_b == actual_a) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_a);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = (actual_a == actual_r) ? ~s32(0) : 0;
	expected_r = ~s32(0);
	expected_g = (actual_g == actual_r) ? ~s32(0) : 0;
	expected_b = (actual_b == actual_r) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_r);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = (actual_a == actual_g) ? ~s32(0) : 0;
	expected_r = (actual_r == actual_g) ? ~s32(0) : 0;
	expected_g = ~s32(0);
	expected_b = (actual_b == actual_g) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_g);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = (actual_a == actual_b) ? ~s32(0) : 0;
	expected_r = (actual_r == actual_b) ? ~s32(0) : 0;
	expected_g = (actual_g == actual_b) ? ~s32(0) : 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(actual_b);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(std::numeric_limits<s32>::min());
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = !actual_a ? ~s32(0) : 0;
	expected_r = !actual_r ? ~s32(0) : 0;
	expected_g = !actual_g ? ~s32(0) : 0;
	expected_b = !actual_b ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(0);
	check_expected("rgbaint_t::cmpeq_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm(std::numeric_limits<s32>::max());
	check_expected("rgbaint_t::cmpeq_imm");

	// test immediate RGB equality comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm_rgba(std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_g, actual_b - 1);
	check_expected("rgbaint_t::cmpeq_imm_rgba");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpeq_imm_rgba(actual_a + 1, std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_b);
	check_expected("rgbaint_t::cmpeq_imm_rgba");

	// test RGB greater than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt(rgbaint_t(actual_a, actual_r - 1, actual_g + 1, std::numeric_limits<s32>::min()));
	check_expected("rgbaint_t::cmpgt");
	expected_a = 0;
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt(rgbaint_t(std::numeric_limits<s32>::max(), actual_r, actual_g - 1, actual_b + 1));
	check_expected("rgbaint_t::cmpgt");

	// test immediate greater than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = (actual_r > actual_a) ? ~s32(0) : 0;
	expected_g = (actual_g > actual_a) ? ~s32(0) : 0;
	expected_b = (actual_b > actual_a) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_a);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > actual_r) ? ~s32(0) : 0;
	expected_r = 0;
	expected_g = (actual_g > actual_r) ? ~s32(0) : 0;
	expected_b = (actual_b > actual_r) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_r);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > actual_g) ? ~s32(0) : 0;
	expected_r = (actual_r > actual_g) ? ~s32(0) : 0;
	expected_g =0;
	expected_b = (actual_b > actual_g) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_g);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > actual_b) ? ~s32(0) : 0;
	expected_r = (actual_r > actual_b) ? ~s32(0) : 0;
	expected_g = (actual_g > actual_b) ? ~s32(0) : 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(actual_b);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = ~s32(0);
	expected_r = ~s32(0);
	expected_g = ~s32(0);
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(std::numeric_limits<s32>::min());
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = (actual_a > 0) ? ~s32(0) : 0;
	expected_r = (actual_r > 0) ? ~s32(0) : 0;
	expected_g = (actual_g > 0) ? ~s32(0) : 0;
	expected_b = (actual_b > 0) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(0);
	check_expected("rgbaint_t::cmpgt_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm(std::numeric_limits<s32>::max());
	check_expected("rgbaint_t::cmpgt_imm");

	// test immediate RGB greater than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm_rgba(std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_g, actual_b - 1);
	check_expected("rgbaint_t::cmpgt_imm_rgba");
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmpgt_imm_rgba(actual_a + 1, std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_b);
	check_expected("rgbaint_t::cmpgt_imm_rgba");

	// test RGB less than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt(rgbaint_t(actual_a, actual_r - 1, actual_g + 1, std::numeric_limits<s32>::min()));
	check_expected("rgbaint_t::cmplt");
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = 0;
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt(rgbaint_t(std::numeric_limits<s32>::max(), actual_r, actual_g - 1, actual_b + 1));
	check_expected("rgbaint_t::cmplt");

	// test immediate less than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = (actual_r < actual_a) ? ~s32(0) : 0;
	expected_g = (actual_g < actual_a) ? ~s32(0) : 0;
	expected_b = (actual_b < actual_a) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_a);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < actual_r) ? ~s32(0) : 0;
	expected_r = 0;
	expected_g = (actual_g < actual_r) ? ~s32(0) : 0;
	expected_b = (actual_b < actual_r) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_r);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < actual_g) ? ~s32(0) : 0;
	expected_r = (actual_r < actual_g) ? ~s32(0) : 0;
	expected_g =0;
	expected_b = (actual_b < actual_g) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_g);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < actual_b) ? ~s32(0) : 0;
	expected_r = (actual_r < actual_b) ? ~s32(0) : 0;
	expected_g = (actual_g < actual_b) ? ~s32(0) : 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(actual_b);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = 0;
	expected_r = 0;
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(std::numeric_limits<s32>::min());
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = (actual_a < 0) ? ~s32(0) : 0;
	expected_r = (actual_r < 0) ? ~s32(0) : 0;
	expected_g = (actual_g < 0) ? ~s32(0) : 0;
	expected_b = (actual_b < 0) ? ~s32(0) : 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(0);
	check_expected("rgbaint_t::cmplt_imm");
	expected_a = ~s32(0);
	expected_r = ~s32(0);
	expected_g = ~s32(0);
	expected_b = ~s32(0);
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm(std::numeric_limits<s32>::max());
	check_expected("rgbaint_t::cmplt_imm");

	// test immediate RGB less than comparison
	actual_a = random_i32_nolimit();
	actual_r = random_i32_nolimit();
	actual_g = random_i32_nolimit();
	actual_b = random_i32_nolimit();
	expected_a = 0;
	expected_r = ~s32(0);
	expected_g = 0;
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm_rgba(std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_g, actual_b - 1);
	check_expected("rgbaint_t::cmplt_imm_rgba");
	expected_a = ~s32(0);
	expected_r = 0;
	expected_g = ~s32(0);
	expected_b = 0;
	rgb.set(actual_a, actual_r, actual_g, actual_b);
	rgb.cmplt_imm_rgba(actual_a + 1, std::numeric_limits<s32>::min(), std::numeric_limits<s32>::max(), actual_b);
	check_expected("rgbaint_t::cmplt_imm_rgba");
}


//-------------------------------------------------
//  validate_driver - validate basic driver
//  information
//-------------------------------------------------

void validity_checker::validate_driver()
{
	// check for duplicate names
	if (!m_names_map.insert(std::make_pair(m_current_driver->name, m_current_driver)).second)
	{
		const game_driver *match = m_names_map.find(m_current_driver->name)->second;
		osd_printf_error("Driver name is a duplicate of %s(%s)\n", core_filename_extract_base(match->type.source()).c_str(), match->name);
	}

	// check for duplicate descriptions
	if (!m_descriptions_map.insert(std::make_pair(m_current_driver->type.fullname(), m_current_driver)).second)
	{
		const game_driver *match = m_descriptions_map.find(m_current_driver->type.fullname())->second;
		osd_printf_error("Driver description is a duplicate of %s(%s)\n", core_filename_extract_base(match->type.source()).c_str(), match->name);
	}

	// determine if we are a clone
	bool is_clone = (strcmp(m_current_driver->parent, "0") != 0);
	int clone_of = m_drivlist.clone(*m_current_driver);
	if (clone_of != -1 && (m_drivlist.driver(clone_of).flags & machine_flags::IS_BIOS_ROOT))
		is_clone = false;

	// if we have at least 100 drivers, validate the clone
	// (100 is arbitrary, but tries to avoid tiny.mak dependencies)
	if (driver_list::total() > 100 && clone_of == -1 && is_clone)
		osd_printf_error("Driver is a clone of nonexistent driver %s\n", m_current_driver->parent);

	// look for recursive cloning
	if (clone_of != -1 && &m_drivlist.driver(clone_of) == m_current_driver)
		osd_printf_error("Driver is a clone of itself\n");

	// look for clones that are too deep
	if (clone_of != -1 && (clone_of = m_drivlist.non_bios_clone(clone_of)) != -1)
		osd_printf_error("Driver is a clone of a clone\n");

	// make sure the driver name is not too long
	if (!is_clone && strlen(m_current_driver->name) > 16)
		osd_printf_error("Parent driver name must be 16 characters or less\n");
	if (is_clone && strlen(m_current_driver->name) > 16)
		osd_printf_error("Clone driver name must be 16 characters or less\n");

	// make sure the driver name doesn't contain invalid characters
	for (const char *s = m_current_driver->name; *s != 0; s++)
		if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != '_'))
		{
			osd_printf_error("Driver name contains invalid characters\n");
			break;
		}

	// make sure the year is only digits, '?' or '+'
	for (const char *s = m_current_driver->year; *s != 0; s++)
		if (!isdigit(u8(*s)) && *s != '?' && *s != '+')
		{
			osd_printf_error("Driver has an invalid year '%s'\n", m_current_driver->year);
			break;
		}

	// normalize driver->compatible_with
	const char *compatible_with = m_current_driver->compatible_with;
	if (compatible_with != nullptr && strcmp(compatible_with, "0") == 0)
		compatible_with = nullptr;

	// check for this driver being compatible with a non-existant driver
	if (compatible_with != nullptr && m_drivlist.find(m_current_driver->compatible_with) == -1)
		osd_printf_error("Driver is listed as compatible with nonexistent driver %s\n", m_current_driver->compatible_with);

	// check for clone_of and compatible_with being specified at the same time
	if (m_drivlist.clone(*m_current_driver) != -1 && compatible_with != nullptr)
		osd_printf_error("Driver cannot be both a clone and listed as compatible with another system\n");

	// find any recursive dependencies on the current driver
	for (int other_drv = m_drivlist.compatible_with(*m_current_driver); other_drv != -1; other_drv = m_drivlist.compatible_with(other_drv))
		if (m_current_driver == &m_drivlist.driver(other_drv))
		{
			osd_printf_error("Driver is recursively compatible with itself\n");
			break;
		}

	// make sure sound-less drivers are flagged
	device_t::feature_type const unemulated(m_current_driver->type.unemulated_features());
	device_t::feature_type const imperfect(m_current_driver->type.imperfect_features());
	if (!(m_current_driver->flags & (machine_flags::IS_BIOS_ROOT | machine_flags::NO_SOUND_HW)) && !(unemulated & device_t::feature::SOUND))
	{
		sound_interface_iterator iter(m_current_config->root_device());
		if (!iter.first())
			osd_printf_error("Driver is missing MACHINE_NO_SOUND or MACHINE_NO_SOUND_HW flag\n");
	}

	// catch invalid flag combinations
	if (unemulated & ~device_t::feature::ALL)
		osd_printf_error("Driver has invalid unemulated feature flags (0x%08lX)\n", static_cast<unsigned long>(unemulated & ~device_t::feature::ALL));
	if (imperfect & ~device_t::feature::ALL)
		osd_printf_error("Driver has invalid imperfect feature flags (0x%08lX)\n", static_cast<unsigned long>(imperfect & ~device_t::feature::ALL));
	if (unemulated & imperfect)
		osd_printf_error("Driver cannot have features that are both unemulated and imperfect (0x%08lX)\n", static_cast<unsigned long>(unemulated & imperfect));
	if ((m_current_driver->flags & machine_flags::NO_SOUND_HW) && ((unemulated | imperfect) & device_t::feature::SOUND))
		osd_printf_error("Machine without sound hardware cannot have unemulated/imperfect sound\n");
}


//-------------------------------------------------
//  validate_roms - validate ROM definitions
//-------------------------------------------------

void validity_checker::validate_roms(device_t &root)
{
	// iterate, starting with the driver's ROMs and continuing with device ROMs
	for (device_t &device : device_iterator(root))
	{
		// track the current device
		m_current_device = &device;

		// scan the ROM entries for this device
		char const *last_region_name = "???";
		char const *last_name = "???";
		u32 current_length = 0;
		int items_since_region = 1;
		int last_bios = 0, max_bios = 0;
		int total_files = 0;
		std::unordered_map<std::string, int> bios_names;
		std::unordered_map<std::string, std::string> bios_descs;
		char const *defbios = nullptr;
		for (tiny_rom_entry const *romp = device.rom_region(); romp && !ROMENTRY_ISEND(romp); ++romp)
		{
			if (ROMENTRY_ISREGION(romp)) // if this is a region, make sure it's valid, and record the length
			{
				// if we haven't seen any items since the last region, print a warning
				if (items_since_region == 0)
					osd_printf_warning("Empty ROM region '%s' (warning)\n", last_region_name);

				// reset our region tracking states
				char const *const basetag = romp->name;
				items_since_region = (ROMREGION_ISERASE(romp) || ROMREGION_ISDISKDATA(romp)) ? 1 : 0;
				last_region_name = basetag;

				// check for a valid tag
				if (!basetag)
				{
					osd_printf_error("ROM_REGION tag with nullptr name\n");
					continue;
				}

				// validate the base tag
				validate_tag(basetag);

				// generate the full tag
				std::string const fulltag = device.subtag(romp->name);

				// attempt to add it to the map, reporting duplicates as errors
				current_length = ROMREGION_GETLENGTH(romp);
				if (!m_region_map.insert(std::make_pair(fulltag, current_length)).second)
					osd_printf_error("Multiple ROM_REGIONs with the same tag '%s' defined\n", fulltag.c_str());
			}
			else if (ROMENTRY_ISSYSTEM_BIOS(romp)) // If this is a system bios, make sure it is using the next available bios number
			{
				int const bios_flags = ROM_GETBIOSFLAGS(romp);
				char const *const biosname = romp->name;
				if (bios_flags != last_bios + 1)
					osd_printf_error("Non-sequential BIOS %s (specified as %d, expected to be %d)\n", biosname, bios_flags - 1, last_bios);
				last_bios = bios_flags;

				// validate the name
				if (strlen(biosname) > 16)
					osd_printf_error("BIOS name %s exceeds maximum 16 characters\n", biosname);
				for (char const *s = biosname; *s; ++s)
				{
					if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != '.') && (*s != '_') && (*s != '-'))
					{
						osd_printf_error("BIOS name %s contains invalid characters\n", biosname);
						break;
					}
				}

				// check for duplicate names/descriptions
				auto const nameins = bios_names.emplace(biosname, bios_flags);
				if (!nameins.second)
					osd_printf_error("Duplicate BIOS name %s specified (%d and %d)\n", biosname, nameins.first->second, bios_flags - 1);
				auto const descins = bios_descs.emplace(romp->hashdata, biosname);
				if (!descins.second)
					osd_printf_error("BIOS %s has duplicate description '%s' (was %s)\n", biosname, romp->hashdata, descins.first->second.c_str());
			}
			else if (ROMENTRY_ISDEFAULT_BIOS(romp)) // if this is a default BIOS setting, remember it so it to check at the end
			{
				defbios = romp->name;
			}
			else if (ROMENTRY_ISFILE(romp)) // if this is a file, make sure it is properly formatted
			{
				// track the last filename we found
				last_name = romp->name;
				total_files++;
				max_bios = std::max<int>(max_bios, ROM_GETBIOSFLAGS(romp));

				// validate the name
				if (strlen(last_name) > 127)
					osd_printf_error("ROM label %s exceeds maximum 127 characters\n", last_name);
				for (char const *s = last_name; *s; ++s)
				{
					if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != ' ') && (*s != '@') && (*s != '.') && (*s != ',') && (*s != '_') && (*s != '-') && (*s != '+') && (*s != '='))
					{
						osd_printf_error("ROM label %s contains invalid characters\n", last_name);
						break;
					}
				}

				// make sure the hash is valid
				util::hash_collection hashes;
				if (!hashes.from_internal_string(romp->hashdata))
					osd_printf_error("ROM '%s' has an invalid hash string '%s'\n", last_name, romp->hashdata);
			}

			// for any non-region ending entries, make sure they don't extend past the end
			if (!ROMENTRY_ISREGIONEND(romp) && current_length > 0)
			{
				items_since_region++;
				if (!ROMENTRY_ISIGNORE(romp) && (ROM_GETOFFSET(romp) + ROM_GETLENGTH(romp) > current_length))
					osd_printf_error("ROM '%s' extends past the defined memory region\n", last_name);
			}
		}

		// check that default BIOS exists
		if (defbios && (bios_names.find(defbios) == bios_names.end()))
			osd_printf_error("Default BIOS '%s' not found\n", defbios);
		if (!device.get_default_bios_tag().empty() && (bios_names.find(device.get_default_bios_tag()) == bios_names.end()))
			osd_printf_error("Configured BIOS '%s' not found\n", device.get_default_bios_tag().c_str());

		// check that there aren't ROMs for a non-existent BIOS option
		if (max_bios > last_bios)
			osd_printf_error("BIOS %d set on file is higher than maximum system BIOS number %d\n", max_bios - 1, last_bios - 1);

		// final check for empty regions
		if (items_since_region == 0)
			osd_printf_warning("Empty ROM region '%s' (warning)\n", last_region_name);

		// reset the current device
		m_current_device = nullptr;
	}
}


//-------------------------------------------------
//  validate_analog_input_field - validate an
//  analog input field
//-------------------------------------------------

void validity_checker::validate_analog_input_field(ioport_field &field)
{
	// analog ports must have a valid sensitivity
	if (field.sensitivity() == 0)
		osd_printf_error("Analog port with zero sensitivity\n");

	// check that the default falls in the bitmask range
	if (field.defvalue() & ~field.mask())
		osd_printf_error("Analog port with a default value (%X) out of the bitmask range (%X)\n", field.defvalue(), field.mask());

	// tests for positional devices
	if (field.type() == IPT_POSITIONAL || field.type() == IPT_POSITIONAL_V)
	{
		int shift;
		for (shift = 0; shift <= 31 && (~field.mask() & (1 << shift)) != 0; shift++) { }

		// convert the positional max value to be in the bitmask for testing
		//s32 analog_max = field.maxval();
		//analog_max = (analog_max - 1) << shift;

		// positional port size must fit in bits used
		if ((field.mask() >> shift) + 1 < field.maxval())
			osd_printf_error("Analog port with a positional port size bigger then the mask size\n");
	}

	// tests for absolute devices
	else if (field.type() > IPT_ANALOG_ABSOLUTE_FIRST && field.type() < IPT_ANALOG_ABSOLUTE_LAST)
	{
		// adjust for signed values
		s32 default_value = field.defvalue();
		s32 analog_min = field.minval();
		s32 analog_max = field.maxval();
		if (analog_min > analog_max)
		{
			analog_min = -analog_min;
			if (default_value > analog_max)
				default_value = -default_value;
		}

		// check that the default falls in the MINMAX range
		if (default_value < analog_min || default_value > analog_max)
			osd_printf_error("Analog port with a default value (%X) out of PORT_MINMAX range (%X-%X)\n", field.defvalue(), field.minval(), field.maxval());

		// check that the MINMAX falls in the bitmask range
		// we use the unadjusted min for testing
		if (field.minval() & ~field.mask() || analog_max & ~field.mask())
			osd_printf_error("Analog port with a PORT_MINMAX (%X-%X) value out of the bitmask range (%X)\n", field.minval(), field.maxval(), field.mask());

		// absolute analog ports do not use PORT_RESET
		if (field.analog_reset())
			osd_printf_error("Absolute analog port using PORT_RESET\n");

		// absolute analog ports do not use PORT_WRAPS
		if (field.analog_wraps())
			osd_printf_error("Absolute analog port using PORT_WRAPS\n");
	}

	// tests for non IPT_POSITIONAL relative devices
	else
	{
		// relative devices do not use PORT_MINMAX
		if (field.minval() != 0 || field.maxval() != field.mask())
			osd_printf_error("Relative port using PORT_MINMAX\n");

		// relative devices do not use a default value
		// the counter is at 0 on power up
		if (field.defvalue() != 0)
			osd_printf_error("Relative port using non-0 default value\n");

		// relative analog ports do not use PORT_WRAPS
		if (field.analog_wraps())
			osd_printf_error("Absolute analog port using PORT_WRAPS\n");
	}
}


//-------------------------------------------------
//  validate_dip_settings - validate a DIP switch
//  setting
//-------------------------------------------------

void validity_checker::validate_dip_settings(ioport_field &field)
{
	const char *demo_sounds = ioport_string_from_index(INPUT_STRING_Demo_Sounds);
	const char *flipscreen = ioport_string_from_index(INPUT_STRING_Flip_Screen);
	u8 coin_list[__input_string_coinage_end + 1 - __input_string_coinage_start] = { 0 };
	bool coin_error = false;

	// iterate through the settings
	for (ioport_setting &setting : field.settings())
	{
		// note any coinage strings
		int strindex = get_defstr_index(setting.name());
		if (strindex >= __input_string_coinage_start && strindex <= __input_string_coinage_end)
			coin_list[strindex - __input_string_coinage_start] = 1;

		// make sure demo sounds default to on
		if (field.name() == demo_sounds && strindex == INPUT_STRING_On && field.defvalue() != setting.value())
			osd_printf_error("Demo Sounds must default to On\n");

		// check for bad demo sounds options
		if (field.name() == demo_sounds && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No))
			osd_printf_error("Demo Sounds option must be Off/On, not %s\n", setting.name());

		// check for bad flip screen options
		if (field.name() == flipscreen && (strindex == INPUT_STRING_Yes || strindex == INPUT_STRING_No))
			osd_printf_error("Flip Screen option must be Off/On, not %s\n", setting.name());

		// if we have a neighbor, compare ourselves to him
		if (setting.next() != nullptr)
		{
			// check for inverted off/on dispswitch order
			int next_strindex = get_defstr_index(setting.next()->name(), true);
			if (strindex == INPUT_STRING_On && next_strindex == INPUT_STRING_Off)
				osd_printf_error("%s option must have Off/On options in the order: Off, On\n", field.name());

			// check for inverted yes/no dispswitch order
			else if (strindex == INPUT_STRING_Yes && next_strindex == INPUT_STRING_No)
				osd_printf_error("%s option must have Yes/No options in the order: No, Yes\n", field.name());

			// check for inverted upright/cocktail dispswitch order
			else if (strindex == INPUT_STRING_Cocktail && next_strindex == INPUT_STRING_Upright)
				osd_printf_error("%s option must have Upright/Cocktail options in the order: Upright, Cocktail\n", field.name());

			// check for proper coin ordering
			else if (strindex >= __input_string_coinage_start && strindex <= __input_string_coinage_end && next_strindex >= __input_string_coinage_start && next_strindex <= __input_string_coinage_end &&
						strindex >= next_strindex && setting.condition() == setting.next()->condition())
			{
				osd_printf_error("%s option has unsorted coinage %s > %s\n", field.name(), setting.name(), setting.next()->name());
				coin_error = true;
			}
		}
	}

	// if we have a coin error, demonstrate the correct way
	if (coin_error)
	{
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "   Note proper coin sort order should be:\n");
		for (int entry = 0; entry < ARRAY_LENGTH(coin_list); entry++)
			if (coin_list[entry])
				output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "      %s\n", ioport_string_from_index(__input_string_coinage_start + entry));
	}
}


//-------------------------------------------------
//  validate_condition - validate a condition
//  stored within an ioport field or setting
//-------------------------------------------------

void validity_checker::validate_condition(ioport_condition &condition, device_t &device, std::unordered_set<std::string> &port_map)
{
	// resolve the tag
	// then find a matching port
	if (port_map.find(device.subtag(condition.tag())) == port_map.end())
		osd_printf_error("Condition referencing non-existent ioport tag '%s'\n", condition.tag());
}


//-------------------------------------------------
//  validate_inputs - validate input configuration
//-------------------------------------------------

void validity_checker::validate_inputs()
{
	std::unordered_set<std::string> port_map;

	// iterate over devices
	for (device_t &device : device_iterator(m_current_config->root_device()))
	{
		// see if this device has ports; if not continue
		if (device.input_ports() == nullptr)
			continue;

		// track the current device
		m_current_device = &device;

		// allocate the input ports
		ioport_list portlist;
		std::string errorbuf;
		portlist.append(device, errorbuf);

		// report any errors during construction
		if (!errorbuf.empty())
			osd_printf_error("I/O port error during construction:\n%s\n", errorbuf.c_str());

		// do a first pass over ports to add their names and find duplicates
		for (auto &port : portlist)
			if (!port_map.insert(port.second->tag()).second)
				osd_printf_error("Multiple I/O ports with the same tag '%s' defined\n", port.second->tag());

		// iterate over ports
		for (auto &port : portlist)
		{
			m_current_ioport = port.second->tag();

			// iterate through the fields on this port
			for (ioport_field &field : port.second->fields())
			{
				// verify analog inputs
				if (field.is_analog())
					validate_analog_input_field(field);

				// look for invalid (0) types which should be mapped to IPT_OTHER
				if (field.type() == IPT_INVALID)
					osd_printf_error("Field has an invalid type (0); use IPT_OTHER instead\n");

				if (field.type() == IPT_SPECIAL)
					osd_printf_error("Field has an invalid type IPT_SPECIAL\n");

				// verify dip switches
				if (field.type() == IPT_DIPSWITCH)
				{
					// dip switch fields must have a specific name
					if (field.specific_name() == nullptr)
						osd_printf_error("DIP switch has no specific name\n");

					// verify the settings list
					validate_dip_settings(field);
				}

				// verify config settings
				if (field.type() == IPT_CONFIG)
				{
					// config fields must have a specific name
					if (field.specific_name() == nullptr)
						osd_printf_error("Config switch has no specific name\n");
				}

				// verify names
				const char *name = field.specific_name();
				if (name != nullptr)
				{
					// check for empty string
					if (name[0] == 0)
						osd_printf_error("Field name is an empty string\n");

					// check for trailing spaces
					if (name[0] != 0 && name[strlen(name) - 1] == ' ')
						osd_printf_error("Field '%s' has trailing spaces\n", name);

					// check for invalid UTF-8
					if (!utf8_is_valid_string(name))
						osd_printf_error("Field '%s' has invalid characters\n", name);

					// look up the string and print an error if default strings are not used
					/*strindex =get_defstr_index(defstr_map, name, driver, &error);*/
				}

				// verify conditions on the field
				if (!field.condition().none())
					validate_condition(field.condition(), device, port_map);

				// verify conditions on the settings
				for (ioport_setting &setting : field.settings())
					if (!setting.condition().none())
						validate_condition(setting.condition(), device, port_map);

				// verify natural keyboard codes
				for (int which = 0; which < 1 << (UCHAR_SHIFT_END - UCHAR_SHIFT_BEGIN + 1); which++)
				{
					std::vector<char32_t> codes = field.keyboard_codes(which);
					for (char32_t code : codes)
					{
						if (!uchar_isvalid(code))
						{
							osd_printf_error("Field '%s' has non-character U+%04X in PORT_CHAR(%d)\n",
								name,
								(unsigned)code,
								(int)code);
						}
					}
				}
			}

			// done with this port
			m_current_ioport = nullptr;
		}

		// done with this device
		m_current_device = nullptr;
	}
}


//-------------------------------------------------
//  validate_devices - run per-device validity
//  checks
//-------------------------------------------------

void validity_checker::validate_devices()
{
	std::unordered_set<std::string> device_map;

	for (device_t &device : device_iterator(m_current_config->root_device()))
	{
		// track the current device
		m_current_device = &device;

		// validate auto-finders
		device.findit(true);

		// validate the device tag
		validate_tag(device.basetag());

		// look for duplicates
		bool duplicate = !device_map.insert(device.tag()).second;
		if (duplicate)
			osd_printf_error("Multiple devices with the same tag defined\n");

		// check for device-specific validity check
		device.validity_check(*this);

		// done with this device
		m_current_device = nullptr;

		// if it's a slot, iterate over possible cards (don't recurse, or you'll stack infinite tee connectors)
		device_slot_interface *const slot = dynamic_cast<device_slot_interface *>(&device);
		if (slot && !slot->fixed() && !duplicate)
		{
			for (auto &option : slot->option_list())
			{
				// the default option is already instantiated here, so don't try adding it again
				if (slot->default_option() != nullptr && option.first == slot->default_option())
					continue;

				device_t *card;
				{
					machine_config::token const tok(m_current_config->begin_configuration(slot->device()));
					card = m_current_config->device_add(option.second->name(), option.second->devtype(), option.second->clock());

					const char *const def_bios = option.second->default_bios();
					if (def_bios)
						card->set_default_bios_tag(def_bios);
					auto additions = option.second->machine_config();
					if (additions)
						additions(card);
				}

				for (device_slot_interface &subslot : slot_interface_iterator(*card))
				{
					if (subslot.fixed())
					{
						// TODO: make this self-contained so it can apply itself
						device_slot_interface::slot_option const *suboption = subslot.option(subslot.default_option());
						if (suboption)
						{
							machine_config::token const tok(m_current_config->begin_configuration(subslot.device()));
							device_t *const sub_card = m_current_config->device_add(suboption->name(), suboption->devtype(), suboption->clock());
							const char *const sub_bios = suboption->default_bios();
							if (sub_bios)
								sub_card->set_default_bios_tag(sub_bios);
							auto sub_additions = suboption->machine_config();
							if (sub_additions)
								sub_additions(sub_card);
						}
					}
				}

				for (device_t &card_dev : device_iterator(*card))
					card_dev.config_complete();
				validate_roms(*card);

				for (device_t &card_dev : device_iterator(*card))
				{
					m_current_device = &card_dev;
					card_dev.findit(true);
					card_dev.validity_check(*this);
					m_current_device = nullptr;
				}

				machine_config::token const tok(m_current_config->begin_configuration(slot->device()));
				m_current_config->device_remove(option.second->name());
			}
		}
	}
}


//-------------------------------------------------
//  validate_devices_types - check validity of
//  registered device types
//-------------------------------------------------

void validity_checker::validate_device_types()
{
	// reset error/warning state
	int start_errors = m_errors;
	int start_warnings = m_warnings;
	m_error_text.clear();
	m_warning_text.clear();
	m_verbose_text.clear();

	std::unordered_map<std::string, std::add_pointer_t<device_type> > device_name_map, device_shortname_map;
	machine_config config(GAME_NAME(___empty), m_drivlist.options());
	machine_config::token const tok(config.begin_configuration(config.root_device()));
	for (device_type type : registered_device_types)
	{
		device_t *const dev = config.device_add("_tmp", type, 0);

		char const *name((dev->shortname() && *dev->shortname()) ? dev->shortname() : type.type().name());
		std::string const description((dev->source() && *dev->source()) ? util::string_format("%s(%s)", core_filename_extract_base(dev->source()).c_str(), name) : name);

		// ensure shortname exists
		if (!dev->shortname() || !*dev->shortname())
		{
			osd_printf_error("Device %s does not have short name defined\n", description.c_str());
		}
		else
		{
			// make sure the device name is not too long
			if (strlen(dev->shortname()) > 32)
				osd_printf_error("Device short name must be 32 characters or less\n");

			// check for invalid characters in shortname
			for (char const *s = dev->shortname(); *s; ++s)
			{
				if (((*s < '0') || (*s > '9')) && ((*s < 'a') || (*s > 'z')) && (*s != '_'))
				{
					osd_printf_error("Device %s short name contains invalid characters\n", description.c_str());
					break;
				}
			}

			// check for name conflicts
			std::string tmpname(dev->shortname());
			game_driver_map::const_iterator const drvname(m_names_map.find(tmpname));
			auto const devname(device_shortname_map.emplace(std::move(tmpname), &type));
			if (m_names_map.end() != drvname)
			{
				game_driver const &dup(*drvname->second);
				osd_printf_error("Device %s short name is a duplicate of %s(%s)\n", description.c_str(), core_filename_extract_base(dup.type.source()).c_str(), dup.name);
			}
			else if (!devname.second)
			{
				device_t *const dup = config.device_add("_dup", *devname.first->second, 0);
				osd_printf_error("Device %s short name is a duplicate of %s(%s)\n", description.c_str(), core_filename_extract_base(dup->source()).c_str(), dup->shortname());
				config.device_remove("_dup");
			}
		}

		// ensure name exists
		if (!dev->name() || !*dev->name())
		{
			osd_printf_error("Device %s does not have name defined\n", description.c_str());
		}
		else
		{
			// check for description conflicts
			std::string tmpdesc(dev->name());
			game_driver_map::const_iterator const drvdesc(m_descriptions_map.find(tmpdesc));
			auto const devdesc(device_name_map.emplace(std::move(tmpdesc), &type));
			if (m_descriptions_map.end() != drvdesc)
			{
				game_driver const &dup(*drvdesc->second);
				osd_printf_error("Device %s name '%s' is a duplicate of %s(%s)\n", description.c_str(), dev->name(), core_filename_extract_base(dup.type.source()).c_str(), dup.name);
			}
			else if (!devdesc.second)
			{
				device_t *const dup = config.device_add("_dup", *devdesc.first->second, 0);
				osd_printf_error("Device %s name '%s' is a duplicate of %s(%s)\n", description.c_str(), dev->name(), core_filename_extract_base(dup->source()).c_str(), dup->shortname());
				config.device_remove("_dup");
			}
		}

		// ensure source exists
		if (!dev->source() || !*dev->source())
			osd_printf_error("Device %s does not have source defined\n", description.c_str());

		// check that reported type matches supplied type
		if (dev->type().type() != type.type())
			osd_printf_error("Device %s reports type '%s' (created with '%s')\n", description.c_str(), dev->type().type().name(), type.type().name());

		// catch invalid flag combinations
		device_t::feature_type const unemulated(dev->type().unemulated_features());
		device_t::feature_type const imperfect(dev->type().imperfect_features());
		if (unemulated & ~device_t::feature::ALL)
			osd_printf_error("Device has invalid unemulated feature flags (0x%08lX)\n", static_cast<unsigned long>(unemulated & ~device_t::feature::ALL));
		if (imperfect & ~device_t::feature::ALL)
			osd_printf_error("Device has invalid imperfect feature flags (0x%08lX)\n", static_cast<unsigned long>(imperfect & ~device_t::feature::ALL));
		if (unemulated & imperfect)
			osd_printf_error("Device cannot have features that are both unemulated and imperfect (0x%08lX)\n", static_cast<unsigned long>(unemulated & imperfect));

		config.device_remove("_tmp");
	}

	// if we had warnings or errors, output
	if (m_errors > start_errors || m_warnings > start_warnings || !m_verbose_text.empty())
	{
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "%d errors, %d warnings\n", m_errors - start_errors, m_warnings - start_warnings);
		if (m_errors > start_errors)
			output_indented_errors(m_error_text, "Errors");
		if (m_warnings > start_warnings)
			output_indented_errors(m_warning_text, "Warnings");
		if (!m_verbose_text.empty())
			output_indented_errors(m_verbose_text, "Messages");
		output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "\n");
	}
}


//-------------------------------------------------
//  build_output_prefix - create a prefix
//  indicating the current source file, driver,
//  and device
//-------------------------------------------------

void validity_checker::build_output_prefix(std::string &str)
{
	// start empty
	str.clear();

	// if we have a current (non-root) device, indicate that
	if (m_current_device != nullptr && m_current_device->owner() != nullptr)
		str.append(m_current_device->name()).append(" device '").append(m_current_device->tag() + 1).append("': ");

	// if we have a current port, indicate that as well
	if (m_current_ioport != nullptr)
		str.append("ioport '").append(m_current_ioport).append("': ");
}


//-------------------------------------------------
//  error_output - error message output override
//-------------------------------------------------

void validity_checker::output_callback(osd_output_channel channel, const char *msg, va_list args)
{
	std::string output;
	switch (channel)
	{
	case OSD_OUTPUT_CHANNEL_ERROR:
		// count the error
		m_errors++;

		// output the source(driver) device 'tag'
		build_output_prefix(output);

		// generate the string
		strcatvprintf(output, msg, args);
		m_error_text.append(output);
		break;

	case OSD_OUTPUT_CHANNEL_WARNING:
		// count the error
		m_warnings++;

		// output the source(driver) device 'tag'
		build_output_prefix(output);

		// generate the string and output to the original target
		strcatvprintf(output, msg, args);
		m_warning_text.append(output);
		break;

	case OSD_OUTPUT_CHANNEL_VERBOSE:
		// if we're not verbose, skip it
		if (!m_print_verbose) break;

		// output the source(driver) device 'tag'
		build_output_prefix(output);

		// generate the string and output to the original target
		strcatvprintf(output, msg, args);
		m_verbose_text.append(output);
		break;

	default:
		chain_output(channel, msg, args);
		break;
	}
}

//-------------------------------------------------
//  output_via_delegate - helper to output a
//  message via a varargs string, so the argptr
//  can be forwarded onto the given delegate
//-------------------------------------------------

void validity_checker::output_via_delegate(osd_output_channel channel, const char *format, ...)
{
	va_list argptr;

	// call through to the delegate with the proper parameters
	va_start(argptr, format);
	chain_output(channel, format, argptr);
	va_end(argptr);
}

//-------------------------------------------------
//  output_indented_errors - helper to output error
//  and warning messages with header and indents
//-------------------------------------------------
void validity_checker::output_indented_errors(std::string &text, const char *header)
{
	// remove trailing newline
	if (text[text.size()-1] == '\n')
		text.erase(text.size()-1, 1);
	strreplace(text, "\n", "\n   ");
	output_via_delegate(OSD_OUTPUT_CHANNEL_ERROR, "%s:\n   %s\n", header, text.c_str());
}