summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/sound/ymf271.c
blob: 4e96fcccc7abae7b6f9fb786299d2267fe3ef88d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
/*
    Yamaha YMF271-F "OPX" emulator v0.1
    By R. Belmont.
    Based in part on YMF278B emulator by R. Belmont and O. Galibert.
    12June04 update by Toshiaki Nijiura
    Copyright R. Belmont.

    This software is dual-licensed: it may be used in MAME and properly licensed
    MAME derivatives under the terms of the MAME license.  For use outside of
    MAME and properly licensed derivatives, it is available under the
    terms of the GNU Lesser General Public License (LGPL), version 2.1.
    You may read the LGPL at http://www.gnu.org/licenses/lgpl.html
*/

#include <math.h>
#include "sndintrf.h"
#include "streams.h"
#include "ymf271.h"

#define VERBOSE		(1)

#define MAXOUT		(+32767)
#define MINOUT		(-32768)

#define SIN_BITS		10
#define SIN_LEN			(1<<SIN_BITS)
#define SIN_MASK		(SIN_LEN-1)

#define LFO_LENGTH		256
#define LFO_SHIFT		8
#define PLFO_MAX		(+1.0)
#define PLFO_MIN		(-1.0)
#define ALFO_MAX		(+65536)
#define ALFO_MIN		(0)

#define log2(n) (log((float) n)/log((float) 2))

typedef struct
{
	INT8  extout;
	UINT8 lfoFreq;
	INT8  lfowave;
	INT8  pms, ams;
	INT8  detune;
	INT8  multiple;
	INT8  tl;
	INT8  keyscale;
	INT8  ar;
	INT8  decay1rate, decay2rate;
	INT8  decay1lvl;
	INT8  relrate;
	INT32 fns;
	INT8  block;
	INT8  feedback;
	INT8  waveform;
	INT8  accon;
	INT8  algorithm;
	INT8  ch0_level, ch1_level, ch2_level, ch3_level;

	UINT32 startaddr;
	UINT32 loopaddr;
	UINT32 endaddr;
	INT8   fs, srcnote, srcb;

	INT64 step;
	INT64 stepptr;

	INT8 active;
	INT8 bits;

	// envelope generator
	INT32 volume;
	INT32 env_state;
	INT32 env_attack_step;		// volume increase step in attack state
	INT32 env_decay1_step;
	INT32 env_decay2_step;
	INT32 env_release_step;

	INT64 feedback_modulation0;
	INT64 feedback_modulation1;

	INT32 lfo_phase, lfo_step;
	INT32 lfo_amplitude;
	double lfo_phasemod;
} YMF271Slot;

typedef struct
{
	INT8 sync, pfm;
} YMF271Group;

typedef struct
{
	YMF271Slot slots[48];
	YMF271Group groups[12];

	INT32 timerA, timerB;
	INT32 timerAVal, timerBVal;
	INT32 irqstate;
	INT8  status;
	INT8  enable;

	emu_timer *timA, *timB;

	INT8  reg0, reg1, reg2, reg3, pcmreg, timerreg;
	UINT32 ext_address;
	UINT8 ext_read;

	const UINT8 *rom;
	read8_handler ext_mem_read;
	write8_handler ext_mem_write;
	void (*irq_callback)(int);

	int index;
	UINT32 clock;
	sound_stream * stream;
} YMF271Chip;

// slot mapping assists
static const int fm_tab[] = { 0, 1, 2, -1, 3, 4, 5, -1, 6, 7, 8, -1, 9, 10, 11, -1 };
static const int pcm_tab[] = { 0, 4, 8, -1, 12, 16, 20, -1, 24, 28, 32, -1, 36, 40, 44, -1 };

static INT16 *wavetable[8];
static double plfo_table[4][8][LFO_LENGTH];
static int alfo_table[4][LFO_LENGTH];
static INT32 *mix;

#define ENV_ATTACK		0
#define ENV_DECAY1		1
#define ENV_DECAY2		2
#define ENV_RELEASE		3

#define ENV_VOLUME_SHIFT	16

#define INF		100000000.0

static const double ARTime[] =
{
	INF,		INF,		INF,		INF,		6188.12,	4980.68,	4144.76,	3541.04,
	3094.06,	2490.34,	2072.38,	1770.52,	1547.03,	1245.17,	1036.19,	885.26,
	773.51,		622.59,		518.10,		441.63,		386.76,		311.29,		259.05,		221.32,
	193.38,		155.65,		129.52,		110.66,		96.69,		77.82,		64.76,		55.33,
	48.34,		38.91,		32.38,		27.66,		24.17,		19.46,		16.19,		13.83,
	12.09,		9.73,		8.10,		6.92,		6.04,		4.86,		4.05,		3.46,
	3.02,		2.47,		2.14,		1.88,		1.70,		1.38,		1.16,		1.02,
	0.88,		0.70,		0.57,		0.48,		0.43,		0.43,		0.43,		0.07
};

static const double DCTime[] =
{
	INF,		INF,		INF,		INF,		93599.64,	74837.91,	62392.02,	53475.56,
	46799.82,	37418.96,	31196.01,	26737.78,	23399.91,	18709.48,	15598.00,	13368.89,
	11699.95,	9354.74,	7799.00,	6684.44,	5849.98,	4677.37,	3899.50,	3342.22,
	2924.99,	2338.68,	1949.75,	1671.11,	1462.49,	1169.34,	974.88,		835.56,
	731.25,		584.67,		487.44,		417.78,		365.62,		292.34,		243.72,		208.89,
	182.81,		146.17,		121.86,		104.44,		91.41,		73.08,		60.93,		52.22,
	45.69,		36.55,		33.85,		26.09,		22.83,		18.28,		15.22,		13.03,
	11.41,		9.12,		7.60,		6.51,		5.69,		5.69,		5.69,		5.69
};

/* Notes about the LFO Frequency Table below;

    There appears to be at least 2 errors in the table from the original manual.

    Both 201 & 202 where listed as 3.74490.  202 has be changed to 3.92000 which is "about right"
    232 was listed as 13.35547.  We use 14.35547 as it apears to be the correct value
*/

static const double LFO_frequency_table[256] =
{
	0.00066,	0.00068,	0.00070,	0.00073,	0.00075,	0.00078,	0.00081,	0.00084,
	0.00088,	0.00091,	0.00096,	0.00100,	0.00105,	0.00111,	0.00117,	0.00124,
	0.00131,	0.00136,	0.00140,	0.00145,	0.00150,	0.00156,	0.00162,	0.00168,
	0.00175,	0.00183,	0.00191,	0.00200,	0.00210,	0.00221,	0.00234,	0.00247,
	0.00263,	0.00271,	0.00280,	0.00290,	0.00300,	0.00312,	0.00324,	0.00336,
	0.00350,	0.00366,	0.00382,	0.00401,	0.00421,	0.00443,	0.00467,	0.00495,
	0.00526,	0.00543,	0.00561,	0.00580,	0.00601,	0.00623,	0.00647,	0.00673,
	0.00701,	0.00731,	0.00765,	0.00801,	0.00841,	0.00885,	0.00935,	0.00990,
	0.01051,	0.01085,	0.01122,	0.01160,	0.01202,	0.01246,	0.01294,	0.01346,
	0.01402,	0.01463,	0.01529,	0.01602,	0.01682,	0.01771,	0.01869,	0.01979,
	0.02103,	0.02171,	0.02243,	0.02320,	0.02403,	0.02492,	0.02588,	0.02692,
	0.02804,	0.02926,	0.03059,	0.03204,	0.03365,	0.03542,	0.03738,	0.03958,
	0.04206,	0.04341,	0.04486,	0.04641,	0.04807,	0.04985,	0.05176,	0.05383,
	0.05608,	0.05851,	0.06117,	0.06409,	0.06729,	0.07083,	0.07477,	0.07917,
	0.08411,	0.08683,	0.08972,	0.09282,	0.09613,	0.09969,	0.10353,	0.10767,
	0.11215,	0.11703,	0.12235,	0.12817,	0.13458,	0.14167,	0.14954,	0.15833,
	0.16823,	0.17365,	0.17944,	0.18563,	0.19226,	0.19938,	0.20705,	0.21533,
	0.22430,	0.23406,	0.24470,	0.25635,	0.26917,	0.28333,	0.29907,	0.31666,
	0.33646,	0.34731,	0.35889,	0.37126,	0.38452,	0.39876,	0.41410,	0.43066,
	0.44861,	0.46811,	0.48939,	0.51270,	0.53833,	0.56666,	0.59814,	0.63333,
	0.67291,	0.69462,	0.71777,	0.74252,	0.76904,	0.79753,	0.82820,	0.86133,
	0.89722,	0.93623,	0.97878,	1.02539,	1.07666,	1.13333,	1.19629,	1.26666,
	1.34583,	1.38924,	1.43555,	1.48505,	1.53809,	1.59509,	1.65640,	1.72266,
	1.79443,	1.87245,	1.95756,	2.05078,	2.15332,	2.26665,	2.39258,	2.53332,
	2.69165,	2.77848,	2.87109,	2.97010,	3.07617,	3.19010,	3.31280,	3.44531,
	3.58887,	3.74490,	3.92000,	4.10156,	4.30664,	4.53331,	4.78516,	5.06664,
	5.38330,	5.55696,	5.74219,	5.94019,	6.15234,	6.38021,	6.62560,	6.89062,
	7.17773,	7.48981,	7.83026,	8.20312,	8.61328,	9.06661,	9.57031,	10.13327,
	10.76660,	11.11391,	11.48438,	11.88039,	12.30469,	12.76042,	13.25120,	13.78125,
	14.35547,	14.97962,	15.66051,	16.40625,	17.22656,	18.13322,	19.14062,	20.26654,
	21.53320,	22.96875,	24.60938,	26.50240,	28.71094,	31.32102,	34.45312,	38.28125,
	43.06641,	49.21875,	57.42188,	68.90625,	86.13281,	114.84375,	172.26562,	344.53125
};

static const int RKS_Table[32][8] =
{
	{  0,  0,  0,  0,  0,  2,  4,  8 },
	{  0,  0,  0,  0,  1,  3,  5,  9 },
	{  0,  0,  0,  1,  2,  4,  6, 10 },
	{  0,  0,  0,  1,  3,  5,  7, 11 },
	{  0,  0,  1,  2,  4,  6,  8, 12 },
	{  0,  0,  1,  2,  5,  7,  9, 13 },
	{  0,  0,  1,  3,  6,  8, 10, 14 },
	{  0,  0,  1,  3,  7,  9, 11, 15 },
	{  0,  1,  2,  4,  8, 10, 12, 16 },
	{  0,  1,  2,  4,  9, 11, 13, 17 },
	{  0,  1,  2,  5, 10, 12, 14, 18 },
	{  0,  1,  2,  5, 11, 13, 15, 19 },
	{  0,  1,  3,  6, 12, 14, 16, 20 },
	{  0,  1,  3,  6, 13, 15, 17, 21 },
	{  0,  1,  3,  7, 14, 16, 18, 22 },
	{  0,  1,  3,  7, 15, 17, 19, 23 },
	{  0,  2,  4,  8, 16, 18, 20, 24 },
	{  0,  2,  4,  8, 17, 19, 21, 25 },
	{  0,  2,  4,  9, 18, 20, 22, 26 },
	{  0,  2,  4,  9, 19, 21, 23, 27 },
	{  0,  2,  5, 10, 20, 22, 24, 28 },
	{  0,  2,  5, 10, 21, 23, 25, 29 },
	{  0,  2,  5, 11, 22, 24, 26, 30 },
	{  0,  2,  5, 11, 23, 25, 27, 31 },
	{  0,  3,  6, 12, 24, 26, 28, 31 },
	{  0,  3,  6, 12, 25, 27, 29, 31 },
	{  0,  3,  6, 13, 26, 28, 30, 31 },
	{  0,  3,  6, 13, 27, 29, 31, 31 },
	{  0,  3,  7, 14, 28, 30, 31, 31 },
	{  0,  3,  7, 14, 29, 31, 31, 31 },
	{  0,  3,  7, 15, 30, 31, 31, 31 },
	{  0,  3,  7, 15, 31, 31, 31, 31 },
};

static const double channel_attenuation_table[16] =
{
	0.0, 2.5, 6.0, 8.5, 12.0, 14.5, 18.1, 20.6, 24.1, 26.6, 30.1, 32.6, 36.1, 96.1, 96.1, 96.1
};

static const int modulation_level[8] = { 16, 8, 4, 2, 1, 32, 64, 128 };

// feedback_level * 16
static const int feedback_level[8] = { 0, 1, 2, 4, 8, 16, 32, 64 };

static int channel_attenuation[16];
static int total_level[128];
static int env_volume_table[256];

INLINE int GET_KEYSCALED_RATE(int rate, int keycode, int keyscale)
{
	int newrate = rate + RKS_Table[keycode][keyscale];

	if (newrate > 63)
	{
		newrate = 63;
	}
	if (newrate < 0)
	{
		newrate = 0;
	}
	return newrate;
}

INLINE int GET_INTERNAL_KEYCODE(int block, int fns)
{
	int n43;
	if (fns < 0x780)
	{
		n43 = 0;
	}
	else if (fns < 0x900)
	{
		n43 = 1;
	}
	else if (fns < 0xa80)
	{
		n43 = 2;
	}
	else
	{
		n43 = 3;
	}

	return ((block & 7) * 4) + n43;
}

INLINE int GET_EXTERNAL_KEYCODE(int block, int fns)
{
	/* TODO: SrcB and SrcNote !? */
	int n43;
	if (fns < 0x100)
	{
		n43 = 0;
	}
	else if (fns < 0x300)
	{
		n43 = 1;
	}
	else if (fns < 0x500)
	{
		n43 = 2;
	}
	else
	{
		n43 = 3;
	}

	return ((block & 7) * 4) + n43;
}

static const double multiple_table[16] = { 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };

static const double pow_table[16] = { 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 0.5, 1, 2, 4, 8, 16, 32, 64 };

static const double fs_frequency[4] = { 1.0/1.0, 1.0/2.0, 1.0/4.0, 1.0/8.0 };

INLINE void calculate_step(YMF271Slot *slot)
{
	double st;

	if (slot->waveform == 7)	// external waveform (PCM)
	{
		st = (double)(2 * (slot->fns | 2048)) * pow_table[slot->block] * fs_frequency[slot->fs];
		st = st * multiple_table[slot->multiple];

		// LFO phase modulation
		st *= slot->lfo_phasemod;

		st /= (double)(524288/65536);		// pre-multiply with 65536

		slot->step = (UINT64)st;
	}
	else						// internal waveform (FM)
	{
		st = (double)(2 * slot->fns) * pow_table[slot->block];
		st = st * multiple_table[slot->multiple] * (double)(SIN_LEN);

		// LFO phase modulation
		st *= slot->lfo_phasemod;

		st /= (double)(536870912/65536);	// pre-multiply with 65536

		slot->step = (UINT64)st;
	}
}

static void update_envelope(YMF271Slot *slot)
{
	switch (slot->env_state)
	{
		case ENV_ATTACK:
		{
			slot->volume += slot->env_attack_step;

			if (slot->volume >= (255 << ENV_VOLUME_SHIFT))
			{
				slot->volume = (255 << ENV_VOLUME_SHIFT);
				slot->env_state = ENV_DECAY1;
			}
			break;
		}

		case ENV_DECAY1:
		{
			int decay_level = 255 - (slot->decay1lvl << 4);
			slot->volume -= slot->env_decay1_step;

			if ((slot->volume >> (ENV_VOLUME_SHIFT)) <= decay_level)
			{
				slot->env_state = ENV_DECAY2;
			}
			break;
		}

		case ENV_DECAY2:
		{
			slot->volume -= slot->env_decay2_step;

			if (slot->volume < 0)
			{
				slot->volume = 0;
			}
			break;
		}

		case ENV_RELEASE:
		{
			slot->volume -= slot->env_release_step;

			if (slot->volume <= (0 << ENV_VOLUME_SHIFT))
			{
				slot->active = 0;
				slot->volume = 0;
			}
			break;
		}
	}
}

static void init_envelope(YMF271Slot *slot)
{
	int keycode, rate;
	int attack_length, decay1_length, decay2_length, release_length;
	int decay_level = 255 - (slot->decay1lvl << 4);

	double time;

	if (slot->waveform != 7)
	{
		keycode = GET_INTERNAL_KEYCODE(slot->block, slot->fns);
	}
	else
	{
		keycode = GET_EXTERNAL_KEYCODE(slot->block, slot->fns);
	}

	// init attack state
	rate = GET_KEYSCALED_RATE(slot->ar * 2, keycode, slot->keyscale);
	time = ARTime[rate];

	attack_length = (UINT32)((time * 44100.0) / 1000.0);		// attack end time in samples
	slot->env_attack_step = (int)(((double)(160-0) / (double)(attack_length)) * 65536.0);

	// init decay1 state
	rate = GET_KEYSCALED_RATE(slot->decay1rate * 2, keycode, slot->keyscale);
	time = DCTime[rate];

	decay1_length = (UINT32)((time * 44100.0) / 1000.0);
	slot->env_decay1_step = (int)(((double)(255-decay_level) / (double)(decay1_length)) * 65536.0);

	// init decay2 state
	rate = GET_KEYSCALED_RATE(slot->decay2rate * 2, keycode, slot->keyscale);
	time = DCTime[rate];

	decay2_length = (UINT32)((time * 44100.0) / 1000.0);
	slot->env_decay2_step = (int)(((double)(255-0) / (double)(decay2_length)) * 65536.0);

	// init release state
	rate = GET_KEYSCALED_RATE(slot->relrate * 4, keycode, slot->keyscale);
	time = ARTime[rate];

	release_length = (UINT32)((time * 44100.0) / 1000.0);
	slot->env_release_step = (int)(((double)(255-0) / (double)(release_length)) * 65536.0);

	slot->volume = (255-160) << ENV_VOLUME_SHIFT;		// -60db
	slot->env_state = ENV_ATTACK;
}

static void init_lfo(YMF271Slot *slot)
{
	slot->lfo_phase = 0;
	slot->lfo_amplitude = 0;
	slot->lfo_phasemod = 0;

	slot->lfo_step = (int)((((double)LFO_LENGTH * LFO_frequency_table[slot->lfoFreq]) / 44100.0) * 256.0);
}

INLINE void update_lfo(YMF271Slot *slot)
{
	slot->lfo_phase += slot->lfo_step;

	slot->lfo_amplitude = alfo_table[slot->lfowave][(slot->lfo_phase >> LFO_SHIFT) & (LFO_LENGTH-1)];
	slot->lfo_phasemod = plfo_table[slot->lfowave][slot->pms][(slot->lfo_phase >> LFO_SHIFT) & (LFO_LENGTH-1)];

	calculate_step(slot);
}

INLINE int calculate_slot_volume(YMF271Slot *slot)
{
	UINT64 volume;
	UINT64 env_volume;
	UINT64 lfo_volume = 65536;

	switch (slot->ams)
	{
		case 0: lfo_volume = 65536; break;	// 0dB
		case 1: lfo_volume = 65536 - (((UINT64)slot->lfo_amplitude * 33124) >> 16); break;	// 5.90625dB
		case 2: lfo_volume = 65536 - (((UINT64)slot->lfo_amplitude * 16742) >> 16); break;	// 11.8125dB
		case 3: lfo_volume = 65536 - (((UINT64)slot->lfo_amplitude * 4277) >> 16); break;	// 23.625dB
	}

	env_volume = ((UINT64)env_volume_table[255 - (slot->volume >> ENV_VOLUME_SHIFT)] * (UINT64)lfo_volume) >> 16;

	volume = ((UINT64)env_volume * (UINT64)total_level[slot->tl]) >> 16;

	return volume;
}

static void update_pcm(YMF271Chip *chip, int slotnum, INT32 *mixp, int length)
{
	int i;
	int final_volume;
	INT16 sample;
	INT64 ch0_vol, ch1_vol, ch2_vol, ch3_vol;
	const UINT8 *rombase;

	YMF271Slot *slot = &chip->slots[slotnum];
	rombase = chip->rom;

	if (!slot->active)
	{
		return;
	}

	if (slot->waveform != 7)
	{
		fatalerror("Waveform %d in update_pcm !!!", slot->waveform);
	}

	for (i = 0; i < length; i++)
	{
		if (slot->bits == 8)
		{
			sample = rombase[slot->startaddr + (slot->stepptr>>16)]<<8;
		}
		else
		{
			if (slot->stepptr & 1)
				sample = rombase[slot->startaddr + (slot->stepptr>>17)*3 + 2]<<8 | ((rombase[slot->startaddr + (slot->stepptr>>17)*3 + 1] << 4) & 0xf0);
			else
				sample = rombase[slot->startaddr + (slot->stepptr>>17)*3]<<8 | (rombase[slot->startaddr + (slot->stepptr>>17)*3 + 1] & 0xf0);
		}

		update_envelope(slot);
		update_lfo(slot);

		final_volume = calculate_slot_volume(slot);

		ch0_vol = ((UINT64)final_volume * (UINT64)channel_attenuation[slot->ch0_level]) >> 16;
		ch1_vol = ((UINT64)final_volume * (UINT64)channel_attenuation[slot->ch1_level]) >> 16;
		ch2_vol = ((UINT64)final_volume * (UINT64)channel_attenuation[slot->ch2_level]) >> 16;
		ch3_vol = ((UINT64)final_volume * (UINT64)channel_attenuation[slot->ch3_level]) >> 16;

		if (ch0_vol > 65536) ch0_vol = 65536;
		if (ch1_vol > 65536) ch1_vol = 65536;

		*mixp++ += (sample * ch0_vol) >> 16;
		*mixp++ += (sample * ch1_vol) >> 16;

		slot->stepptr += slot->step;
		if ((slot->stepptr>>16) > slot->endaddr)
		{
			// kill non-frac
			slot->stepptr &= 0xffff;
			slot->stepptr |= (slot->loopaddr<<16);
		}
	}
}

// calculates 2 operator FM using algorithm 0
// <--------|
// +--[S1]--+--[S3]-->
INLINE INT32 calculate_2op_fm_0(YMF271Chip *chip, int slotnum1, int slotnum2)
{
	YMF271Slot *slot1 = &chip->slots[slotnum1];
	YMF271Slot *slot2 = &chip->slots[slotnum2];
	INT64 env1, env2;
	INT64 slot1_output, slot2_output;
	INT64 phase_mod;
	INT64 feedback;

	update_envelope(slot1);
	update_lfo(slot1);
	env1 = calculate_slot_volume(slot1);
	update_envelope(slot2);
	update_lfo(slot2);
	env2 = calculate_slot_volume(slot2);

	feedback = (slot1->feedback_modulation0 + slot1->feedback_modulation1) / 2;
	slot1->feedback_modulation0 = slot1->feedback_modulation1;

	slot1_output = wavetable[slot1->waveform][((slot1->stepptr + feedback) >> 16) & SIN_MASK];
	slot1_output = (slot1_output * env1) >> 16;

	phase_mod = ((slot1_output << (SIN_BITS-2)) * modulation_level[slot2->feedback]);
	slot2_output = wavetable[slot2->waveform][((slot2->stepptr + phase_mod) >> 16) & SIN_MASK];
	slot2_output = (slot2_output * env2) >> 16;

	slot1->feedback_modulation1 = (((slot1_output << (SIN_BITS-2)) * feedback_level[slot1->feedback]) / 16);

	slot1->stepptr += slot1->step;
	slot2->stepptr += slot2->step;

	return slot2_output;
}

// calculates 2 operator FM using algorithm 1
// <-----------------|
// +--[S1]--+--[S3]--|-->
INLINE INT32 calculate_2op_fm_1(YMF271Chip *chip, int slotnum1, int slotnum2)
{
	YMF271Slot *slot1 = &chip->slots[slotnum1];
	YMF271Slot *slot2 = &chip->slots[slotnum2];
	INT64 env1, env2;
	INT64 slot1_output, slot2_output;
	INT64 phase_mod;
	INT64 feedback;

	update_envelope(slot1);
	update_lfo(slot1);
	env1 = calculate_slot_volume(slot1);
	update_envelope(slot2);
	update_lfo(slot2);
	env2 = calculate_slot_volume(slot2);

	feedback = (slot1->feedback_modulation0 + slot1->feedback_modulation1) / 2;
	slot1->feedback_modulation0 = slot1->feedback_modulation1;

	slot1_output = wavetable[slot1->waveform][((slot1->stepptr + feedback) >> 16) & SIN_MASK];
	slot1_output = (slot1_output * env1) >> 16;

	phase_mod = ((slot1_output << (SIN_BITS-2)) * modulation_level[slot2->feedback]);
	slot2_output = wavetable[slot2->waveform][((slot2->stepptr + phase_mod) >> 16) & SIN_MASK];
	slot2_output = (slot2_output * env2) >> 16;

	slot1->feedback_modulation1 = (((slot2_output << (SIN_BITS-2)) * feedback_level[slot1->feedback]) / 16);

	slot1->stepptr += slot1->step;
	slot2->stepptr += slot2->step;

	return slot2_output;
}

// calculates the output of one FM operator
INLINE INT32 calculate_1op_fm_0(YMF271Chip *chip, int slotnum, int phase_modulation)
{
	YMF271Slot *slot = &chip->slots[slotnum];
	INT64 env;
	INT64 slot_output;
	INT64 phase_mod = phase_modulation;

	update_envelope(slot);
	update_lfo(slot);
	env = calculate_slot_volume(slot);

	phase_mod = ((phase_mod << (SIN_BITS-2)) * modulation_level[slot->feedback]);

	slot_output = wavetable[slot->waveform][((slot->stepptr + phase_mod) >> 16) & SIN_MASK];
	slot->stepptr += slot->step;

	slot_output = (slot_output * env) >> 16;

	return slot_output;
}

// calculates the output of one FM operator with feedback modulation
// <--------|
// +--[S1]--|
INLINE INT32 calculate_1op_fm_1(YMF271Chip *chip, int slotnum)
{
	YMF271Slot *slot = &chip->slots[slotnum];
	INT64 env;
	INT64 slot_output;
	INT64 feedback;

	update_envelope(slot);
	update_lfo(slot);
	env = calculate_slot_volume(slot);

	feedback = slot->feedback_modulation0 + slot->feedback_modulation1;
	slot->feedback_modulation0 = slot->feedback_modulation1;

	slot_output = wavetable[slot->waveform][((slot->stepptr + feedback) >> 16) & SIN_MASK];
	slot_output = (slot_output * env) >> 16;

	slot->feedback_modulation1 = (((slot_output << (SIN_BITS-2)) * feedback_level[slot->feedback]) / 16);
	slot->stepptr += slot->step;

	return slot_output;
}

static void ymf271_update(void *param, stream_sample_t **inputs, stream_sample_t **outputs, int length)
{
	int i, j;
	int op;
	INT32 *mixp;
	YMF271Chip *chip = param;

	memset(mix, 0, sizeof(mix[0])*length*2);

	for (j = 0; j < 12; j++)
	{
		YMF271Group *slot_group = &chip->groups[j];
		mixp = &mix[0];

		if (slot_group->pfm && slot_group->sync != 3)
		{
			mame_printf_debug("Group %d: PFM, Sync = %d, Waveform Slot1 = %d, Slot2 = %d, Slot3 = %d, Slot4 = %d\n",
				j, slot_group->sync, chip->slots[j+0].waveform, chip->slots[j+12].waveform, chip->slots[j+24].waveform, chip->slots[j+36].waveform);
		}

		switch (slot_group->sync)
		{
			case 0:		// 4 operator FM
			{
				int slot1 = j + (0*12);
				int slot2 = j + (1*12);
				int slot3 = j + (2*12);
				int slot4 = j + (3*12);
				mixp = &mix[0];

				if (chip->slots[slot1].active)
				{
					for (i = 0; i < length; i++)
					{
						INT64 output1 = 0, output2 = 0, output3 = 0, output4 = 0, phase_mod1 = 0, phase_mod2 = 0;
						switch (chip->slots[slot1].algorithm)
						{
							// <--------|
							// +--[S1]--+--[S3]--+--[S2]--+--[S4]-->
							case 0:
								phase_mod1 = calculate_2op_fm_0(chip, slot1, slot3);
								phase_mod2 = calculate_1op_fm_0(chip, slot2, phase_mod1);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod2);
								break;

							// <-----------------|
							// +--[S1]--+--[S3]--+--[S2]--+--[S4]-->
							case 1:
								phase_mod1 = calculate_2op_fm_1(chip, slot1, slot3);
								phase_mod2 = calculate_1op_fm_0(chip, slot2, phase_mod1);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod2);
								break;

							// <--------|
							// +--[S1]--|
							// ---[S3]--+--[S2]--+--[S4]-->
							case 2:
								phase_mod1 = (calculate_1op_fm_1(chip, slot1) + calculate_1op_fm_0(chip, slot3, 0)) / 2;
								phase_mod2 = calculate_1op_fm_0(chip, slot2, phase_mod1);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod2);
								break;

							//          <--------|
							//          +--[S1]--|
							// ---[S3]--+--[S2]--+--[S4]-->
							case 3:
								phase_mod1 = calculate_1op_fm_0(chip, slot3, 0);
								phase_mod2 = (calculate_1op_fm_0(chip, slot2, phase_mod1) + calculate_1op_fm_1(chip, slot1)) / 2;
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod2);
								break;

							// <--------|  --[S2]--|
							// ---[S1]--|-+--[S3]--+--[S4]-->
							case 4:
								phase_mod1 = (calculate_2op_fm_0(chip, slot1, slot3) + calculate_1op_fm_0(chip, slot2, 0)) / 2;
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod1);
								break;

							//           --[S2]-----|
							// <-----------------|  |
							// ---[S1]--+--[S3]--|--+--[S4]-->
							case 5:
								phase_mod1 = (calculate_2op_fm_1(chip, slot1, slot3) + calculate_1op_fm_0(chip, slot2, 0)) / 2;
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod1);
								break;

							// ---[S2]-----+--[S4]--|
							//                      |
							// <--------|           |
							// +--[S1]--|--+--[S3]--+-->
							case 6:
								output3 = calculate_2op_fm_0(chip, slot1, slot3);
								phase_mod1 = calculate_1op_fm_0(chip, slot2, 0);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod1);
								break;

							// ---[S2]--+--[S4]-----|
							//                      |
							// <-----------------|  |
							// +--[S1]--+--[S3]--|--+-->
							case 7:
								output3 = calculate_2op_fm_1(chip, slot1, slot3);
								phase_mod1 = calculate_1op_fm_0(chip, slot2, 0);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod1);
								break;

							// ---[S3]--+--[S2]--+--[S4]--|
							//                            |
							// <--------|                 |
							// +--[S1]--|-----------------+-->
							case 8:
								output1 = calculate_1op_fm_1(chip, slot1);
								phase_mod1 = calculate_1op_fm_0(chip, slot3, 0);
								phase_mod2 = calculate_1op_fm_0(chip, slot2, phase_mod1);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod2);
								break;

							//         <--------|
							// -----------[S1]--|
							//                  |
							// --[S3]--|        |
							// --[S2]--+--[S4]--+-->
							case 9:
								phase_mod1 = (calculate_1op_fm_0(chip, slot2, 0) + calculate_1op_fm_0(chip, slot3, 0)) / 2;
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod1);
								output1 = calculate_1op_fm_1(chip, slot1);
								break;

							//           --[S4]--|
							//           --[S2]--+
							// <--------|        |
							// +--[S1]--+--[S3]--+-->
							case 10:
								output3 = calculate_2op_fm_0(chip, slot1, slot3);
								output2 = calculate_1op_fm_0(chip, slot2, 0);
								output4 = calculate_1op_fm_0(chip, slot4, 0);
								break;

							//           --[S4]-----|
							//           --[S2]-----+
							// <-----------------|  |
							// +--[S1]--+--[S3]--|--+-->
							case 11:
								output3 = calculate_2op_fm_1(chip, slot1, slot3);
								output2 = calculate_1op_fm_0(chip, slot2, 0);
								output4 = calculate_1op_fm_0(chip, slot4, 0);
								break;

							//            |--+--[S4]--+
							// <--------| |--+--[S3]--+
							// +--[S1]--+-|--+--[S2]--+-->
							case 12:
								phase_mod1 = calculate_1op_fm_1(chip, slot1);
								output2 = calculate_1op_fm_0(chip, slot2, phase_mod1);
								output3 = calculate_1op_fm_0(chip, slot3, phase_mod1);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod1);
								break;

							// ---[S3]--+--[S2]--+
							//                   |
							// ---[S4]-----------+
							// <--------|        |
							// +--[S1]--|--------+-->
							case 13:
								output1 = calculate_1op_fm_1(chip, slot1);
								phase_mod1 = calculate_1op_fm_0(chip, slot3, 0);
								output2 = calculate_1op_fm_0(chip, slot2, phase_mod1);
								output4 = calculate_1op_fm_0(chip, slot4, 0);
								break;

							// ---[S2]----+--[S4]--+
							//                     |
							// <--------| +--[S3]--|
							// +--[S1]--+-|--------+-->
							case 14:
								output1 = calculate_1op_fm_1(chip, slot1);
								phase_mod1 = output1;
								output3 = calculate_1op_fm_0(chip, slot3, phase_mod1);
								phase_mod2 = calculate_1op_fm_0(chip, slot2, 0);
								output4 = calculate_1op_fm_0(chip, slot4, phase_mod2);
								break;

							//  --[S4]-----+
							//  --[S2]-----+
							//  --[S3]-----+
							// <--------|  |
							// +--[S1]--|--+-->
							case 15:
								output1 = calculate_1op_fm_1(chip, slot1);
								output2 = calculate_1op_fm_0(chip, slot2, 0);
								output3 = calculate_1op_fm_0(chip, slot3, 0);
								output4 = calculate_1op_fm_0(chip, slot4, 0);
								break;
						}

						*mixp++ += ((output1 * channel_attenuation[chip->slots[slot1].ch0_level]) +
									(output2 * channel_attenuation[chip->slots[slot2].ch0_level]) +
									(output3 * channel_attenuation[chip->slots[slot3].ch0_level]) +
									(output4 * channel_attenuation[chip->slots[slot4].ch0_level])) >> 16;
						*mixp++ += ((output1 * channel_attenuation[chip->slots[slot1].ch1_level]) +
									(output2 * channel_attenuation[chip->slots[slot2].ch1_level]) +
									(output3 * channel_attenuation[chip->slots[slot3].ch1_level]) +
									(output4 * channel_attenuation[chip->slots[slot4].ch1_level])) >> 16;
					}
				}
				break;
			}

			case 1:		// 2x 2 operator FM
			{
				for (op = 0; op < 2; op++)
				{
					int slot1 = j + ((op + 0) * 12);
					int slot2 = j + ((op + 2) * 12);

					mixp = &mix[0];
					if (chip->slots[slot1].active)
					{
						for (i = 0; i < length; i++)
						{
							INT64 output1 = 0, output2 = 0, phase_mod = 0;
							switch (chip->slots[slot1].algorithm & 3)
							{
								// <--------|
								// +--[S1]--+--[S3]-->
								case 0:
									output2 = calculate_2op_fm_0(chip, slot1, slot2);
									break;

								// <-----------------|
								// +--[S1]--+--[S3]--|-->
								case 1:
									output2 = calculate_2op_fm_1(chip, slot1, slot2);
									break;

								// ---[S3]-----|
								// <--------|  |
								// +--[S1]--|--+-->
								case 2:
									output1 = calculate_1op_fm_1(chip, slot1);
									output2 = calculate_1op_fm_0(chip, slot2, 0);
									break;
								//
								// <--------| +--[S3]--|
								// +--[S1]--|-|--------+-->
								case 3:
									output1 = calculate_1op_fm_1(chip, slot1);
									phase_mod = output1;
									output2 = calculate_1op_fm_0(chip, slot2, phase_mod);
									break;
							}

							*mixp++ += ((output1 * channel_attenuation[chip->slots[slot1].ch0_level]) +
										(output2 * channel_attenuation[chip->slots[slot2].ch0_level])) >> 16;
							*mixp++ += ((output1 * channel_attenuation[chip->slots[slot1].ch1_level]) +
										(output2 * channel_attenuation[chip->slots[slot2].ch1_level])) >> 16;
						}
					}
				}
				break;
			}

			case 2:		// 3 operator FM + PCM
			{
				int slot1 = j + (0*12);
				int slot2 = j + (1*12);
				int slot3 = j + (2*12);
				mixp = &mix[0];

				if (chip->slots[slot1].active)
				{
					for (i = 0; i < length; i++)
					{
						INT64 output1 = 0, output2 = 0, output3 = 0, phase_mod = 0;
						switch (chip->slots[slot1].algorithm & 7)
						{
							// <--------|
							// +--[S1]--+--[S3]--+--[S2]-->
							case 0:
								phase_mod = calculate_2op_fm_0(chip, slot1, slot3);
								output2 = calculate_1op_fm_0(chip, slot2, phase_mod);
								break;

							// <-----------------|
							// +--[S1]--+--[S3]--+--[S2]-->
							case 1:
								phase_mod = calculate_2op_fm_1(chip, slot1, slot3);
								output2 = calculate_1op_fm_0(chip, slot2, phase_mod);
								break;

							// ---[S3]-----|
							// <--------|  |
							// +--[S1]--+--+--[S2]-->
							case 2:
								phase_mod = (calculate_1op_fm_1(chip, slot1) + calculate_1op_fm_0(chip, slot3, 0)) / 2;
								output2 = calculate_1op_fm_0(chip, slot2, phase_mod);
								break;

							// ---[S3]--+--[S2]--|
							// <--------|        |
							// +--[S1]--|--------+-->
							case 3:
								phase_mod = calculate_1op_fm_0(chip, slot3, 0);
								output2 = calculate_1op_fm_0(chip, slot2, phase_mod);
								output1 = calculate_1op_fm_1(chip, slot1);
								break;

							// ------------[S2]--|
							// <--------|        |
							// +--[S1]--+--[S3]--+-->
							case 4:
								output3 = calculate_2op_fm_0(chip, slot1, slot3);
								output2 = calculate_1op_fm_0(chip, slot2, 0);
								break;

							// ------------[S2]--|
							// <-----------------|
							// +--[S1]--+--[S3]--+-->
							case 5:
								output3 = calculate_2op_fm_1(chip, slot1, slot3);
								output2 = calculate_1op_fm_0(chip, slot2, 0);
								break;

							// ---[S2]-----|
							// ---[S3]-----+
							// <--------|  |
							// +--[S1]--+--+-->
							case 6:
								output1 = calculate_1op_fm_1(chip, slot1);
								output3 = calculate_1op_fm_0(chip, slot3, 0);
								output2 = calculate_1op_fm_0(chip, slot2, 0);
								break;

							// --------------[S2]--+
							// <--------| +--[S3]--|
							// +--[S1]--+-|--------+-->
							case 7:
								output1 = calculate_1op_fm_1(chip, slot1);
								phase_mod = output1;
								output3 = calculate_1op_fm_0(chip, slot3, phase_mod);
								output2 = calculate_1op_fm_0(chip, slot2, 0);
								break;
						}

						*mixp++ += ((output1 * channel_attenuation[chip->slots[slot1].ch0_level]) +
									(output2 * channel_attenuation[chip->slots[slot2].ch0_level]) +
									(output3 * channel_attenuation[chip->slots[slot3].ch0_level])) >> 16;
						*mixp++ += ((output1 * channel_attenuation[chip->slots[slot1].ch1_level]) +
									(output2 * channel_attenuation[chip->slots[slot2].ch1_level]) +
									(output3 * channel_attenuation[chip->slots[slot3].ch1_level])) >> 16;
					}
				}

				update_pcm(chip, j + (3*12), mixp, length);
				break;
			}

			case 3:		// PCM
			{
				update_pcm(chip, j + (0*12), mixp, length);
				update_pcm(chip, j + (1*12), mixp, length);
				update_pcm(chip, j + (2*12), mixp, length);
				update_pcm(chip, j + (3*12), mixp, length);
				break;
			}

			default: break;
		}
	}

	mixp = &mix[0];
	for (i = 0; i < length; i++)
	{
		outputs[0][i] = (*mixp++)>>2;
		outputs[1][i] = (*mixp++)>>2;
	}
}

static void write_register(YMF271Chip *chip, int slotnum, int reg, int data)
{
	YMF271Slot *slot = &chip->slots[slotnum];

	switch (reg)
	{
		case 0:
		{
			slot->extout = (data>>3)&0xf;

			if (data & 1)
			{
				// key on
				slot->step = 0;
				slot->stepptr = 0;

				slot->active = 1;

				calculate_step(slot);
				init_envelope(slot);
				init_lfo(slot);
				slot->feedback_modulation0 = 0;
				slot->feedback_modulation1 = 0;
			}
			else
			{
				if (slot->active)
				{
					//slot->active = 0;
					slot->env_state = ENV_RELEASE;
				}
			}
			break;
		}

		case 1:
		{
			slot->lfoFreq = data;
			break;
		}

		case 2:
		{
			slot->lfowave = data & 3;
			slot->pms = (data >> 3) & 0x7;
			slot->ams = (data >> 6) & 0x3;
			break;
		}

		case 3:
		{
			slot->multiple = data & 0xf;
			slot->detune = (data >> 4) & 0x7;
			break;
		}

		case 4:
		{
			slot->tl = data & 0x7f;
			break;
		}

		case 5:
		{
			slot->ar = data & 0x1f;
			slot->keyscale = (data>>5)&0x7;
			break;
		}

		case 6:
		{
			slot->decay1rate = data & 0x1f;
			break;
		}

		case 7:
		{
			slot->decay2rate = data & 0x1f;
			break;
		}

		case 8:
		{
			slot->relrate = data & 0xf;
			slot->decay1lvl = (data >> 4) & 0xf;
			break;
		}

		case 9:
		{
			slot->fns &= ~0xff;
			slot->fns |= data;

			calculate_step(slot);
			break;
		}

		case 10:
		{
			slot->fns &= ~0xff00;
			slot->fns |= (data & 0xf)<<8;
			slot->block = (data>>4)&0xf;
			break;
		}

		case 11:
		{
			slot->waveform = data & 0x7;
			slot->feedback = (data >> 4) & 0x7;
			slot->accon = (data & 0x80) ? 1 : 0;
			break;
		}

		case 12:
		{
			slot->algorithm = data & 0xf;
			break;
		}

		case 13:
		{
			slot->ch0_level = data >> 4;
			slot->ch1_level = data & 0xf;
			break;
		}

		case 14:
		{
			slot->ch2_level = data >> 4;
			slot->ch3_level = data & 0xf;
			break;
		}
	}
}

static void ymf271_write_fm(YMF271Chip *chip, int grp, int adr, int data)
{
	int reg;
	int slotnum;
	int slot_group;
	int sync_mode, sync_reg;
	YMF271Slot *slot;

	slotnum = 12*grp;
	slotnum += fm_tab[adr & 0xf];
	slot = &chip->slots[slotnum];
	slot_group = fm_tab[adr & 0xf];

	reg = (adr >> 4) & 0xf;

	// check if the register is a synchronized register
	sync_reg = 0;
	switch (reg)
	{
		case 0:
		case 9:
		case 10:
		case 12:
		case 13:
		case 14:
			sync_reg = 1;
			break;

		default:
			break;
	}

	// check if the slot is key on slot for synchronizing
	sync_mode = 0;
	switch (chip->groups[slot_group].sync)
	{
		case 0:		// 4 slot mode
		{
			if (grp == 0)
				sync_mode = 1;
			break;
		}
		case 1:		// 2x 2 slot mode
		{
			if (grp == 0 || grp == 1)
				sync_mode = 1;
			break;
		}
		case 2:		// 3 slot + 1 slot mode
		{
			if (grp == 0)
				sync_mode = 1;
			break;
		}

		default:
			break;
	}

	if (sync_mode && sync_reg)		// key-on slot & synced register
	{
		switch (chip->groups[slot_group].sync)
		{
			case 0:		// 4 slot mode
			{
				write_register(chip, (12 * 0) + slot_group, reg, data);
				write_register(chip, (12 * 1) + slot_group, reg, data);
				write_register(chip, (12 * 2) + slot_group, reg, data);
				write_register(chip, (12 * 3) + slot_group, reg, data);
				break;
			}
			case 1:		// 2x 2 slot mode
			{
				if (grp == 0)		// Slot 1 - Slot 3
				{
					write_register(chip, (12 * 0) + slot_group, reg, data);
					write_register(chip, (12 * 2) + slot_group, reg, data);
				}
				else				// Slot 2 - Slot 4
				{
					write_register(chip, (12 * 1) + slot_group, reg, data);
					write_register(chip, (12 * 3) + slot_group, reg, data);
				}
				break;
			}
			case 2:		// 3 slot + 1 slot mode
			{
				// 1 slot is handled normally
				write_register(chip, (12 * 0) + slot_group, reg, data);
				write_register(chip, (12 * 1) + slot_group, reg, data);
				write_register(chip, (12 * 2) + slot_group, reg, data);
				break;
			}
			default:
				break;
		}
	}
	else		// write register normally
	{
		write_register(chip, (12 * grp) + slot_group, reg, data);
	}
}

static void ymf271_write_pcm(YMF271Chip *chip, int data)
{
	int slotnum;
	YMF271Slot *slot;

	slotnum = pcm_tab[chip->pcmreg&0xf];
	slot = &chip->slots[slotnum];

	switch ((chip->pcmreg>>4)&0xf)
	{
		case 0:
			slot->startaddr &= ~0xff;
			slot->startaddr |= data;
			break;
		case 1:
			slot->startaddr &= ~0xff00;
			slot->startaddr |= data<<8;
			break;
		case 2:
			slot->startaddr &= ~0xff0000;
			slot->startaddr |= data<<16;
			break;
		case 3:
			slot->endaddr &= ~0xff;
			slot->endaddr |= data;
			break;
		case 4:
			slot->endaddr &= ~0xff00;
			slot->endaddr |= data<<8;
			break;
		case 5:
			slot->endaddr &= ~0xff0000;
			slot->endaddr |= data<<16;
			break;
		case 6:
			slot->loopaddr &= ~0xff;
			slot->loopaddr |= data;
			break;
		case 7:
			slot->loopaddr &= ~0xff00;
			slot->loopaddr |= data<<8;
			break;
		case 8:
			slot->loopaddr &= ~0xff0000;
			slot->loopaddr |= data<<16;
			break;
		case 9:
			slot->fs = data & 0x3;
			slot->bits = (data & 0x4) ? 12 : 8;
			slot->srcnote = (data >> 3) & 0x3;
			slot->srcb = (data >> 5) & 0x7;
			break;
	}
}

static TIMER_CALLBACK( ymf271_timer_a_tick )
{
	YMF271Chip *chip = ptr;

	chip->status |= 1;

	if (chip->enable & 4)
	{
		chip->irqstate |= 1;
		if (chip->irq_callback) chip->irq_callback(1);
	}
}

static TIMER_CALLBACK( ymf271_timer_b_tick )
{
	YMF271Chip *chip = ptr;

	chip->status |= 2;

	if (chip->enable & 8)
	{
		chip->irqstate |= 2;
		if (chip->irq_callback) chip->irq_callback(1);
	}
}

static UINT8 ymf271_read_ext_memory(YMF271Chip *chip, UINT32 address)
{
	if( chip->ext_mem_read ) {
		return chip->ext_mem_read(address);
	} else {
		if( address < 0x800000)
			return chip->rom[address];
	}
	return 0xff;
}

static void ymf271_write_ext_memory(YMF271Chip *chip, UINT32 address, UINT8 data)
{
	if( chip->ext_mem_write ) {
		chip->ext_mem_write(address, data);
	}
}

static void ymf271_write_timer(YMF271Chip *chip, int data)
{
	int slotnum;
	YMF271Group *group;
	attotime period;

	slotnum = fm_tab[chip->timerreg & 0xf];
	group = &chip->groups[slotnum];

	if ((chip->timerreg & 0xf0) == 0)
	{
		group->sync = data & 0x3;
		group->pfm = data >> 7;
	}
	else
	{
		switch (chip->timerreg)
		{
			case 0x10:
				chip->timerA &= ~0xff;
				chip->timerA |= data;
				break;

			case 0x11:
				if (!(data & 0xfc))
				{
					chip->timerA &= 0x00ff;
					if ((data & 0x3) != 0x3)
					{
						chip->timerA |= (data & 0xff)<<8;
					}
				}
				break;

			case 0x12:
				chip->timerB = data;
				break;

			case 0x13:
				if (data & 1)
				{	// timer A load
					chip->timerAVal = chip->timerA;
				}
				if (data & 2)
				{	// timer B load
					chip->timerBVal = chip->timerB;
				}
				if (data & 4)
				{
					// timer A IRQ enable
					chip->enable |= 4;
				}
				if (data & 8)
				{
					// timer B IRQ enable
					chip->enable |= 8;
				}
				if (data & 0x10)
				{	// timer A reset
					chip->irqstate &= ~1;
					chip->status &= ~1;

					if (chip->irq_callback) chip->irq_callback(0);

					//period = (double)(256.0 - chip->timerAVal ) * ( 384.0 * 4.0 / (double)CLOCK);
					period = attotime_mul(ATTOTIME_IN_HZ(chip->clock), 384 * (1024 - chip->timerAVal));

					timer_adjust(chip->timA, period, 0, period);
				}
				if (data & 0x20)
				{	// timer B reset
					chip->irqstate &= ~2;
					chip->status &= ~2;

					if (chip->irq_callback) chip->irq_callback(0);

					period = attotime_mul(ATTOTIME_IN_HZ(chip->clock), 384 * 16 * (256 - chip->timerBVal));

					timer_adjust(chip->timB, period, 0, period);
				}

				break;

			case 0x14:
				chip->ext_address &= ~0xff;
				chip->ext_address |= data;
				break;
			case 0x15:
				chip->ext_address &= ~0xff00;
				chip->ext_address |= data << 8;
				break;
			case 0x16:
				chip->ext_address &= ~0xff0000;
				chip->ext_address |= (data & 0x7f) << 16;
				chip->ext_read = (data & 0x80) ? 1 : 0;
				if( !chip->ext_read )
					chip->ext_address = (chip->ext_address + 1) & 0x7fffff;
				break;
			case 0x17:
				ymf271_write_ext_memory( chip, chip->ext_address, data );
				chip->ext_address = (chip->ext_address + 1) & 0x7fffff;
				break;
		}
	}
}

static void ymf271_w(int chipnum, int offset, int data)
{
	YMF271Chip *chip = sndti_token(SOUND_YMF271, chipnum);

	switch (offset)
	{
		case 0:
			chip->reg0 = data;
			break;
		case 1:
			ymf271_write_fm(chip, 0, chip->reg0, data);
			break;
		case 2:
			chip->reg1 = data;
			break;
		case 3:
			ymf271_write_fm(chip, 1, chip->reg1, data);
			break;
		case 4:
			chip->reg2 = data;
			break;
		case 5:
			ymf271_write_fm(chip, 2, chip->reg2, data);
			break;
		case 6:
			chip->reg3 = data;
			break;
		case 7:
			ymf271_write_fm(chip, 3, chip->reg3, data);
			break;
		case 8:
			chip->pcmreg = data;
			break;
		case 9:
			ymf271_write_pcm(chip, data);
			break;
		case 0xc:
			chip->timerreg = data;
			break;
		case 0xd:
			ymf271_write_timer(chip, data);
			break;
	}
}

static int ymf271_r(int chipnum, int offset)
{
	UINT8 value;
	YMF271Chip *chip = sndti_token(SOUND_YMF271, chipnum);

	switch(offset)
	{
		case 0:
			return chip->status;

		case 2:
			value = ymf271_read_ext_memory( chip, chip->ext_address );
			chip->ext_address = (chip->ext_address + 1) & 0x7fffff;
			return value;
	}

	return 0;
}

static void init_tables(void)
{
	int i,j;

	for (i=0; i < ARRAY_LENGTH(wavetable); i++)
	{
		wavetable[i] = auto_malloc(SIN_LEN * sizeof(INT16));
	}

	for (i=0; i < SIN_LEN; i++)
	{
		double m = sin( ((i*2)+1) * M_PI / SIN_LEN );
		double m2 = sin( ((i*4)+1) * M_PI / SIN_LEN );

		// Waveform 0: sin(wt)    (0 <= wt <= 2PI)
		wavetable[0][i] = (INT16)(m * MAXOUT);

		// Waveform 1: sin?(wt)   (0 <= wt <= PI)     -sin?(wt)  (PI <= wt <= 2PI)
		wavetable[1][i] = (i < (SIN_LEN/2)) ? (INT16)((m * m) * MAXOUT) : (INT16)((m * m) * MINOUT);

		// Waveform 2: sin(wt)    (0 <= wt <= PI)     -sin(wt)   (PI <= wt <= 2PI)
		wavetable[2][i] = (i < (SIN_LEN/2)) ? (INT16)(m * MAXOUT) : (INT16)(-m * MAXOUT);

		// Waveform 3: sin(wt)    (0 <= wt <= PI)     0
		wavetable[3][i] = (i < (SIN_LEN/2)) ? (INT16)(m * MAXOUT) : 0;

		// Waveform 4: sin(2wt)   (0 <= wt <= PI)     0
		wavetable[4][i] = (i < (SIN_LEN/2)) ? (INT16)(m2 * MAXOUT) : 0;

		// Waveform 5: |sin(2wt)| (0 <= wt <= PI)     0
		wavetable[5][i] = (i < (SIN_LEN/2)) ? (INT16)(fabs(m2) * MAXOUT) : 0;

		// Waveform 6:     1      (0 <= wt <= 2PI)
		wavetable[6][i] = (INT16)(1 * MAXOUT);

		wavetable[7][i] = 0;
	}

	for (i=0; i < LFO_LENGTH; i++)
	{
		int tri_wave;
		double ftri_wave, fsaw_wave;
		double plfo[4];

		// LFO phase modulation
		plfo[0] = 0;

		fsaw_wave = ((i % (LFO_LENGTH/2)) * PLFO_MAX) / (double)((LFO_LENGTH/2)-1);
		plfo[1] = (i < (LFO_LENGTH/2)) ? fsaw_wave : fsaw_wave - PLFO_MAX;

		plfo[2] = (i < (LFO_LENGTH/2)) ? PLFO_MAX : PLFO_MIN;

		ftri_wave = ((i % (LFO_LENGTH/4)) * PLFO_MAX) / (double)(LFO_LENGTH/4);
		switch (i / (LFO_LENGTH/4))
		{
			case 0: plfo[3] = ftri_wave; break;
			case 1: plfo[3] = PLFO_MAX - ftri_wave; break;
			case 2: plfo[3] = 0 - ftri_wave; break;
			case 3: plfo[3] = 0 - (PLFO_MAX - ftri_wave); break;
		}

		for (j=0; j < 4; j++)
		{
			plfo_table[j][0][i] = pow(2.0, 0.0);
			plfo_table[j][1][i] = pow(2.0, (3.378 * plfo[j]) / 1200.0);
			plfo_table[j][2][i] = pow(2.0, (5.0646 * plfo[j]) / 1200.0);
			plfo_table[j][3][i] = pow(2.0, (6.7495 * plfo[j]) / 1200.0);
			plfo_table[j][4][i] = pow(2.0, (10.1143 * plfo[j]) / 1200.0);
			plfo_table[j][5][i] = pow(2.0, (20.1699 * plfo[j]) / 1200.0);
			plfo_table[j][6][i] = pow(2.0, (40.1076 * plfo[j]) / 1200.0);
			plfo_table[j][7][i] = pow(2.0, (79.307 * plfo[j]) / 1200.0);
		}

		// LFO amplitude modulation
		alfo_table[0][i] = 0;

		alfo_table[1][i] = ALFO_MAX - ((i * ALFO_MAX) / LFO_LENGTH);

		alfo_table[2][i] = (i < (LFO_LENGTH/2)) ? ALFO_MAX : ALFO_MIN;

		tri_wave = ((i % (LFO_LENGTH/2)) * ALFO_MAX) / (LFO_LENGTH/2);
		alfo_table[3][i] = (i < (LFO_LENGTH/2)) ? ALFO_MAX-tri_wave : tri_wave;
	}

	mix = auto_malloc(48000*2*sizeof(*mix));
}

static void init_state(YMF271Chip *chip)
{
	int i, instance;

	for (i = 0; i < sizeof(chip->slots) / sizeof(chip->slots[0]); i++)
	{
		instance = chip->index * (sizeof(chip->slots) / sizeof(chip->slots[0])) + i;

		state_save_register_item("ymf271", instance, chip->slots[i].extout);
		state_save_register_item("ymf271", instance, chip->slots[i].lfoFreq);
		state_save_register_item("ymf271", instance, chip->slots[i].pms);
		state_save_register_item("ymf271", instance, chip->slots[i].ams);
		state_save_register_item("ymf271", instance, chip->slots[i].detune);
		state_save_register_item("ymf271", instance, chip->slots[i].multiple);
		state_save_register_item("ymf271", instance, chip->slots[i].tl);
		state_save_register_item("ymf271", instance, chip->slots[i].keyscale);
		state_save_register_item("ymf271", instance, chip->slots[i].ar);
		state_save_register_item("ymf271", instance, chip->slots[i].decay1rate);
		state_save_register_item("ymf271", instance, chip->slots[i].decay2rate);
		state_save_register_item("ymf271", instance, chip->slots[i].decay1lvl);
		state_save_register_item("ymf271", instance, chip->slots[i].relrate);
		state_save_register_item("ymf271", instance, chip->slots[i].fns);
		state_save_register_item("ymf271", instance, chip->slots[i].block);
		state_save_register_item("ymf271", instance, chip->slots[i].feedback);
		state_save_register_item("ymf271", instance, chip->slots[i].waveform);
		state_save_register_item("ymf271", instance, chip->slots[i].accon);
		state_save_register_item("ymf271", instance, chip->slots[i].algorithm);
		state_save_register_item("ymf271", instance, chip->slots[i].ch0_level);
		state_save_register_item("ymf271", instance, chip->slots[i].ch1_level);
		state_save_register_item("ymf271", instance, chip->slots[i].ch2_level);
		state_save_register_item("ymf271", instance, chip->slots[i].ch3_level);
		state_save_register_item("ymf271", instance, chip->slots[i].startaddr);
		state_save_register_item("ymf271", instance, chip->slots[i].loopaddr);
		state_save_register_item("ymf271", instance, chip->slots[i].endaddr);
		state_save_register_item("ymf271", instance, chip->slots[i].fs);
		state_save_register_item("ymf271", instance, chip->slots[i].srcnote);
		state_save_register_item("ymf271", instance, chip->slots[i].srcb);
		state_save_register_item("ymf271", instance, chip->slots[i].step);
		state_save_register_item("ymf271", instance, chip->slots[i].stepptr);
		state_save_register_item("ymf271", instance, chip->slots[i].active);
		state_save_register_item("ymf271", instance, chip->slots[i].bits);
		state_save_register_item("ymf271", instance, chip->slots[i].volume);
		state_save_register_item("ymf271", instance, chip->slots[i].env_state);
		state_save_register_item("ymf271", instance, chip->slots[i].env_attack_step);
		state_save_register_item("ymf271", instance, chip->slots[i].env_decay1_step);
		state_save_register_item("ymf271", instance, chip->slots[i].env_decay2_step);
		state_save_register_item("ymf271", instance, chip->slots[i].env_release_step);
		state_save_register_item("ymf271", instance, chip->slots[i].feedback_modulation0);
		state_save_register_item("ymf271", instance, chip->slots[i].feedback_modulation1);
		state_save_register_item("ymf271", instance, chip->slots[i].lfo_phase);
		state_save_register_item("ymf271", instance, chip->slots[i].lfo_step);
		state_save_register_item("ymf271", instance, chip->slots[i].lfo_amplitude);
	}

	for (i = 0; i < sizeof(chip->groups) / sizeof(chip->groups[0]); i++)
	{
		instance = chip->index * (sizeof(chip->groups) / sizeof(chip->groups[0])) + i;
		state_save_register_item("ymf271", instance, chip->groups[i].sync);
		state_save_register_item("ymf271", instance, chip->groups[i].pfm);
	}

	state_save_register_item("ymf271", chip->index, chip->timerA);
	state_save_register_item("ymf271", chip->index, chip->timerB);
	state_save_register_item("ymf271", chip->index, chip->timerAVal);
	state_save_register_item("ymf271", chip->index, chip->timerBVal);
	state_save_register_item("ymf271", chip->index, chip->irqstate);
	state_save_register_item("ymf271", chip->index, chip->status);
	state_save_register_item("ymf271", chip->index, chip->enable);
	state_save_register_item("ymf271", chip->index, chip->reg0);
	state_save_register_item("ymf271", chip->index, chip->reg1);
	state_save_register_item("ymf271", chip->index, chip->reg2);
	state_save_register_item("ymf271", chip->index, chip->reg3);
	state_save_register_item("ymf271", chip->index, chip->pcmreg);
	state_save_register_item("ymf271", chip->index, chip->timerreg);
	state_save_register_item("ymf271", chip->index, chip->ext_address);
	state_save_register_item("ymf271", chip->index, chip->ext_read);
}

static void ymf271_init(YMF271Chip *chip, UINT8 *rom, void (*cb)(int), read8_handler ext_read, write8_handler ext_write)
{
	chip->timA = timer_alloc(ymf271_timer_a_tick, chip);
	chip->timB = timer_alloc(ymf271_timer_b_tick, chip);

	chip->rom = rom;
	chip->irq_callback = cb;

	chip->ext_mem_read = ext_read;
	chip->ext_mem_write = ext_write;

	init_tables();
	init_state(chip);
}

static void *ymf271_start(int sndindex, int clock, const void *config)
{
	const struct YMF271interface *intf;
	int i;
	YMF271Chip *chip;

	chip = auto_malloc(sizeof(*chip));
	memset(chip, 0, sizeof(*chip));
	chip->index = sndindex;
	chip->clock = clock;

	intf = config;

	ymf271_init(chip, memory_region(intf->region), intf->irq_callback, intf->ext_read, intf->ext_write);
	chip->stream = stream_create(0, 2, clock/384, chip, ymf271_update);

	for (i = 0; i < 256; i++)
	{
		env_volume_table[i] = (int)(65536.0 / pow(10.0, ((double)i / (256.0 / 96.0)) / 20.0));
	}

	for (i = 0; i < 16; i++)
	{
		channel_attenuation[i] = (int)(65536.0 / pow(10.0, channel_attenuation_table[i] / 20.0));
	}
	for (i = 0; i < 128; i++)
	{
		double db = 0.75 * (double)i;
		total_level[i] = (int)(65536.0 / pow(10.0, db / 20.0));
	}

	return chip;
}

READ8_HANDLER( YMF271_0_r )
{
	return ymf271_r(0, offset);
}

WRITE8_HANDLER( YMF271_0_w )
{
	ymf271_w(0, offset, data);
}

READ8_HANDLER( YMF271_1_r )
{
	return ymf271_r(1, offset);
}

WRITE8_HANDLER( YMF271_1_w )
{
	ymf271_w(1, offset, data);
}

static void ymf271_reset(void *token)
{
	int i;
	YMF271Chip *chip = (YMF271Chip*)token;

	for (i = 0; i < 48; i++)
	{
		chip->slots[i].active = 0;
		chip->slots[i].volume = 0;
	}
}

/**************************************************************************
 * Generic get_info
 **************************************************************************/

static void ymf271_set_info(void *token, UINT32 state, sndinfo *info)
{
	switch (state)
	{
		/* no parameters to set */
	}
}


void ymf271_get_info(void *token, UINT32 state, sndinfo *info)
{
	switch (state)
	{
		/* --- the following bits of info are returned as 64-bit signed integers --- */

		/* --- the following bits of info are returned as pointers to data or functions --- */
		case SNDINFO_PTR_SET_INFO:						info->set_info = ymf271_set_info;		break;
		case SNDINFO_PTR_START:							info->start = ymf271_start;				break;
		case SNDINFO_PTR_STOP:							/* Nothing */							break;
		case SNDINFO_PTR_RESET:							info->reset = ymf271_reset;				break;

		/* --- the following bits of info are returned as NULL-terminated strings --- */
		case SNDINFO_STR_NAME:							info->s = "YMF271";						break;
		case SNDINFO_STR_CORE_FAMILY:					info->s = "Yamaha FM";					break;
		case SNDINFO_STR_CORE_VERSION:					info->s = "1.0";						break;
		case SNDINFO_STR_CORE_FILE:						info->s = __FILE__;						break;
		case SNDINFO_STR_CORE_CREDITS:					info->s = "Copyright Nicola Salmoria and the MAME Team"; break;
	}
}