summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/sound/tms5220.c
blob: a04c47eeee7413cfa8f4adcab98bdf92db6196e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
/**********************************************************************************************

     TMS5200/5220 simulator

     Written for MAME by Frank Palazzolo
     With help from Neill Corlett
     Additional tweaking by Aaron Giles
     TMS6100 Speech Rom support added by Raphael Nabet
     PRNG code by Jarek Burczynski backported from tms5110.c by Lord Nightmare
     Chirp/excitation table fixes by Lord Nightmare
     Various fixes by Lord Nightmare
     Modularization by Lord Nightmare
     Sub-interpolation-cycle parameter updating added by Lord Nightmare
     Preliminary MASSIVE merge of tms5110 and tms5220 cores by Lord Nightmare
     Lattice Filter, Multiplier, and clipping redone by Lord Nightmare
     TMS5220C multi-rate feature added by Lord Nightmare
     Massive rewrite and reorganization by Lord Nightmare

     Much information regarding these lpc encoding comes from US patent 4,209,844
     US patent 4,331,836 describes the complete 51xx chip
     US patent 4,335,277 describes the complete 52xx chip
     Special Thanks to Larry Brantingham for answering questions regarding the chip details

   TMS5200/TMS5220/TMS5220C:

                 +-----------------+
        D7(d0)   |  1           28 |  /RS
        ADD1     |  2           27 |  /WS
        ROMCLK   |  3           26 |  D6(d1)
        VDD(-5)  |  4           25 |  ADD2
        VSS(+5)  |  5           24 |  D5(d2)
        OSC      |  6           23 |  ADD4
        T11      |  7           22 |  D4(d3)
        SPKR     |  8           21 |  ADD8/DATA
        I/O      |  9           20 |  TEST
        PROMOUT  | 10           19 |  D3(d4)
        VREF(GND)| 11           18 |  /READY
        D2(d5)   | 12           17 |  /INT
        D1(d6)   | 13           16 |  M1
        D0(d7)   | 14           15 |  M0
                 +-----------------+
Note the standard naming for d* data bits with 7 as MSB and 0 as LSB is in lowercase.
TI's naming has D7 as LSB and D0 as MSB and is in uppercase

TODO:
    * Implement a ready callback for pc interfaces
    - this will be quite a challenge since for it to be really accurate
      the whole emulation has to run in sync (lots of timers) with the
      cpu cores.
    * If a command is still executing, /READY will be kept high until the command has
      finished if the next command is written.
    * tomcat has a 5220 which is not hooked up at all
    * documentation is inconsistent in the patents about what data is returned for chirp rom addresses (base 0) 41 to 51; the patent says the 'rom returns zeroes for locations beyond 40', but at the same time the rom stores the complement of the actual chirp rom value, so are locations beyond 40 = 0x00(0) or = 0xFF(-1)? The patent text and images imply 0x00, but I'm (LN) not completely convinced yet.
    * Is the TS=0 forcing energy to 0 for next frame in the interpolator actually correct? I'm (LN) guessing no. The patent schematics state that TS=0 shuts off the output dac completely, though doesn't affect the I/O pin.

Pedantic detail from observation of real chip:
The 5200 and 5220 chips outputs the following coefficients over PROMOUT while
'idle' and not speaking, in this order:
e[0 or f] p[0] k1[0] k2[0] k3[0] k4[0] k5[f] k6[f] k7[f] k8[7] k9[7] k10[7]

Driver specific notes:

    Looping has the tms5220 hooked up directly to the cpu. However currently the
    tms9900 cpu core does not support a ready line.

    Victory's initial audio selftest is pretty brutal to the FIFO: it sends a
    sequence of bytes to the FIFO and checks the status bits after each one; if
    even one bit is in the wrong state (i.e. speech starts one byte too early or
    late), the test fails!
    The sample in Victory 'Shields up!' after you activate shields, the 'up' part
    of the sample is missing the STOP frame at the end of it; this causes the
    speech core to run out of bits to parse from the FIFO, cutting the sample off
    by one frame. This appears to be an original game code bug.

Progress list for drivers using old vs new interface:
starwars: uses new interface (couriersud)
gauntlet: uses new interface (couriersud)
atarisy1: uses new interface (Lord Nightmare)
atarisy2: uses new interface (Lord Nightmare)
atarijsa: uses new interface (Lord Nightmare)
firefox: uses new interface (couriersud)
mhavoc: uses old interface, and is in the machine file instead of the driver.
monymony/jackrabt(zaccaria.c): uses new interface (couriersud)
victory(audio/exidy.c): uses new interface (couriersud)
looping: uses old interface
portraits: uses *NO* interface; the i/o cpu hasn't been hooked to anything!
dotron and midwayfb(mcr.c): uses old interface


    Documentation of chip commands:
    x0x0xbcc : on 5200/5220: NOP (does nothing); on 5220C: Select frame length by cc, and b selects whether every frame is preceeded by 2 bits to select the frame length (instead of using the value set by cc); the default (and after a reset command) is as if '0x00' was written, i.e. for frame length (200 samples) and 0 for whether the preceeding 2 bits are enabled (off)

    x001xxxx: READ BYTE (RDBY) Sends eight read bit commands (M0 high M1 low) to VSM and reads the resulting bits serially into a temporary register, which becomes readable as the next byte read from the tms52xx once ready goes active. Note the bit order of the byte read from the TMS52xx is BACKWARDS as compared to the actual data order as in the rom on the VSM chips; the read byte command of the tms5100 reads the bits in the 'correct' order. This was IMHO a rather silly design decision of TI. (I (LN) asked Larry Brantingham about this but he wasn't involved with the TMS52xx chips, just the 5100); There's ASCII data in the TI 99/4 speech module VSMs which has the bit order reversed on purpose because of this!
    TALK STATUS must be CLEAR for this command to work; otherwise it is treated as a NOP.

    x011xxxx: READ AND BRANCH (RB) Sends a read and branch command (M0 high, M1 high) to force VSM to set its data pointer to whatever the data is at its current pointer location is)
    TALK STATUS must be CLEAR for this command to work; otherwise it is treated as a NOP.

    x100aaaa: LOAD ADDRESS (LA) Send a load address command (M0 low M1 high) to VSM with the 4 'a' bits; Note you need to send four or five of these in sequence to actually specify an address to the vsm.
    TALK STATUS must be CLEAR for this command to work; otherwise it is treated as a NOP.

    x101xxxx: SPEAK (SPK) Begins speaking, pulling spech data from the current address pointer location of the VSM modules.

    x110xxxx: SPEAK EXTERNAL (SPKEXT) Clears the FIFO using SPKEE line, then sets TALKD (TALKST remains zero) until 8 bytes have been written to the FIFO, at which point it begins speaking, pulling data from the 16 byte fifo.
    TALK STATUS must be CLEAR for this command to work; otherwise it is treated as a NOP.

    x111xxxx: RESET (RST) Resets the speech synthesis core immediately, and clears the FIFO.


    Other chip differences:
    The 5220 is 'noisier' when playing unvoiced frames than the 5220C is; I (LN) think the 5220C may use a different energy table (or use one value lower in the normal energy table) than the 5220 does, possibly only when playing unvoiced frames, but I can't prove this without a decap; the 5220C's PROMOUT pin (for dumping the lpc tables as played) is non-functional due to a changed design or a die bug (or may need special timing to know exactly when to read it, different than the 5200 and 5220 which are both easily readable).
    In addition, the NOP commands on the FIFO interface have been changed on the 5220C and data passed in the low bits has a meaning regarding frame length, see above.

    It is also possible but inconclusive that the chirp table was changed; The LPC tables between the 5220 and 5220C are MOSTLY the same of not completely so, but as mentioned above the energy table has some sort of difference.


As for which games used which chips:

TMS5200 AKA TMC0285: (1980 to 1983)
    Arcade: Zaccaria's 'money money' and 'jack rabbit'; Bally/Midway's
'Discs of Tron' (all environmental cabs and a few upright cabs; the code
exists on all versions for the speech though, and upright cabs can be
upgraded to add it by hacking on a 'Squawk & Talk' pinball speech board
(which is also TMS5200 based) with a few modded components)
    Pinball: All Bally/Midway machines which uses the 'Squawk & Talk' board.
    Home computer: TI 99/4 PHP1500 Speech module (along with two VSM
serial chips); Street Electronics Corp.'s Apple II 'Echo 2' Speech
synthesizer (early cards only)

TMS5220: (mostly on things made between 1981 and 1984-1985)
    Arcade: Bally/Midway's 'NFL Football'; Atari's 'Star Wars',
'Firefox', 'Return of the Jedi', 'Road Runner', 'The Empire Strikes
Back' (all verified with schematics); Venture Line's 'Looping' and 'Sky
Bumper' (need verify for both); Olympia's 'Portraits' (need verify);
Exidy's 'Victory' and 'Victor Banana' (need verify for both)
    Pinball: Several (don't know names offhand, have not checked schematics)
    Home computer: Street Electronics Corp.'s Apple II 'Echo 2' Speech
synthesizer (later cards only); Texas Instruments' 'Speak and Learn'
scanner wand unit.

TMS5220C AKA TSP5220C: (on stuff made from 1984 to 1992 or so)
    Arcade: Atari's 'Indiana Jones and the Temple of Doom', '720',
'Gauntlet', 'Gauntlet II', 'A.P.B.', 'Paperboy', 'RoadBlasters',
'Vindicators Pt II'(verify?), and 'Escape from the Planet of the Robot
Monsters' (all verified except for vindicators pt 2)
    Pinball: Several (less common than the tms5220? (not sure about
this), mostly on later pinballs with LPC speech)
    Home computer: Street Electronics Corp.'s 'ECHO' parallel/hobbyist
module (6511 based), IBM PS/2 Speech adapter (parallel port connection
device), PES Speech adapter (serial port connection)

***********************************************************************************************/

#include "emu.h"
#include "streams.h"
#include "tms5220.h"

/* *****optional defines***** */

/* this define controls the interpolation shift logic. one of the following two lines should be used, and the other commented; the second line is more accurate mathematically but less accurate to hardware (Unless I (LN) misunderstand the way the shifter works, which is quite likely) */
#define INTERP_SHIFT >> tms->coeff->interp_coeff[interp_period]
//#define INTERP_SHIFT / (1<<tms->coeff->interp_coeff[interp_period])

/* this define controls whether the excitation waveform for a new frame is activated on IP=7/interp_period = 0 (the first period of the next frame) or IP=0/interp_period = 7 (the last period of this frame) when interpolation is inhibited for this frame. The patent is unclear on this point and either way could be correct. if undefined it does the latter case, if defined it does the former case. */
#undef INTERP_INHIBIT_EXCITE_DELAY

/* if undefined, various hacky improvements are used, such as inverting excitation waveform, and increasing the magnitude of unvoiced speech excitation */
#define NORMALMODE 1

/* must be defined; if 0, output the waveform as if it was tapped on the speaker pin as usual, if 1, output the waveform as if it was tapped on the i/o pin (volume is much lower in the latter case) */
#define FORCE_DIGITAL 0

/* if defined, outputs the low 4 bits of the lattice filter to the i/o or clip logic, even though the real hardware doesn't do this */
#undef ALLOW_4_LSB

/* if defined, uses impossibly perfect 'straight line' interpolation */
#undef PERFECT_INTERPOLATION_HACK

/* if defined, interpolation is only using the said slot of the 8,8,8,4,4,4,2,1 slots
   i.e. setting to 7 effectively disables interpolation, as it adds 1/1 of the difference
   between current and target to the current each frame;
   ***Be warned that setting this will mess up the inhibit logic!*** */
#undef OVERRIDE_INTERPOLATION

/* *****debugging defines***** */
#undef VERBOSE
// above is general, somewhat obsolete, catch all for debugs which don't fit elsewhere
#undef DEBUG_DUMP_INPUT_DATA
// above dumps the data input to the tms52xx to stdout, useful for making logged data dumps for real hardware tests
#undef DEBUG_FIFO
// above debugs fifo stuff: writes, reads and flag updates
#undef DEBUG_PARSE_FRAME_DUMP
// above dumps each frame to stderr: be sure to select one of the options below if you define it!
#undef DEBUG_PARSE_FRAME_DUMP_BIN
// dumps each speech frame as binary
#undef DEBUG_PARSE_FRAME_DUMP_HEX
// dumps each speech frame as hex
#undef DEBUG_FRAME_ERRORS
// above dumps info if a frame ran out of data
#undef DEBUG_COMMAND_DUMP
// above dumps all non-speech-data command writes
#undef DEBUG_PIN_READS
// above spams the errorlog with i/o ready messages whenever the ready or irq pin is read
#undef DEBUG_GENERATION
// above dumps debug information related to the sample generation loop, i.e. whether interpolation is inhibited or not, and what the current and target values for each frame are.
#undef DEBUG_GENERATION_VERBOSE
// above dumps MUCH MORE debug information related to the sample generation loop, namely the excitation, energy, pitch, k*, and output values for EVERY SINGLE SAMPLE during a frame.
#undef DEBUG_LATTICE
// above dumps the lattice filter state data each sample.
#undef DEBUG_CLIP
// above dumps info to stderr whenever the analog clip hardware is (or would be) clipping the signal.
#undef DEBUG_IO_READY
// above debugs the io ready callback
#undef DEBUG_RS_WS
// above debugs the new tms5220_data_r and data_w access methods which actually respect rs and ws

#define MAX_SAMPLE_CHUNK	512
#define FIFO_SIZE 16

/* Variants */

#define TMS5220_IS_5220C	(4)
#define TMS5220_IS_5200		(5)
#define TMS5220_IS_5220		(6)

#define TMS5220_IS_TMC0285	TMS5220_IS_5200

static UINT8 reload_table[4] = { 0, 50, 100, 150 }; //is the sample count reload for 5220c only; 5200 and 5220 always reload with 0

typedef struct _tms5220_state tms5220_state;
struct _tms5220_state
{
	/* coefficient tables */
	int variant;				/* Variant of the 5xxx - see tms5110r.h */

	/* coefficient tables */
	const struct tms5100_coeffs *coeff;

	/* callbacks */
	devcb_resolved_write_line	irq_func;
	devcb_resolved_write_line	readyq_func;

	/* these contain data that describes the 128-bit data FIFO */
	UINT8 fifo[FIFO_SIZE];
	UINT8 fifo_head;
	UINT8 fifo_tail;
	UINT8 fifo_count;
	UINT8 fifo_bits_taken;


	/* these contain global status bits */
	UINT8 speaking_now;		/* True only if actual speech is being generated right now. Is set when a speak vsm command happens OR when speak external happens and buffer low becomes nontrue; Is cleared when speech halts after the last stop frame or the last frame after talk status is otherwise cleared.*/
	UINT8 speak_external;	/* If 1, DDIS is 1, i.e. Speak External command in progress, writes go to FIFO. */
	UINT8 talk_status;		/* If 1, TS status bit is 1, i.e. speak or speak external is in progress and we have not encountered a stop frame yet; talk_status differs from speaking_now in that speaking_now is set as soon as a speak or speak external command is started; talk_status does NOT go active until after 8 bytes are written to the fifo on a speak external command, otherwise the two are the same. TS is cleared by 3 things: 1. when a STOP command has just been processed as a new frame in the speech stream; 2. if the fifo runs out in speak external mode; 3. on power-up/during a reset command; When it gets cleared, speak_external is also cleared, an interrupt is generated, and speaking_now will be cleared when the next frame starts. */
	UINT8 buffer_low;		/* If 1, FIFO has less than 8 bytes in it */
	UINT8 buffer_empty;		/* If 1, FIFO is empty */
	UINT8 irq_pin;			/* state of the IRQ pin (output) */
	UINT8 ready_pin;		/* state of the READY pin (output) */

	/* these contain data describing the current and previous voice frames */
#define OLD_FRAME_SILENCE_FLAG (tms->old_frame_energy_idx == 0) // 1 if E=0, 0 otherwise.
#define OLD_FRAME_UNVOICED_FLAG (tms->old_frame_pitch_idx == 0) // 1 if P=0 (unvoiced), 0 if voiced
	UINT8 old_frame_energy_idx;
	UINT8 old_frame_pitch_idx;
	UINT8 old_frame_k_idx[10];

#define NEW_FRAME_STOP_FLAG (tms->new_frame_energy_idx == 0xF) // 1 if this is a stop (Energy = 0xF) frame
#define NEW_FRAME_SILENCE_FLAG (tms->new_frame_energy_idx == 0) // ditto as above
#define NEW_FRAME_UNVOICED_FLAG (tms->new_frame_pitch_idx == 0) // ditto as above
	UINT8 new_frame_energy_idx;
	UINT8 new_frame_pitch_idx;
	UINT8 new_frame_k_idx[10];


	/* these are all used to contain the current state of the sound generation */
#ifndef PERFECT_INTERPOLATION_HACK
	INT16 current_energy;
	INT16 current_pitch;
	INT16 current_k[10];

	INT16 target_energy;
	INT16 target_pitch;
	INT16 target_k[10];
#else
	INT32 current_energy;
	INT32 current_pitch;
	INT32 current_k[10];

	INT32 target_energy;
	INT32 target_pitch;
	INT32 target_k[10];
#endif

	UINT16 previous_energy;	/* needed for lattice filter to match patent */

	//UINT8 interp_period;  /* TODO: the current interpolation period, counts 1,2,3,4,5,6,7,0 for divide by 8,8,8,4,4,4,2,1 */
	UINT8 interp_count;		/* number of samples within each sub-interpolation period, ranges from 0-24; TODO: rename this variable to PC/merge into PC function */
	UINT8 inhibit;			/* If 1, interpolation is inhibited until the DIV1 period */
	//UINT8 spkslow_delay;  /* delay counter for interp count, only used on tms51xx */
	UINT8 sample_count;		/* number of samples within the ENTIRE interpolation period, ranges from 0-199; TODO: merge into PC function */
	UINT8 tms5220c_rate;	/* only relevant for tms5220C's multi frame rate feature; is the actual 4 bit value written on a 0x2* or 0x0* command */
	UINT16 pitch_count;		/* pitch counter; provides chirp rom address */

	INT32 u[11];
	INT32 x[10];

	UINT16 RNG;      /* the random noise generator configuration is: 1 + x + x^3 + x^4 + x^13 */
	INT16 excitation_data;

	/* R Nabet : These have been added to emulate speech Roms */
	UINT8 schedule_dummy_read;			/* set after each load address, so that next read operation is preceded by a dummy read */
	UINT8 data_register;				/* data register, used by read command */
	UINT8 RDB_flag;					/* whether we should read data register or status register */

	/* io_ready: page 3 of the datasheet specifies that READY will be asserted until
     * data is available or processed by the system.
     */
	UINT8 io_ready;

	/* flag for "true" timing involving rs/ws */
	UINT8 true_timing;

	/* rsws - state, rs bit 1, ws bit 0 */
	UINT8 rs_ws;
	UINT8 read_latch;
	UINT8 write_latch;

    /* The TMS52xx has two different ways of providing output data: the
       analog speaker pin (which was usually used) and the Digital I/O pin.
       The internal DAC used to feed the analog pin is only 8 bits, and has the
       funny clipping/clamping logic, while the digital pin gives full 12? bit
       resolution of the output data.
       TODO: add a way to set/reset this other than the FORCE_DIGITAL define
     */
	UINT8 digital_select;
	running_device *device;

	const tms5220_interface *intf;
	sound_stream *stream;
	int clock;
};


/* Pull in the ROM tables */
#include "tms5110r.c"


INLINE tms5220_state *get_safe_token(running_device *device)
{
	assert(device != NULL);
	assert(device->type() == SOUND_TMS5220 ||
		   device->type() == SOUND_TMS5220C ||
		   device->type() == SOUND_TMC0285 ||
		   device->type() == SOUND_TMS5200);
	return (tms5220_state *)downcast<legacy_device_base *>(device)->token();
}

/* Static function prototypes */
static void process_command(tms5220_state *tms, unsigned char data);
static void parse_frame(tms5220_state *tms);
static void update_status_and_ints(tms5220_state *tms);
static void set_interrupt_state(tms5220_state *tms, int state);
static INT32 lattice_filter(tms5220_state *tms);
static INT16 clip_analog(INT16 clip);
static void update_ready_state(tms5220_state *tms);
static STREAM_UPDATE( tms5220_update );

static void tms5220_set_variant(tms5220_state *tms, int variant)
{
	switch (variant)
	{
		case TMS5220_IS_5220C:
			tms->coeff = &tms5220c_coeff;
			break;
		case TMS5220_IS_5200:
			tms->coeff = &tms5200_coeff;
			//tms->coeff = &pat4335277_coeff;
			break;
		case TMS5220_IS_5220:
			tms->coeff = &tms5220_coeff;
			break;
		default:
			fatalerror("Unknown variant in tms5220_set_variant\n");
	}

	tms->variant = variant;
}


static void register_for_save_states(tms5220_state *tms)
{
	state_save_register_device_item_array(tms->device, 0, tms->fifo);
	state_save_register_device_item(tms->device, 0, tms->fifo_head);
	state_save_register_device_item(tms->device, 0, tms->fifo_tail);
	state_save_register_device_item(tms->device, 0, tms->fifo_count);
	state_save_register_device_item(tms->device, 0, tms->fifo_bits_taken);

	state_save_register_device_item(tms->device, 0, tms->speaking_now);
	state_save_register_device_item(tms->device, 0, tms->speak_external);
	state_save_register_device_item(tms->device, 0, tms->talk_status);
	state_save_register_device_item(tms->device, 0, tms->buffer_low);
	state_save_register_device_item(tms->device, 0, tms->buffer_empty);
	state_save_register_device_item(tms->device, 0, tms->irq_pin);
	state_save_register_device_item(tms->device, 0, tms->ready_pin);

	state_save_register_device_item(tms->device, 0, tms->old_frame_energy_idx);
	state_save_register_device_item(tms->device, 0, tms->old_frame_pitch_idx);
	state_save_register_device_item_array(tms->device, 0, tms->old_frame_k_idx);

	state_save_register_device_item(tms->device, 0, tms->new_frame_energy_idx);
	state_save_register_device_item(tms->device, 0, tms->new_frame_pitch_idx);
	state_save_register_device_item_array(tms->device, 0, tms->new_frame_k_idx);

	state_save_register_device_item(tms->device, 0, tms->current_energy);
	state_save_register_device_item(tms->device, 0, tms->current_pitch);
	state_save_register_device_item_array(tms->device, 0, tms->current_k);

	state_save_register_device_item(tms->device, 0, tms->target_energy);
	state_save_register_device_item(tms->device, 0, tms->target_pitch);
	state_save_register_device_item_array(tms->device, 0, tms->target_k);

	state_save_register_device_item(tms->device, 0, tms->previous_energy);

	state_save_register_device_item(tms->device, 0, tms->interp_count);
	state_save_register_device_item(tms->device, 0, tms->inhibit);
	state_save_register_device_item(tms->device, 0, tms->sample_count);
	state_save_register_device_item(tms->device, 0, tms->tms5220c_rate);
	state_save_register_device_item(tms->device, 0, tms->pitch_count);

	state_save_register_device_item_array(tms->device, 0, tms->u);
	state_save_register_device_item_array(tms->device, 0, tms->x);

	state_save_register_device_item(tms->device, 0, tms->RNG);
	state_save_register_device_item(tms->device, 0, tms->excitation_data);

	state_save_register_device_item(tms->device, 0, tms->schedule_dummy_read);
	state_save_register_device_item(tms->device, 0, tms->data_register);
	state_save_register_device_item(tms->device, 0, tms->RDB_flag);
	state_save_register_device_item(tms->device, 0, tms->digital_select);

	state_save_register_device_item(tms->device, 0, tms->io_ready);
}


/**********************************************************************************************

      printbits helper function: takes a long int input and prints the resulting bits to stderr

 **********************************************************************************************/

#ifdef DEBUG_PARSE_FRAME_DUMP_BIN
static void printbits(long data, int num)
{
	int i;
	for (i=(num-1); i>=0; i--)
		fprintf(stderr,"%0ld", (data>>i)&1);
}
#endif
#ifdef DEBUG_PARSE_FRAME_DUMP_HEX
static void printbits(long data, int num)
{
	switch((num-1)&0xFC)
	{
		case 0:
			fprintf(stderr,"%0lx", data);
			break;
		case 4:
			fprintf(stderr,"%02lx", data);
			break;
		case 8:
			fprintf(stderr,"%03lx", data);
			break;
		case 12:
			fprintf(stderr,"%04lx", data);
			break;
		default:
			fprintf(stderr,"%04lx", data);
			break;
	}
}
#endif

/**********************************************************************************************

     tms5220_data_write -- handle a write to the TMS5220

***********************************************************************************************/

static void tms5220_data_write(tms5220_state *tms, int data)
{
#ifdef DEBUG_DUMP_INPUT_DATA
	fprintf(stdout, "%c",data);
#endif
	if (tms->speak_external) // If we're in speak external mode
	{
		/* add this byte to the FIFO */
		if (tms->fifo_count < FIFO_SIZE)
		{
			tms->fifo[tms->fifo_tail] = data;
			tms->fifo_tail = (tms->fifo_tail + 1) % FIFO_SIZE;
			tms->fifo_count++;
#ifdef DEBUG_FIFO
			logerror("data_write: Added byte to FIFO (current count=%2d)\n", tms->fifo_count);
#endif
			update_status_and_ints(tms);
			if ((tms->talk_status == 0) && (tms->buffer_low == 0)) // we just unset buffer low with that last write, and talk status *was* zero...
			{
			int i;
#ifdef DEBUG_FIFO
			logerror("data_write triggered talk status to go active!\n");
#endif
				/* ...then we now have enough bytes to start talking; clear out the new frame parameters (it will become old frame just before the first call to parse_frame() ) */
				tms->new_frame_energy_idx = 0;
				tms->new_frame_pitch_idx = 0;
				for (i = 0; i < 4; i++)
					tms->new_frame_k_idx[i] = 0;
				for (i = 4; i < 7; i++)
					tms->new_frame_k_idx[i] = 0xF;
				for (i = 7; i < tms->coeff->num_k; i++)
					tms->new_frame_k_idx[i] = 0x7;
				tms->talk_status = tms->speaking_now = 1;
			}
		}
		else
		{
#ifdef DEBUG_FIFO
			logerror("data_write: Ran out of room in the tms52xx FIFO! this should never happen!\n");
			// at this point, /READY should remain HIGH/inactive until the fifo has at least one byte open in it.
#endif
		}


	}
	else //(! tms->speak_external)
		/* R Nabet : we parse commands at once.  It is necessary for such commands as read. */
		process_command(tms,data);
}

/**********************************************************************************************

     update_status_and_ints -- check to see if the various flags should be on or off
     Description of flags, and their position in the status register:
      From the data sheet:
        bit D0(bit 7) = TS - Talk Status is active (high) when the VSP is processing speech data.
                Talk Status goes active at the initiation of a Speak command or after nine
                bytes of data are loaded into the FIFO following a Speak External command. It
                goes inactive (low) when the stop code (Energy=1111) is processed, or
                immediately by a buffer empty condition or a reset command.
        bit D1(bit 6) = BL - Buffer Low is active (high) when the FIFO buffer is more than half empty.
                Buffer Low is set when the "Last-In" byte is shifted down past the half-full
                boundary of the stack. Buffer Low is cleared when data is loaded to the stack
                so that the "Last-In" byte lies above the half-full boundary and becomes the
                eighth data byte of the stack.
        bit D2(bit 5) = BE - Buffer Empty is active (high) when the FIFO buffer has run out of data
                while executing a Speak External command. Buffer Empty is set when the last bit
                of the "Last-In" byte is shifted out to the Synthesis Section. This causes
                Talk Status to be cleared. Speed is terminated at some abnormal point and the
                Speak External command execution is terminated.

***********************************************************************************************/

static void update_status_and_ints(tms5220_state *tms)
{
	/* update flags and set ints if needed */

	update_ready_state(tms);

	/* BL is set if neither byte 9 nor 8 of the fifo are in use; this
    translates to having fifo_count (which ranges from 0 bytes in use to 16
    bytes used) being less than or equal to 8. Victory/Victorba depends on this. */
    if (tms->fifo_count <= 8)
    {
        /* generate an interrupt if necessary; if /BL was inactive and is now active, set int. */
        if (!tms->buffer_low)
            set_interrupt_state(tms, 1);
        tms->buffer_low = 1;
	}
	else
		tms->buffer_low = 0;

	/* BE is set if neither byte 15 nor 14 of the fifo are in use; this
    translates to having fifo_count equal to exactly 0 */
	if (tms->fifo_count == 0)
	{
	    /* generate an interrupt if necessary; if /BE was inactive and is now active, set int. */
        if (!tms->buffer_empty)
            set_interrupt_state(tms, 1);
        tms->buffer_empty = 1;
    }
	else
		tms->buffer_empty = 0;

	/* TS is talk status and is set elsewhere in the fifo parser and in
    the SPEAK command handler; however, if /BE is true during speak external
    mode, it is immediately unset here. */
	if ((tms->speak_external == 1) && (tms->buffer_empty == 1))
	{
		/* generate an interrupt: /TS was active, and is now inactive. */
		if (tms->talk_status == 1)
		{
			tms->talk_status = tms->speak_external = 0;
			set_interrupt_state(tms, 1);
		}
	}
	/* Note that TS being unset will also generate an interrupt when a STOP
    frame is encountered; this is handled in the sample generator code and not here */
}

/**********************************************************************************************

     extract_bits -- extract a specific number of bits from the current input stream (FIFO or VSM)

***********************************************************************************************/

static int extract_bits(tms5220_state *tms, int count)
{
    int val = 0;

	if (tms->speak_external)
	{
		/* extract from FIFO */
		while (count--)
		{
			val = (val << 1) | ((tms->fifo[tms->fifo_head] >> tms->fifo_bits_taken) & 1);
			tms->fifo_bits_taken++;
			if (tms->fifo_bits_taken >= 8)
			{
				tms->fifo_count--;
				tms->fifo[tms->fifo_head] = 0; // zero the newly depleted fifo head byte
				tms->fifo_head = (tms->fifo_head + 1) % FIFO_SIZE;
				tms->fifo_bits_taken = 0;
				update_status_and_ints(tms);
			}
		}
	}
	else
	{
		/* extract from VSM (speech ROM) */
		if (tms->intf->read)
			val = (* tms->intf->read)(tms->device, count);
	}

    return val;
}

/**********************************************************************************************

     tms5220_status_read -- read status or data from the TMS5220

***********************************************************************************************/

static int tms5220_status_read(tms5220_state *tms)
{
	if (tms->RDB_flag)
	{	/* if last command was read, return data register */
		tms->RDB_flag = FALSE;
		return(tms->data_register);
	}
	else
	{	/* read status */

		/* clear the interrupt pin on status read */
		set_interrupt_state(tms, 0);
#ifdef DEBUG_PIN_READS
		logerror("Status read: TS=%d BL=%d BE=%d\n", tms->talk_status, tms->buffer_low, tms->buffer_empty);
#endif

		return (tms->talk_status << 7) | (tms->buffer_low << 6) | (tms->buffer_empty << 5);
	}
}


/**********************************************************************************************

     tms5220_ready_read -- returns the ready state of the TMS5220

***********************************************************************************************/

static int tms5220_ready_read(tms5220_state *tms)
{
#ifdef DEBUG_PIN_READS
	logerror("ready_read: ready pin read, io_ready is %d, fifo count is %d\n", tms->io_ready, tms->fifo_count);
#endif
    return ((tms->fifo_count < FIFO_SIZE)||(!tms->speak_external)) && tms->io_ready;
}


/**********************************************************************************************

     tms5220_cycles_to_ready -- returns the number of cycles until ready is asserted
     NOTE: this function is deprecated and is known to be VERY inaccurate.
     Use at your own peril!

***********************************************************************************************/

static int tms5220_cycles_to_ready(tms5220_state *tms)
{
	int answer;


	if (tms5220_ready_read(tms))
		answer = 0;
	else
	{
		int val;

		answer = 200-tms->sample_count+8;

		/* total number of bits available in current byte is (8 - tms->fifo_bits_taken) */
		/* if more than 4 are available, we need to check the energy */
		if (tms->fifo_bits_taken < 4)
		{
			/* read energy */
			val = (tms->fifo[tms->fifo_head] >> tms->fifo_bits_taken) & 0xf;
			if (val == 0)
				/* 0 -> silence frame: we will only read 4 bits, and we will
                therefore need to read another frame before the FIFO is not
                full any more */
				answer += 200;
			/* 15 -> stop frame, we will only read 4 bits, but the FIFO will
            we cleared */
			/* otherwise, we need to parse the repeat flag (1 bit) and the
            pitch (6 bits), so everything will be OK. */
		}
	}

	return answer;
}


/**********************************************************************************************

     tms5220_int_read -- returns the interrupt state of the TMS5220

***********************************************************************************************/

static int tms5220_int_read(tms5220_state *tms)
{
#ifdef DEBUG_PIN_READS
	logerror("int_read: irq pin read, state is %d\n", tms->irq_pin);
#endif
    return tms->irq_pin;
}


/**********************************************************************************************

     tms5220_process -- fill the buffer with a specific number of samples

***********************************************************************************************/

static void tms5220_process(tms5220_state *tms, INT16 *buffer, unsigned int size)
{
    int buf_count=0;
    int i, interp_period, bitout, zpar;
    INT32 this_sample;

    /* if we're empty and still not speaking, fill with nothingness */
	if (!tms->speaking_now)
        goto empty;

    /* if speak external is set, but talk status is not (yet) set,
    wait for buffer low to clear */
	if (!tms->talk_status && tms->speak_external && (tms->buffer_low == 1))
           goto empty;

    /* loop until the buffer is full or we've stopped speaking */
	while ((size > 0) && tms->speaking_now)
    {

        /* if we're ready for a new frame */
        if ((tms->interp_count == 0) && (tms->sample_count == 0))
        {
			/* appropriately override the initial sample count */
			tms->sample_count = reload_table[tms->tms5220c_rate&0x3];

			/* remember previous frame energy, pitch, and coefficients */
			tms->old_frame_energy_idx = tms->new_frame_energy_idx;
			tms->old_frame_pitch_idx = tms->new_frame_pitch_idx;
			for (i = 0; i < tms->coeff->num_k; i++)
				tms->old_frame_k_idx[i] = tms->new_frame_k_idx[i];

			/* if the talk status was clear last frame, halt speech now. */
			if (tms->talk_status == 0)
			{
#ifdef DEBUG_GENERATION
				fprintf(stderr,"tms5220_process: processing frame: talk status = 0 caused by stop frame or buffer empty, halting speech.\n");
#endif
				tms->speaking_now = 0; // finally halt speech
				goto empty;
			}


			/* Parse a new frame into the new_target_energy, new_target_pitch and new_target_k[] */
			parse_frame(tms);
#ifdef DEBUG_PARSE_FRAME_DUMP
			fprintf(stderr,"\n");
#endif

			/* if the new frame is a stop frame, set an interrupt and set talk status to 0 */
			if (NEW_FRAME_STOP_FLAG == 1)
				{
					tms->talk_status = tms->speak_external = 0;
					set_interrupt_state(tms, 1);
					update_status_and_ints(tms);
				}

			/* in all cases where interpolation would be inhibited, set the inhibit flag; otherwise clear it.
               Interpolation inhibit cases:
               * Old frame was voiced, new is unvoiced
               * Old frame was silence/zero energy, new has nonzero energy
               * Old frame was unvoiced, new is voiced
            */
			if ( ((OLD_FRAME_UNVOICED_FLAG == 0) && (NEW_FRAME_UNVOICED_FLAG == 1))
				|| ((OLD_FRAME_UNVOICED_FLAG == 1) && (NEW_FRAME_UNVOICED_FLAG == 0))
				|| ((OLD_FRAME_SILENCE_FLAG == 1) && (NEW_FRAME_SILENCE_FLAG == 0)) )
				tms->inhibit = 1;
			else // normal frame, normal interpolation
				tms->inhibit = 0;

			tms->target_energy = tms->coeff->energytable[tms->new_frame_energy_idx];
			tms->target_pitch = tms->coeff->pitchtable[tms->new_frame_pitch_idx];
			zpar = NEW_FRAME_UNVOICED_FLAG; // find out if parameters k5-k10 should be zeroed
			for (i = 0; i < 4; i++)
				tms->target_k[i] = tms->coeff->ktable[i][tms->new_frame_k_idx[i]];
			for (i = 4; i < tms->coeff->num_k; i++)
				tms->target_k[i] = (tms->coeff->ktable[i][tms->new_frame_k_idx[i]] * (1-zpar));

#ifdef DEBUG_GENERATION
				fprintf(stderr,"Processing frame: ");
				if (tms->inhibit == 0)
					fprintf(stderr, "Normal Frame\n");
				else
					fprintf(stderr,"Interpolation Inhibited\n");
				fprintf(stderr,"*** current Energy, Pitch and Ks =      %04d,   %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d\n",tms->current_energy, tms->current_pitch, tms->current_k[0], tms->current_k[1], tms->current_k[2], tms->current_k[3], tms->current_k[4], tms->current_k[5], tms->current_k[6], tms->current_k[7], tms->current_k[8], tms->current_k[9]);
				fprintf(stderr,"*** target Energy(idx), Pitch, and Ks = %04d(%x),%04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d, %04d\n",tms->target_energy, tms->new_frame_energy_idx, tms->target_pitch, tms->target_k[0], tms->target_k[1], tms->target_k[2], tms->target_k[3], tms->target_k[4], tms->target_k[5], tms->target_k[6], tms->target_k[7], tms->target_k[8], tms->target_k[9]);
#endif

			/* if TS is now 0, ramp the energy down to 0. Is this really correct to hardware? */
			if ( (tms->talk_status == 0))
			{
#ifdef DEBUG_GENERATION
				fprintf(stderr,"Talk status is 0, forcing target energy to 0\n");
#endif
				tms->target_energy = 0;
			}
		}
		else // Not a new frame, just interpolate the existing frame.
		{
#ifdef OVERRIDE_INTERPOLATION
			interp_period = OVERRIDE_INTERPOLATION;
#else
			interp_period = tms->sample_count / 25;
#endif
		if (interp_period == 7) tms->inhibit = 0; // disable inhibit when reaching the last interp period
#ifdef PERFECT_INTERPOLATION_HACK
		zpar = OLD_FRAME_UNVOICED_FLAG;
		// reset the current energy, pitch, etc to what it was at frame start
		tms->current_energy = tms->coeff->energytable[tms->old_frame_energy_idx];
		tms->current_pitch = tms->coeff->pitchtable[tms->old_frame_pitch_idx];
		for (i = 0; i < 4; i++)
			tms->current_k[i] = tms->coeff->ktable[i][tms->old_frame_k_idx[i]];
		for (i = 4; i < tms->coeff->num_k; i++)
			tms->current_k[i] = (tms->coeff->ktable[i][tms->old_frame_k_idx[i]] * (1-zpar));
		// now adjust each value to be exactly correct for each of the 200 samples per frsme
		tms->current_energy += (((tms->target_energy - tms->current_energy)*(1-tms->inhibit))*tms->sample_count)/200;
		tms->current_pitch += (((tms->target_pitch - tms->current_pitch)*(1-tms->inhibit))*tms->sample_count)/200;
		for (i = 0; i < tms->coeff->num_k; i++)
			tms->current_k[i] += (((tms->target_k[i] - tms->current_k[i])*(1-tms->inhibit))*tms->sample_count)/200;
#else
		switch(tms->interp_count)
			{
				/*         PC=X  X cycle, rendering change (change for next cycle which chip is actually doing) */
				case 0: /* PC=0, A cycle, nothing happens (calc energy) */
				break;
				case 1: /* PC=0, B cycle, nothing happens (update energy) */
				break;
				case 2: /* PC=1, A cycle, update energy (calc pitch) */
				tms->current_energy += (((tms->target_energy - tms->current_energy)*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 3: /* PC=1, B cycle, nothing happens (update pitch) */
				break;
				case 4: /* PC=2, A cycle, update pitch (calc K1) */
#ifndef INTERP_INHIBIT_EXCITE_DELAY
				if (interp_period == 7) tms->old_frame_pitch_idx = tms->new_frame_pitch_idx; // this is to make it so the voiced/unvoiced select during interpolation takes effect at the same time as inhibit stops.
#endif
				tms->current_pitch += (((tms->target_pitch - tms->current_pitch)*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 5: /* PC=2, B cycle, nothing happens (update K1) */
				break;
				case 6: /* PC=3, A cycle, update K1 (calc K2) */
				tms->current_k[0] += (((tms->target_k[0] - tms->current_k[0])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 7: /* PC=3, B cycle, nothing happens (update K2) */
				break;
				case 8: /* PC=4, A cycle, update K2 (calc K3) */
				tms->current_k[1] += (((tms->target_k[1] - tms->current_k[1])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 9: /* PC=4, B cycle, nothing happens (update K3) */
				break;
				case 10: /* PC=5, A cycle, update K3 (calc K4) */
				tms->current_k[2] += (((tms->target_k[2] - tms->current_k[2])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 11: /* PC=5, B cycle, nothing happens (update K4) */
				break;
				case 12: /* PC=6, A cycle, update K4 (calc K5) */
				tms->current_k[3] += (((tms->target_k[3] - tms->current_k[3])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 13: /* PC=6, B cycle, nothing happens (update K5) */
				break;
				case 14: /* PC=7, A cycle, update K5 (calc K6) */
				tms->current_k[4] += (((tms->target_k[4] - tms->current_k[4])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 15: /* PC=7, B cycle, nothing happens (update K6) */
				break;
				case 16: /* PC=8, A cycle, update K6 (calc K7) */
				tms->current_k[5] += (((tms->target_k[5] - tms->current_k[5])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 17: /* PC=8, B cycle, nothing happens (update K7) */
				break;
				case 18: /* PC=9, A cycle, update K7 (calc K8) */
				tms->current_k[6] += (((tms->target_k[6] - tms->current_k[6])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 19: /* PC=9, B cycle, nothing happens (update K8) */
				break;
				case 20: /* PC=10, A cycle, update K8 (calc K9) */
				tms->current_k[7] += (((tms->target_k[7] - tms->current_k[7])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 21: /* PC=10, B cycle, nothing happens (update K9) */
				break;
				case 22: /* PC=11, A cycle, update K9 (calc K10) */
				tms->current_k[8] += (((tms->target_k[8] - tms->current_k[8])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
				case 23: /* PC=11, B cycle, nothing happens (update K10) */
				break;
				case 24: /* PC=12, A cycle, update K10 (do nothing) */
				tms->current_k[9] += (((tms->target_k[9] - tms->current_k[9])*(1-tms->inhibit)) INTERP_SHIFT);
				break;
			}
#endif
        }

        /* calculate the output */
		if (OLD_FRAME_UNVOICED_FLAG == 1)
		{
			/* generate unvoiced samples here */
#ifdef NORMALMODE
			if (tms->RNG & 1)
				tms->excitation_data = ~0x3F; /* according to the patent it is (either + or -) half of the maximum value in the chirp table, so either 01000000(0x40) or 11000000(0xC0)*/
			else
				tms->excitation_data = 0x40;
#else // hack to double unvoiced strength, doesn't match patent
			if (tms->RNG & 1)
				tms->excitation_data = ~0x7F;
			else
				tms->excitation_data = 0x80;
#endif
        }
        else
        {
            /* generate voiced samples here */
            /* US patent 4331836 Figure 14B shows, and logic would hold, that a pitch based chirp
             * function has a chirp/peak and then a long chain of zeroes.
             * The last entry of the chirp rom is at address 0b110011 (51d), the 52nd sample,
             * and if the address reaches that point the ADDRESS incrementer is
             * disabled, forcing all samples beyond 51d to be == 51d
             * (address 51d holds zeroes, which may or may not be inverted to -1)
             */
#ifdef NORMALMODE
          if (tms->pitch_count >= 51)
              tms->excitation_data = tms->coeff->chirptable[51];
          else /*tms->pitch_count < 51*/
              tms->excitation_data = tms->coeff->chirptable[tms->pitch_count];
#else // hack based sort of on the D68_10.ASM file from qboxpro, which has  0x580 and 0x3A80 at the end of its chirp table
          if ((tms->pitch_count >= 45) || tms->pitch_count == 0)
              tms->excitation_data = -128;
          else /*tms->pitch_count < 45*/
              tms->excitation_data = tms->coeff->chirptable[tms->pitch_count];
#endif
        }

        /* Update LFSR *20* times every sample, like patent shows */
	for (i=0; i<20; i++)
	{
            bitout = ((tms->RNG >> 12) & 1) ^
                     ((tms->RNG >>  3) & 1) ^
                     ((tms->RNG >>  2) & 1) ^
                     ((tms->RNG >>  0) & 1);
            tms->RNG <<= 1;
            tms->RNG |= bitout;
	}
		this_sample = lattice_filter(tms); /* execute lattice filter */
#ifdef DEBUG_GENERATION_VERBOSE
		fprintf(stderr,"X:%04d; E:%04d; P:%04d; Pc:%04d ",tms->excitation_data, tms->current_energy, tms->current_pitch, tms->pitch_count);
		for (i=0; i<10; i++)
			fprintf(stderr,"K%d:%04d ", i+1, tms->current_k[i]);
		fprintf(stderr,"Out:%06d", this_sample);
		fprintf(stderr,"\n");
#endif
		/* next, force result to 14 bits (since its possible that the addition at the final (k1) stage of the lattice overflowed) */
		while (this_sample > 16383) this_sample -= 32768;
		while (this_sample < -16384) this_sample += 32768;
		if (tms->digital_select == 0) // analog SPK pin output is only 8 bits, with clipping
			buffer[buf_count] = clip_analog(this_sample);
		else // digital I/O pin output is 12 bits
		{
#ifdef ALLOW_4_LSB
			// input:  ssss ssss ssss ssss ssnn nnnn nnnn nnnn
			// N taps:                       ^                 = 0x2000;
			// output: ssss ssss ssss ssss snnn nnnn nnnn nnnN
			buffer[buf_count] = (this_sample<<1)|((this_sample&0x2000)>>13);
#else
			this_sample &= ~0xF;
			// input:  ssss ssss ssss ssss ssnn nnnn nnnn 0000
			// N taps:                       ^^ ^^^            = 0x3E00;
			// output: ssss ssss ssss ssss snnn nnnn nnnN NNNN
			buffer[buf_count] = (this_sample<<1)|((this_sample&0x3E00)>>9);
#endif
		}
        /* Update all counts */

        size--;
        tms->sample_count = (tms->sample_count + 1) % 200;
        tms->pitch_count++;
        if (tms->pitch_count >= tms->current_pitch) tms->pitch_count = 0;

        tms->interp_count = (tms->interp_count + 1) % 25;
        buf_count++;
    }

empty:

    while (size > 0)
    {
		tms->sample_count = (tms->sample_count + 1) % 200;
		tms->interp_count = (tms->interp_count + 1) % 25;
		buffer[buf_count] = -1;	/* should be just -1; actual chip outputs -1 every idle sample; (cf note in data sheet, p 10, table 4) */
        buf_count++;
        size--;
    }
}

/**********************************************************************************************

     clip_analog -- clips the 14 bit return value from the lattice filter to its final 10 bit value (-512 to 511), and upshifts/range extends this to 16 bits

***********************************************************************************************/

static INT16 clip_analog(INT16 cliptemp)
{
    /* clipping, just like the patent shows:
       the top 10 bits of this result are visible on the digital output IO pin.
       next, if the top 3 bits of the 14 bit result are all the same, the lowest of those 3 bits plus the next 7 bits are the signed analog output, otherwise the low bits are all forced to match the inverse of the topmost bit, i.e.:
       1x xxxx xxxx xxxx -> 0b10000000
       11 1bcd efgh xxxx -> 0b1bcdefgh
       00 0bcd efgh xxxx -> 0b0bcdefgh
       0x xxxx xxxx xxxx -> 0b01111111
       */
#ifdef DEBUG_CLIP
	if ((cliptemp > 2047) || (cliptemp < -2048)) fprintf(stderr,"clipping cliptemp to range; was %d\n", cliptemp);
#endif
	if (cliptemp > 2047) cliptemp = 2047;
	else if (cliptemp < -2048) cliptemp = -2048;
	/* at this point the analog output is tapped */
#ifdef ALLOW_4_LSB
	// input:  ssss snnn nnnn nnnn
	// N taps:       ^^^ ^         = 0x0780
	// output: snnn nnnn nnnn NNNN
	return (cliptemp << 4)|((cliptemp&0x780)>>7); // upshift and range adjust
#else
	cliptemp &= ~0xF;
	// input:  ssss snnn nnnn 0000
	// N taps:       ^^^ ^^^^      = 0x07F0
	// P taps:       ^             = 0x0400
	// output: snnn nnnn NNNN NNNP
	return (cliptemp << 4)|((cliptemp&0x7F0)>>3)|((cliptemp&0x400)>>10); // upshift and range adjust
#endif
}


/**********************************************************************************************

     ti_matrix_multiply -- does the proper multiply and shift as the TI chips do.
     a is the k coefficient and is clamped to 10 bits (9 bits plus a sign)
     b is the running result and is clamped to 14 bits.
     output is 14 bits, but note the result LSB bit is always 1. (or is it?)

**********************************************************************************************/
static INT32 matrix_multiply(INT32 a, INT32 b)
{
	INT32 result;
	while (a>511) { a-=1024; }
	while (a<-512) { a+=1024; }
	while (b>16383) { b-=32768; }
	while (b<-16384) { b+=32768; }
	result = ((a*b)>>9)|1;
#ifdef VERBOSE
	if (result>16383) fprintf(stderr,"matrix multiplier overflowed! a: %x, b: %x, result: %x", a, b, result);
	if (result<-16384) fprintf(stderr,"matrix multiplier underflowed! a: %x, b: %x, result: %x", a, b, result);
#endif
	return result;
}

/**********************************************************************************************

     lattice_filter -- executes one 'full run' of the lattice filter on a specific byte of
     excitation data, and specific values of all the current k constants,  and returns the
     resulting sample.

***********************************************************************************************/

static INT32 lattice_filter(tms5220_state *tms)
{
   /* Lattice filter here */
   /* Aug/05/07: redone as unrolled loop, for clarity - LN*/
   /* Originally Copied verbatim from table I in US patent 4,209,804, now updated to be in same order as the actual chip does it, not that it matters.
      notation equivalencies from table:
      Yn(i) == tms->u[n-1]
      Kn = tms->current_k[n-1]
      bn = tms->x[n-1]
    */
        tms->u[10] = matrix_multiply(tms->previous_energy, (tms->excitation_data*64));  //Y(11)
        tms->u[9] = tms->u[10] - matrix_multiply(tms->current_k[9], tms->x[9]);
        tms->u[8] = tms->u[9] - matrix_multiply(tms->current_k[8], tms->x[8]);
        tms->u[7] = tms->u[8] - matrix_multiply(tms->current_k[7], tms->x[7]);
        tms->u[6] = tms->u[7] - matrix_multiply(tms->current_k[6], tms->x[6]);
        tms->u[5] = tms->u[6] - matrix_multiply(tms->current_k[5], tms->x[5]);
        tms->u[4] = tms->u[5] - matrix_multiply(tms->current_k[4], tms->x[4]);
        tms->u[3] = tms->u[4] - matrix_multiply(tms->current_k[3], tms->x[3]);
        tms->u[2] = tms->u[3] - matrix_multiply(tms->current_k[2], tms->x[2]);
        tms->u[1] = tms->u[2] - matrix_multiply(tms->current_k[1], tms->x[1]);
        tms->u[0] = tms->u[1] - matrix_multiply(tms->current_k[0], tms->x[0]);
        tms->x[9] = tms->x[8] + matrix_multiply(tms->current_k[8], tms->u[8]);
        tms->x[8] = tms->x[7] + matrix_multiply(tms->current_k[7], tms->u[7]);
        tms->x[7] = tms->x[6] + matrix_multiply(tms->current_k[6], tms->u[6]);
        tms->x[6] = tms->x[5] + matrix_multiply(tms->current_k[5], tms->u[5]);
        tms->x[5] = tms->x[4] + matrix_multiply(tms->current_k[4], tms->u[4]);
        tms->x[4] = tms->x[3] + matrix_multiply(tms->current_k[3], tms->u[3]);
        tms->x[3] = tms->x[2] + matrix_multiply(tms->current_k[2], tms->u[2]);
        tms->x[2] = tms->x[1] + matrix_multiply(tms->current_k[1], tms->u[1]);
        tms->x[1] = tms->x[0] + matrix_multiply(tms->current_k[0], tms->u[0]);
        tms->x[0] = tms->u[0];
        tms->previous_energy = tms->current_energy;
#ifdef DEBUG_LATTICE
		int i;
		fprintf(stderr,"V:%04d ", tms->u[10]);
		for (i = 9; i >= 0; i--)
		{
			fprintf(stderr,"Y%d:%04d ", i+1, tms->u[i]);
			fprintf(stderr,"b%d:%04d ", i+1, tms->x[i]);
			if ((i % 5) == 0) fprintf(stderr,"\n");
		}
#endif
        return tms->u[0];
}


/**********************************************************************************************

     process_command -- extract a byte from the FIFO and interpret it as a command

***********************************************************************************************/

static void process_command(tms5220_state *tms, unsigned char cmd)
{
#ifdef DEBUG_COMMAND_DUMP
		fprintf(stderr,"process_command called with parameter %02X\n",cmd);
#endif
		/* parse the command */
		switch (cmd & 0x70)
		{
		case 0x10 : /* read byte */
			if (tms->talk_status == 0) /* TALKST must be clear for RDBY */
			{
				if (tms->schedule_dummy_read)
				{
					tms->schedule_dummy_read = FALSE;
					if (tms->intf->read)
						(*tms->intf->read)(tms->device, 1);
				}
				if (tms->intf->read)
					tms->data_register = (*tms->intf->read)(tms->device, 8);	/* read one byte from speech ROM... */
				tms->RDB_flag = TRUE;
			}
			break;

		case 0x00: case 0x20: /* set rate (tms5220c only), otherwise NOP */
			if (tms->variant == SUBTYPE_TMS5220C)
			{
				tms->tms5220c_rate = cmd&0x0F;
			}
		break;

		case 0x30 : /* read and branch */
			if (tms->talk_status == 0) /* TALKST must be clear for RB */
			{
#ifdef VERBOSE
				logerror("read and branch command received\n");
#endif
				tms->RDB_flag = FALSE;
				if (tms->intf->read_and_branch)
					(*tms->intf->read_and_branch)(tms->device);
			}
			break;

		case 0x40 : /* load address */
			if (tms->talk_status == 0) /* TALKST must be clear for LA */
			{
				/* tms5220 data sheet says that if we load only one 4-bit nibble, it won't work.
                  This code does not care about this. */
				if (tms->intf->load_address)
					(*tms->intf->load_address)(tms->device, cmd & 0x0f);
				tms->schedule_dummy_read = TRUE;
			}
			break;

		case 0x50 : /* speak */
			if (tms->schedule_dummy_read)
			{
				tms->schedule_dummy_read = FALSE;
				if (tms->intf->read)
					(*tms->intf->read)(tms->device, 1);
			}
			tms->speaking_now = 1;
			tms->speak_external = 0;
			tms->talk_status = 1;  /* start immediately */
			/* clear out variables before speaking */
			tms->new_frame_energy_idx = 0;
			tms->new_frame_pitch_idx = 0;
			int i;
			for (i = 0; i < 4; i++)
				tms->new_frame_k_idx[i] = 0;
			for (i = 4; i < 7; i++)
				tms->new_frame_k_idx[i] = 0xF;
			for (i = 7; i < tms->coeff->num_k; i++)
				tms->new_frame_k_idx[i] = 0x7;
			break;

		case 0x60 : /* speak external */
			if (tms->talk_status == 0) /* TALKST must be clear for SPKEXT */
			{
				//SPKEXT going active activates SPKEE which clears the fifo
				tms->fifo_head = tms->fifo_tail = tms->fifo_count = tms->fifo_bits_taken = 0;
				tms->speak_external = 1;
				tms->RDB_flag = FALSE;
			}
			break;

		case 0x70 : /* reset */
			if (tms->schedule_dummy_read)
			{
				tms->schedule_dummy_read = FALSE;
				if (tms->intf->read)
					(*tms->intf->read)(tms->device, 1);
			}
			tms->device->reset();
			break;
    }

    /* update the buffer low state */
    update_status_and_ints(tms);
}

/******************************************************************************************

     parse_frame -- parse a new frame's worth of data; returns 0 if not enough bits in buffer

******************************************************************************************/

static void parse_frame(tms5220_state *tms)
{
	int indx, i, rep_flag;

	// We actually don't care how many bits are left in the fifo here; the frame subpart will be processed normally, and any bits extracted 'past the end' of the fifo will be read as zeroes; the fifo being emptied will set the /BE latch which will halt speech exactly as if a stop frame had been encountered (instead of whatever partial frame was read); the same exact circuitry is used for both on the real chip, see us patent 4335277 sheet 16, gates 232a (decode stop frame) and 232b (decode /BE plus DDIS (decode disable) which is active during speak external).

	/* if the chip is a tms5220C, and the rate mode is set to that each frame (0x04 bit set)
    has a 2 bit rate preceeding it, grab two bits here and store them as the rate; */
	if ((tms->variant == SUBTYPE_TMS5220C) && (tms->tms5220c_rate & 0x04))
	{
		indx = extract_bits(tms, 2);
#ifdef DEBUG_PARSE_FRAME_DUMP
		printbits(indx,2);
		fprintf(stderr," ");
#endif
		tms->sample_count = reload_table[indx];
	}
	else // non-5220C and 5220C in fixed rate mode
	tms->sample_count = reload_table[tms->tms5220c_rate&0x3];

	update_status_and_ints(tms);
	if (!tms->talk_status) goto ranout;

	/* attempt to extract the energy index */
	tms->new_frame_energy_idx = extract_bits(tms,tms->coeff->energy_bits);
#ifdef DEBUG_PARSE_FRAME_DUMP
	printbits(tms->new_frame_energy_idx,tms->coeff->energy_bits);
	fprintf(stderr," ");
#endif
	update_status_and_ints(tms);
	if (!tms->talk_status) goto ranout;
	/* if the energy index is 0 or 15, we're done */
	if ((tms->new_frame_energy_idx == 0) || (tms->new_frame_energy_idx == 15))
		return;


	/* attempt to extract the repeat flag */
	rep_flag = extract_bits(tms,1);
#ifdef DEBUG_PARSE_FRAME_DUMP
	printbits(rep_flag, 1);
	fprintf(stderr," ");
#endif

	/* attempt to extract the pitch */
	tms->new_frame_pitch_idx = extract_bits(tms,tms->coeff->pitch_bits);
#ifdef DEBUG_PARSE_FRAME_DUMP
	printbits(tms->new_frame_pitch_idx,tms->coeff->pitch_bits);
	fprintf(stderr," ");
#endif
	update_status_and_ints(tms);
	if (!tms->talk_status) goto ranout;
	/* if this is a repeat frame, just copy the k's */
	if (rep_flag)
		return;

	/* extract first 4 K coefficients */
	for (i = 0; i < 4; i++)
	{
		tms->new_frame_k_idx[i] = extract_bits(tms,tms->coeff->kbits[i]);
#ifdef DEBUG_PARSE_FRAME_DUMP
		printbits(tms->new_frame_k_idx[i],tms->coeff->kbits[i]);
		fprintf(stderr," ");
#endif
		update_status_and_ints(tms);
		if (!tms->talk_status) goto ranout;
	}

	/* if the pitch index was zero, we only need 4 K's... */
	if (tms->new_frame_pitch_idx == 0)
	{
		/* and the rest of the coefficients are zeroed, but that's done in the generator code */
		return;
	}

	/* If we got here, we need the remaining 6 K's */
	for (i = 4; i < tms->coeff->num_k; i++)
	{
		tms->new_frame_k_idx[i] = extract_bits(tms, tms->coeff->kbits[i]);
#ifdef DEBUG_PARSE_FRAME_DUMP
		printbits(tms->new_frame_k_idx[i],tms->coeff->kbits[i]);
		fprintf(stderr," ");
#endif
		update_status_and_ints(tms);
		if (!tms->talk_status) goto ranout;
	}
#ifdef VERBOSE
	if (tms->speak_external)
		logerror("Parsed a frame successfully in FIFO - %d bits remaining\n", bits);
	else
		logerror("Parsed a frame successfully in ROM\n");
#endif
	return;

	ranout:
#ifdef DEBUG_FRAME_ERRORS
    logerror("Ran out of bits on a parse!\n");
#endif
	return;
}

/**********************************************************************************************

     set_interrupt_state -- generate an interrupt

***********************************************************************************************/

static void set_interrupt_state(tms5220_state *tms, int state)
{
#ifdef DEBUG_PIN_READS
	logerror("irq pin set to state %d\n", state);
#endif
    if (tms->irq_func.write && state != tms->irq_pin)
    	devcb_call_write_line(&tms->irq_func, !state);
    tms->irq_pin = state;
}

/**********************************************************************************************

     update_ready_state -- update the ready line

***********************************************************************************************/

static void update_ready_state(tms5220_state *tms)
{
	int state = tms5220_ready_read(tms);
#ifdef DEBUG_PIN_READS
	logerror("ready pin set to state %d\n", state);
#endif
    if (tms->readyq_func.write && state != tms->ready_pin)
    	devcb_call_write_line(&tms->readyq_func, !state);
    tms->ready_pin = state;
}


/**********************************************************************************************

     DEVICE_START( tms5220 ) -- allocate buffers and reset the 5220

***********************************************************************************************/

static DEVICE_START( tms5220 )
{
	static const tms5220_interface dummy = { DEVCB_NULL };
	tms5220_state *tms = get_safe_token(device);

	tms->intf = device->baseconfig().static_config() ? (const tms5220_interface *)device->baseconfig().static_config() : &dummy;
	//tms->table = *device->region();

	tms->device = device;
	tms5220_set_variant(tms, TMS5220_IS_5220);
	tms->clock = device->clock();

	assert_always(tms != NULL, "Error creating TMS5220 chip");

	/* resolve irq and readyq line */
	devcb_resolve_write_line(&tms->irq_func, &tms->intf->irq_func, device);
	devcb_resolve_write_line(&tms->readyq_func, &tms->intf->readyq_func, device);

	/* initialize a stream */
	tms->stream = stream_create(device, 0, 1, device->clock() / 80, tms, tms5220_update);

	/*if (tms->table == NULL)
    {
        assert_always(tms->intf->M0_callback != NULL, "Missing _mandatory_ 'M0_callback' function pointer in the TMS5110 interface\n  This function is used by TMS5220 to call for a new single bit\n  needed to generate the speech when in VSM mode\n  Aborting startup...\n");
        tms->M0_callback = tms->intf->M0_callback;
        tms->set_load_address = tms->intf->load_address;
    }
    else
    {
        tms->M0_callback = speech_rom_read_bit;
        tms->set_load_address = speech_rom_set_addr;
    }*/

	/* not during reset which is called frm within a write! */
	tms->io_ready = 1;
	tms->true_timing = 0;
	tms->rs_ws = 0x03; // rs and ws are assumed to be inactive on device startup

	register_for_save_states(tms);
}

static DEVICE_START( tms5220c )
{
	tms5220_state *tms = get_safe_token(device);
	DEVICE_START_CALL( tms5220 );
	tms5220_set_variant(tms, TMS5220_IS_5220C);
}

static DEVICE_START( tmc0285 )
{
	tms5220_state *tms = get_safe_token(device);
	DEVICE_START_CALL( tms5220 );
	tms5220_set_variant(tms, TMS5220_IS_TMC0285);
}


static DEVICE_START( tms5200 )
{
	tms5220_state *tms = get_safe_token(device);
	DEVICE_START_CALL( tms5220 );
	tms5220_set_variant(tms, TMS5220_IS_5200);
}


static DEVICE_RESET( tms5220 )
{
	tms5220_state *tms = get_safe_token(device);

	tms->digital_select = FORCE_DIGITAL; // assume analog output
	/* initialize the FIFO */
	/*memset(tms->fifo, 0, sizeof(tms->fifo));*/
	tms->fifo_head = tms->fifo_tail = tms->fifo_count = tms->fifo_bits_taken = 0;

	/* initialize the chip state */
	/* Note that we do not actually clear IRQ on start-up : IRQ is even raised if tms->buffer_empty or tms->buffer_low are 0 */
	tms->speaking_now = tms->speak_external = tms->talk_status = tms->irq_pin = tms->ready_pin = 0;
	set_interrupt_state(tms, 0);
	update_ready_state(tms);
	tms->buffer_empty = tms->buffer_low = 1;

	tms->RDB_flag = FALSE;

	/* initialize the energy/pitch/k states */
	tms->old_frame_energy_idx = tms->new_frame_energy_idx = tms->current_energy = tms->target_energy = 0;
	tms->old_frame_pitch_idx = tms->new_frame_pitch_idx = tms->current_pitch = tms->target_pitch = 0;
	memset(tms->old_frame_k_idx, 0, sizeof(tms->old_frame_k_idx));
	memset(tms->new_frame_k_idx, 0, sizeof(tms->new_frame_k_idx));
	memset(tms->current_k, 0, sizeof(tms->current_k));
	memset(tms->target_k, 0, sizeof(tms->target_k));

	/* initialize the sample generators */
	tms->inhibit = 1;
	tms->interp_count = tms->tms5220c_rate = tms->pitch_count = 0;
	tms->sample_count = reload_table[tms->tms5220c_rate&0x3];
    tms->RNG = 0x1FFF;
	memset(tms->u, 0, sizeof(tms->u));
	memset(tms->x, 0, sizeof(tms->x));

	if (tms->intf->load_address)
		(*tms->intf->load_address)(tms->device, 0);

	tms->schedule_dummy_read = TRUE;
}

/**********************************************************************************************

     True timing

***********************************************************************************************/

static TIMER_CALLBACK( io_ready_cb )
{
	tms5220_state *tms = (tms5220_state *) ptr;
	if (param)
	{
		switch (tms->rs_ws)
		{
		case 0x02:
			/* Write */
		    /* bring up to date first */
#ifdef DEBUG_IO_READY
			logerror("Serviced write: %02x\n", tms->write_latch);
			//fprintf(stderr, "Processed write data: %02X\n", tms->write_latch);
#endif
		    stream_update(tms->stream);
		    tms5220_data_write(tms, tms->write_latch);
		    break;
		case 0x01:
			/* Read */
		    /* bring up to date first */
		    stream_update(tms->stream);
		    tms->read_latch = tms5220_status_read(tms);
			break;
		case 0x03:
			/* High Impedance */
		case 0x00:
			/* illegal */
			break;
		}
	}
	tms->io_ready = param;
	update_ready_state(tms);
}

/*
 * /RS line write handler
 */
WRITE_LINE_DEVICE_HANDLER( tms5220_rsq_w )
{
	tms5220_state *tms = get_safe_token(device);
	UINT8 new_val;

	tms->true_timing = 1;
	state &= 0x01;
#ifdef DEBUG_RS_WS
	logerror("/RS written with data: %d\n", state);
#endif
	new_val = (tms->rs_ws & 0x01) | (state<<1);
	if (new_val != tms->rs_ws)
	{
		tms->rs_ws = new_val;
		if (new_val == 0)
		{
			if (tms->variant == SUBTYPE_TMS5220C)
				device->reset();
#ifdef DEBUG_RS_WS
			else
				/* illegal */
				logerror("tms5220_rs_w: illegal\n");
#endif
			return;
		}
		else if ( new_val == 3)
		{
			/* high impedance */
			tms->read_latch = 0xff;
			return;
		}
		if (state)
		{
			/* low to high */
		}
		else
		{
			/* high to low - schedule ready cycle */
#ifdef DEBUG_RS_WS
			logerror("Scheduling ready cycle for /RS...\n");
#endif
			/* upon /RS being activated, /READY goes inactive after 100 nsec from data sheet, through 3 asynchronous gates on patent. This is effectively within one clock, so we immediately set io_ready to 0 and activate the callback. */
			tms->io_ready = 0;
			update_ready_state(tms);
			/* How long does /READY stay inactive, when /RS is pulled low? I believe its almost always ~16 clocks (25 usec at 800khz as shown on the datasheet) */
			timer_set(tms->device->machine, ATTOTIME_IN_HZ(device->clock()/16), tms, 1, io_ready_cb); // this should take around 10-16 (closer to ~11?) cycles to complete
		}
	}
}

/*
 * /WS line write handler
 */
WRITE_LINE_DEVICE_HANDLER( tms5220_wsq_w )
{
	tms5220_state *tms = get_safe_token(device);
	UINT8 new_val;

	tms->true_timing = 1;
	state &= 0x01;
#ifdef DEBUG_RS_WS
	logerror("/WS written with data: %d\n", state);
#endif
	new_val = (tms->rs_ws & 0x02) | (state<<0);
	if (new_val != tms->rs_ws)
	{
		tms->rs_ws = new_val;
		if (new_val == 0)
		{
			if (tms->variant == SUBTYPE_TMS5220C)
				device->reset();
#ifdef DEBUG_RS_WS
			else
				/* illegal */
				logerror("tms5220_ws_w: illegal\n");
#endif
			return;
		}
		else if ( new_val == 3)
		{
			/* high impedance */
			tms->read_latch = 0xff;
			return;
		}
		if (state)
		{
			/* low to high  */
		}
		else
		{
			/* high to low - schedule ready cycle */
#ifdef DEBUG_RS_WS
			logerror("Scheduling ready cycle for /WS...\n");
#endif
			/* upon /WS being activated, /READY goes inactive after 100 nsec from data sheet, through 3 asynchronous gates on patent. This is effectively within one clock, so we immediately set io_ready to 0 and activate the callback. */
			tms->io_ready = 0;
			update_ready_state(tms);
			/* Now comes the complicated part: long does /READY stay inactive, when /WS is pulled low? This depends ENTIRELY on the command written, or whether the chip is in speak external mode or not...
			Speak external mode: ~16 cycles
			Command Mode:
			SPK: ? cycles
			SPKEXT: ? cycles 
			RDBY: between 60 and 140 cycles
			RB: ? cycles (80?)
			RST: between 60 and 140 cycles
			SET RATE (5220C only): ? cycles (probably ~16)
			*/
			// TODO: actually HANDLE the timing differences! currently just assuming always 16 cycles
			timer_set(tms->device->machine, ATTOTIME_IN_HZ(device->clock()/16), tms, 1, io_ready_cb); // this should take around 10-16 (closer to ~15) cycles to complete for fifo writes, TODO: but actually depends on what command is written if in command mode
		}
	}
}

/**********************************************************************************************

     tms5220_data_w -- write data to the sound chip

***********************************************************************************************/

WRITE8_DEVICE_HANDLER( tms5220_data_w )
{
	tms5220_state *tms = get_safe_token(device);
#ifdef DEBUG_RS_WS
	logerror("tms5220_data_w: data %02x\n", data);
#endif
	if (!tms->true_timing)
	{
		/* bring up to date first */
	    stream_update(tms->stream);
	    tms5220_data_write(tms, data);
	}
	else
	{
		/* actually in a write ? */
#ifdef DEBUG_RS_WS
		if (!(tms->rs_ws == 0x02))
			logerror("tms5220_data_w: data written outside ws, status: %02x!\n", tms->rs_ws);
#endif
		tms->write_latch = data;
	}
}



/**********************************************************************************************

     tms5220_status_r -- read status or data from the sound chip

***********************************************************************************************/

READ8_DEVICE_HANDLER( tms5220_status_r )
{
	tms5220_state *tms = get_safe_token(device);
	if (!tms->true_timing)
	{
	   /* bring up to date first */
	    stream_update(tms->stream);
	    return tms5220_status_read(tms);
	}
	else
	{
		/* actually in a read ? */
		if (tms->rs_ws == 0x01)
			return tms->read_latch;
#ifdef DEBUG_RS_WS
		else
			logerror("tms5220_status_r: data read outside rs!\n");
#endif
		return 0xff;
	}
}



/**********************************************************************************************

     tms5220_ready_r -- return the not ready status from the sound chip

***********************************************************************************************/

READ_LINE_DEVICE_HANDLER( tms5220_readyq_r )
{
	tms5220_state *tms = get_safe_token(device);
    /* bring up to date first */
    stream_update(tms->stream);
    return !tms5220_ready_read(tms);
}



/**********************************************************************************************

     tms5220_time_to_ready -- return the time in seconds until the ready line is asserted

***********************************************************************************************/

double tms5220_time_to_ready(running_device *device)
{
	tms5220_state *tms = get_safe_token(device);
	double cycles;

	/* bring up to date first */
	stream_update(tms->stream);
	cycles = tms5220_cycles_to_ready(tms);
	return cycles * 80.0 / tms->clock;
}



/**********************************************************************************************

     tms5220_int_r -- return the int status from the sound chip

***********************************************************************************************/

READ_LINE_DEVICE_HANDLER( tms5220_intq_r )
{
	tms5220_state *tms = get_safe_token(device);
    /* bring up to date first */
    stream_update(tms->stream);
    return !tms5220_int_read(tms);
}



/**********************************************************************************************

     tms5220_update -- update the sound chip so that it is in sync with CPU execution

***********************************************************************************************/

static STREAM_UPDATE( tms5220_update )
{
	tms5220_state *tms = (tms5220_state *)param;
	INT16 sample_data[MAX_SAMPLE_CHUNK];
	stream_sample_t *buffer = outputs[0];

	/* loop while we still have samples to generate */
	while (samples)
	{
		int length = (samples > MAX_SAMPLE_CHUNK) ? MAX_SAMPLE_CHUNK : samples;
		int index;

		/* generate the samples and copy to the target buffer */
		tms5220_process(tms, sample_data, length);
		for (index = 0; index < length; index++)
			*buffer++ = sample_data[index];

		/* account for the samples */
		samples -= length;
	}
}



/**********************************************************************************************

     tms5220_set_frequency -- adjusts the playback frequency

***********************************************************************************************/

void tms5220_set_frequency(running_device *device, int frequency)
{
	tms5220_state *tms = get_safe_token(device);
	stream_set_sample_rate(tms->stream, frequency / 80);
	tms->clock = frequency;
}



/*-------------------------------------------------
    device definition
-------------------------------------------------*/

static const char DEVTEMPLATE_SOURCE[] = __FILE__;

#define DEVTEMPLATE_ID(p,s)				p##tms5220##s
#define DEVTEMPLATE_FEATURES			DT_HAS_START | DT_HAS_RESET
#define DEVTEMPLATE_NAME				"TMS5220"
#define DEVTEMPLATE_FAMILY				"TI Speech"
#include "devtempl.h"

#define DEVTEMPLATE_DERIVED_ID(p,s)		p##tms5220c##s
#define DEVTEMPLATE_DERIVED_FEATURES	DT_HAS_START
#define DEVTEMPLATE_DERIVED_NAME		"TMS5220C"
#include "devtempl.h"

#define DEVTEMPLATE_DERIVED_ID(p,s)		p##tmc0285##s
#define DEVTEMPLATE_DERIVED_FEATURES	DT_HAS_START
#define DEVTEMPLATE_DERIVED_NAME		"TMC0285"
#include "devtempl.h"

#define DEVTEMPLATE_DERIVED_ID(p,s)		p##tms5200##s
#define DEVTEMPLATE_DERIVED_FEATURES	DT_HAS_START
#define DEVTEMPLATE_DERIVED_NAME		"TMS5200"
#include "devtempl.h"


DEFINE_LEGACY_SOUND_DEVICE(TMS5220C, tms5220c);
DEFINE_LEGACY_SOUND_DEVICE(TMS5220, tms5220);
DEFINE_LEGACY_SOUND_DEVICE(TMC0285, tmc0285);
DEFINE_LEGACY_SOUND_DEVICE(TMS5200, tms5200);