1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
|
// license:BSD-3-Clause
// copyright-holders:Miguel Angel Horna
/*
* Sega System 32 Multi/Model 1/Model 2 custom PCM chip (315-5560) emulation.
*
* by Miguel Angel Horna (ElSemi) for Model 2 Emulator and MAME.
* Information by R.Belmont and the YMF278B (OPL4) manual.
*
* voice registers:
* 0: Pan
* 1: Index of sample
* 2: LSB of pitch (low 2 bits seem unused so)
* 3: MSB of pitch (ooooppppppppppxx) (o=octave (4 bit signed), p=pitch (10 bits), x=unused?
* 4: voice control: top bit = 1 for key on, 0 for key off
* 5: bit 0: 0: interpolate volume changes, 1: direct set volume,
bits 1-7 = volume attenuate (0=max, 7f=min)
* 6: LFO frequency + Phase LFO depth
* 7: Amplitude LFO size
*
* The first sample ROM contains a variable length table with 12
* bytes per instrument/sample. This is very similar to the YMF278B.
*
* The first 3 bytes are the offset into the file (big endian).
* The next 2 are the loop start offset into the file (big endian)
* The next 2 are the 2's complement of the total sample size (big endian)
* The next byte is LFO freq + depth (copied to reg 6 ?)
* The next 3 are envelope params (Attack, Decay1 and 2, sustain level, release, Key Rate Scaling)
* The next byte is Amplitude LFO size (copied to reg 7 ?)
*
* TODO
* - The YM278B manual states that the chip supports 512 instruments. The MultiPCM probably supports them
* too but the high bit position is unknown (probably reg 2 low bit). Any game use more than 256?
*
*/
#include "emu.h"
#include "multipcm.h"
//????
#define MULTIPCM_CLOCKDIV (180.0f)
ALLOW_SAVE_TYPE(STATE); // allow save_item on a non-fundamental type
static signed int LPANTABLE[0x800],RPANTABLE[0x800];
#define FIX(v) ((UINT32) ((float) (1<<SHIFT)*(v)))
static const int val2chan[] =
{
0, 1, 2, 3, 4, 5, 6 , -1,
7, 8, 9, 10,11,12,13, -1,
14,15,16,17,18,19,20, -1,
21,22,23,24,25,26,27, -1,
};
#define SHIFT 12
#define MULTIPCM_RATE 44100.0
/*******************************
ENVELOPE SECTION
*******************************/
//Times are based on a 44100Hz timebase. It's adjusted to the actual sampling rate on startup
static const double BaseTimes[64]={0,0,0,0,6222.95,4978.37,4148.66,3556.01,3111.47,2489.21,2074.33,1778.00,1555.74,1244.63,1037.19,889.02,
777.87,622.31,518.59,444.54,388.93,311.16,259.32,222.27,194.47,155.60,129.66,111.16,97.23,77.82,64.85,55.60,
48.62,38.91,32.43,27.80,24.31,19.46,16.24,13.92,12.15,9.75,8.12,6.98,6.08,4.90,4.08,3.49,
3.04,2.49,2.13,1.90,1.72,1.41,1.18,1.04,0.91,0.73,0.59,0.50,0.45,0.45,0.45,0.45};
#define AR2DR 14.32833
static signed int lin2expvol[0x400];
static int TLSteps[2];
#define EG_SHIFT 16
static int EG_Update(SLOT *slot)
{
switch(slot->EG.state)
{
case ATTACK:
slot->EG.volume+=slot->EG.AR;
if(slot->EG.volume>=(0x3ff<<EG_SHIFT))
{
slot->EG.state=DECAY1;
if(slot->EG.D1R>=(0x400<<EG_SHIFT)) //Skip DECAY1, go directly to DECAY2
slot->EG.state=DECAY2;
slot->EG.volume=0x3ff<<EG_SHIFT;
}
break;
case DECAY1:
slot->EG.volume-=slot->EG.D1R;
if(slot->EG.volume<=0)
slot->EG.volume=0;
if(slot->EG.volume>>EG_SHIFT<=(slot->EG.DL<<(10-4)))
slot->EG.state=DECAY2;
break;
case DECAY2:
slot->EG.volume-=slot->EG.D2R;
if(slot->EG.volume<=0)
slot->EG.volume=0;
break;
case RELEASE:
slot->EG.volume-=slot->EG.RR;
if(slot->EG.volume<=0)
{
slot->EG.volume=0;
slot->Playing=0;
}
break;
default:
return 1<<SHIFT;
}
return lin2expvol[slot->EG.volume>>EG_SHIFT];
}
static unsigned int Get_RATE(unsigned int *Steps,unsigned int rate,unsigned int val)
{
int r=4*val+rate;
if(val==0)
return Steps[0];
if(val==0xf)
return Steps[0x3f];
if(r>0x3f)
r=0x3f;
return Steps[r];
}
void multipcm_device::EG_Calc(SLOT *slot)
{
int octave=((slot->Regs[3]>>4)-1)&0xf;
int rate;
if(octave&8) octave=octave-16;
if(slot->Sample->KRS!=0xf)
rate=(octave+slot->Sample->KRS)*2+((slot->Regs[3]>>3)&1);
else
rate=0;
slot->EG.AR=Get_RATE(m_ARStep,rate,slot->Sample->AR);
slot->EG.D1R=Get_RATE(m_DRStep,rate,slot->Sample->DR1);
slot->EG.D2R=Get_RATE(m_DRStep,rate,slot->Sample->DR2);
slot->EG.RR=Get_RATE(m_DRStep,rate,slot->Sample->RR);
slot->EG.DL=0xf-slot->Sample->DL;
}
/*****************************
LFO SECTION
*****************************/
#define LFO_SHIFT 8
#define LFIX(v) ((unsigned int) ((float) (1<<LFO_SHIFT)*(v)))
//Convert DB to multiply amplitude
#define DB(v) LFIX(pow(10.0,v/20.0))
//Convert cents to step increment
#define CENTS(v) LFIX(powf(2.0f,v/1200.0f))
static int PLFO_TRI[256];
static int ALFO_TRI[256];
static const float LFOFreq[8]={0.168f,2.019f,3.196f,4.206f,5.215f,5.888f,6.224f,7.066f}; //Hz;
static const float PSCALE[8]={0.0f,3.378f,5.065f,6.750f,10.114f,20.170f,40.180f,79.307f}; //cents
static const float ASCALE[8]={0.0f,0.4f,0.8f,1.5f,3.0f,6.0f,12.0f,24.0f}; //DB
static int PSCALES[8][256];
static int ASCALES[8][256];
static void LFO_Init(void)
{
int i,s;
for(i=0;i<256;++i)
{
int a; //amplitude
int p; //phase
//Tri
if(i<128)
a=255-(i*2);
else
a=(i*2)-256;
if(i<64)
p=i*2;
else if(i<128)
p=255-i*2;
else if(i<192)
p=256-i*2;
else
p=i*2-511;
ALFO_TRI[i]=a;
PLFO_TRI[i]=p;
}
for(s=0;s<8;++s)
{
float limit=PSCALE[s];
for(i=-128;i<128;++i)
{
PSCALES[s][i+128]=CENTS(((limit*(float) i)/128.0f));
}
limit=-ASCALE[s];
for(i=0;i<256;++i)
{
ASCALES[s][i]=DB(((limit*(float) i)/256.0f));
}
}
}
INLINE signed int PLFO_Step(LFO_t *LFO)
{
int p;
LFO->phase+=LFO->phase_step;
p=LFO->table[(LFO->phase>>LFO_SHIFT)&0xff];
p=LFO->scale[p+128];
return p<<(SHIFT-LFO_SHIFT);
}
INLINE signed int ALFO_Step(LFO_t *LFO)
{
int p;
LFO->phase+=LFO->phase_step;
p=LFO->table[(LFO->phase>>LFO_SHIFT)&0xff];
p=LFO->scale[p];
return p<<(SHIFT-LFO_SHIFT);
}
void multipcm_device::LFO_ComputeStep(LFO_t *LFO,UINT32 LFOF,UINT32 LFOS,int ALFO)
{
float step=(float) LFOFreq[LFOF]*256.0f/(float) m_Rate;
LFO->phase_step=(unsigned int) ((float) (1<<LFO_SHIFT)*step);
if(ALFO)
{
LFO->table=ALFO_TRI;
LFO->scale=ASCALES[LFOS];
}
else
{
LFO->table=PLFO_TRI;
LFO->scale=PSCALES[LFOS];
}
}
void multipcm_device::WriteSlot(SLOT *slot,int reg,unsigned char data)
{
slot->Regs[reg]=data;
switch(reg)
{
case 0: //PANPOT
slot->Pan=(data>>4)&0xf;
break;
case 1: //Sample
//according to YMF278 sample write causes some base params written to the regs (envelope+lfos)
//the game should never change the sample while playing.
{
Sample_t *Sample=m_Samples+slot->Regs[1];
WriteSlot(slot,6,Sample->LFOVIB);
WriteSlot(slot,7,Sample->AM);
}
break;
case 2: //Pitch
case 3:
{
unsigned int oct=((slot->Regs[3]>>4)-1)&0xf;
unsigned int pitch=((slot->Regs[3]&0xf)<<6)|(slot->Regs[2]>>2);
pitch=m_FNS_Table[pitch];
if(oct&0x8)
pitch>>=(16-oct);
else
pitch<<=oct;
slot->step=pitch/m_Rate;
}
break;
case 4: //KeyOn/Off (and more?)
{
if(data&0x80) //KeyOn
{
slot->Sample=m_Samples+slot->Regs[1];
slot->Playing=1;
slot->Base=slot->Sample->Start;
slot->offset=0;
slot->Prev=0;
slot->TL=slot->DstTL<<SHIFT;
EG_Calc(slot);
slot->EG.state=ATTACK;
slot->EG.volume=0;
if(slot->Base>=0x100000)
{
if(slot->Pan&8)
slot->Base=(slot->Base&0xfffff)|(m_BankL);
else
slot->Base=(slot->Base&0xfffff)|(m_BankR);
}
}
else
{
if(slot->Playing)
{
if(slot->Sample->RR!=0xf)
slot->EG.state=RELEASE;
else
slot->Playing=0;
}
}
}
break;
case 5: //TL+Interpolation
{
slot->DstTL=(data>>1)&0x7f;
if(!(data&1)) //Interpolate TL
{
if((slot->TL>>SHIFT)>slot->DstTL)
slot->TLStep=TLSteps[0]; //decrease
else
slot->TLStep=TLSteps[1]; //increase
}
else
slot->TL=slot->DstTL<<SHIFT;
}
break;
case 6: //LFO freq+PLFO
{
if(data)
{
LFO_ComputeStep(&(slot->PLFO),(slot->Regs[6]>>3)&7,slot->Regs[6]&7,0);
LFO_ComputeStep(&(slot->ALFO),(slot->Regs[6]>>3)&7,slot->Regs[7]&7,1);
}
}
break;
case 7: //ALFO
{
if(data)
{
LFO_ComputeStep(&(slot->PLFO),(slot->Regs[6]>>3)&7,slot->Regs[6]&7,0);
LFO_ComputeStep(&(slot->ALFO),(slot->Regs[6]>>3)&7,slot->Regs[7]&7,1);
}
}
break;
}
}
READ8_MEMBER( multipcm_device::read )
{
return 0;
}
WRITE8_MEMBER( multipcm_device::write )
{
switch(offset)
{
case 0: //Data write
WriteSlot(m_Slots+m_CurSlot,m_Address,data);
break;
case 1:
m_CurSlot=val2chan[data&0x1f];
break;
case 2:
m_Address=(data>7)?7:data;
break;
}
}
/* MAME/M1 access functions */
void multipcm_device::set_bank(UINT32 leftoffs, UINT32 rightoffs)
{
m_BankL = leftoffs;
m_BankR = rightoffs;
}
const device_type MULTIPCM = &device_creator<multipcm_device>;
// default address map
static ADDRESS_MAP_START( multipcm, AS_0, 8, multipcm_device )
AM_RANGE(0x000000, 0x3fffff) AM_ROM
ADDRESS_MAP_END
multipcm_device::multipcm_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
: device_t(mconfig, MULTIPCM, "Sega/Yamaha 315-5560", tag, owner, clock, "multipcm", __FILE__),
device_sound_interface(mconfig, *this),
device_memory_interface(mconfig, *this),
m_space_config("mpcm_samples", ENDIANNESS_LITTLE, 8, 24, 0, NULL),
m_stream(NULL),
//m_Samples(0x200),
//m_Slots[28],
m_CurSlot(0),
m_Address(0),
m_BankR(0),
m_BankL(0),
m_Rate(0)
//m_ARStep(0),
//m_DRStep(0),
//m_FNS_Table(0)
{
m_address_map[0] = *ADDRESS_MAP_NAME(multipcm);
}
//-------------------------------------------------
// memory_space_config - return a description of
// any address spaces owned by this device
//-------------------------------------------------
const address_space_config *multipcm_device::memory_space_config(address_spacenum spacenum) const
{
return (spacenum == 0) ? &m_space_config : NULL;
}
//-------------------------------------------------
// device_config_complete - perform any
// operations now that the configuration is
// complete
//-------------------------------------------------
void multipcm_device::device_config_complete()
{
}
//-------------------------------------------------
// device_start - device-specific startup
//-------------------------------------------------
void multipcm_device::device_start()
{
int i;
// find our direct access
m_direct = &space().direct();
m_Rate=(float) clock() / MULTIPCM_CLOCKDIV;
m_stream = machine().sound().stream_alloc(*this, 0, 2, m_Rate);
//Volume+pan table
for(i=0;i<0x800;++i)
{
float SegaDB=0;
float TL;
float LPAN,RPAN;
unsigned char iTL=i&0x7f;
unsigned char iPAN=(i>>7)&0xf;
SegaDB=(float) iTL*(-24.0f)/(float) 0x40;
TL=powf(10.0f,SegaDB/20.0f);
if(iPAN==0x8)
{
LPAN=RPAN=0.0;
}
else if(iPAN==0x0)
{
LPAN=RPAN=1.0;
}
else if(iPAN&0x8)
{
LPAN=1.0;
iPAN=0x10-iPAN;
SegaDB=(float) iPAN*(-12.0f)/(float) 0x4;
RPAN=pow(10.0f,SegaDB/20.0f);
if((iPAN&0x7)==7)
RPAN=0.0;
}
else
{
RPAN=1.0;
SegaDB=(float) iPAN*(-12.0f)/(float) 0x4;
LPAN=pow(10.0f,SegaDB/20.0f);
if((iPAN&0x7)==7)
LPAN=0.0;
}
TL/=4.0f;
LPANTABLE[i]=FIX((LPAN*TL));
RPANTABLE[i]=FIX((RPAN*TL));
}
//Pitch steps
for(i=0;i<0x400;++i)
{
float fcent=m_Rate*(1024.0f+(float) i)/1024.0f;
m_FNS_Table[i]=(unsigned int ) ((float) (1<<SHIFT) *fcent);
}
//Envelope steps
for(i=0;i<0x40;++i)
{
//Times are based on 44100 clock, adjust to real chip clock
m_ARStep[i]=(float) (0x400<<EG_SHIFT)/(float)(BaseTimes[i]*44100.0/(1000.0));
m_DRStep[i]=(float) (0x400<<EG_SHIFT)/(float)(BaseTimes[i]*AR2DR*44100.0/(1000.0));
}
m_ARStep[0]=m_ARStep[1]=m_ARStep[2]=m_ARStep[3]=0;
m_ARStep[0x3f]=0x400<<EG_SHIFT;
m_DRStep[0]=m_DRStep[1]=m_DRStep[2]=m_DRStep[3]=0;
//TL Interpolation steps
//lower
TLSteps[0]=-(float) (0x80<<SHIFT)/(78.2f*44100.0f/1000.0f);
//raise
TLSteps[1]=(float) (0x80<<SHIFT)/(78.2f*2*44100.0f/1000.0f);
//build the linear->exponential ramps
for(i=0;i<0x400;++i)
{
float db=-(96.0f-(96.0f*(float) i/(float) 0x400));
lin2expvol[i]=powf(10.0f,db/20.0f)*(float) (1<<SHIFT);
}
for(i=0;i<512;++i)
{
UINT8 ptSample[12];
for (int j = 0; j < 12; j++)
{
ptSample[j] = (UINT8)m_direct->read_raw_byte((i*12) + j);
}
m_Samples[i].Start=(ptSample[0]<<16)|(ptSample[1]<<8)|(ptSample[2]<<0);
m_Samples[i].Loop=(ptSample[3]<<8)|(ptSample[4]<<0);
m_Samples[i].End=0xffff-((ptSample[5]<<8)|(ptSample[6]<<0));
m_Samples[i].LFOVIB=ptSample[7];
m_Samples[i].DR1=ptSample[8]&0xf;
m_Samples[i].AR=(ptSample[8]>>4)&0xf;
m_Samples[i].DR2=ptSample[9]&0xf;
m_Samples[i].DL=(ptSample[9]>>4)&0xf;
m_Samples[i].RR=ptSample[10]&0xf;
m_Samples[i].KRS=(ptSample[10]>>4)&0xf;
m_Samples[i].AM=ptSample[11];
}
save_item(NAME(m_CurSlot));
save_item(NAME(m_Address));
save_item(NAME(m_BankL));
save_item(NAME(m_BankR));
for(i=0;i<28;++i)
{
m_Slots[i].Num=i;
m_Slots[i].Playing=0;
save_item(NAME(m_Slots[i].Num), i);
save_item(NAME(m_Slots[i].Regs), i);
save_item(NAME(m_Slots[i].Playing), i);
save_item(NAME(m_Slots[i].Base), i);
save_item(NAME(m_Slots[i].offset), i);
save_item(NAME(m_Slots[i].step), i);
save_item(NAME(m_Slots[i].Pan), i);
save_item(NAME(m_Slots[i].TL), i);
save_item(NAME(m_Slots[i].DstTL), i);
save_item(NAME(m_Slots[i].TLStep), i);
save_item(NAME(m_Slots[i].Prev), i);
save_item(NAME(m_Slots[i].EG.volume), i);
save_item(NAME(m_Slots[i].EG.state), i);
save_item(NAME(m_Slots[i].EG.step), i);
save_item(NAME(m_Slots[i].EG.AR), i);
save_item(NAME(m_Slots[i].EG.D1R), i);
save_item(NAME(m_Slots[i].EG.D2R), i);
save_item(NAME(m_Slots[i].EG.RR), i);
save_item(NAME(m_Slots[i].EG.DL), i);
save_item(NAME(m_Slots[i].PLFO.phase), i);
save_item(NAME(m_Slots[i].PLFO.phase_step), i);
save_item(NAME(m_Slots[i].ALFO.phase), i);
save_item(NAME(m_Slots[i].ALFO.phase_step), i);
}
LFO_Init();
}
//-------------------------------------------------
// sound_stream_update - handle a stream update
//-------------------------------------------------
void multipcm_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
{
stream_sample_t *datap[2];
int i,sl;
datap[0] = outputs[0];
datap[1] = outputs[1];
memset(datap[0], 0, sizeof(*datap[0])*samples);
memset(datap[1], 0, sizeof(*datap[1])*samples);
for(i=0;i<samples;++i)
{
signed int smpl=0;
signed int smpr=0;
for(sl=0;sl<28;++sl)
{
SLOT *slot=m_Slots+sl;
if(slot->Playing)
{
unsigned int vol=(slot->TL>>SHIFT)|(slot->Pan<<7);
unsigned int adr=slot->offset>>SHIFT;
signed int sample;
unsigned int step=slot->step;
signed int csample=(signed short) (m_direct->read_raw_byte(slot->Base+adr)<<8);
signed int fpart=slot->offset&((1<<SHIFT)-1);
sample=(csample*fpart+slot->Prev*((1<<SHIFT)-fpart))>>SHIFT;
if(slot->Regs[6]&7) //Vibrato enabled
{
step=step*PLFO_Step(&(slot->PLFO));
step>>=SHIFT;
}
slot->offset+=step;
if(slot->offset>=(slot->Sample->End<<SHIFT))
{
slot->offset=slot->Sample->Loop<<SHIFT;
}
if(adr^(slot->offset>>SHIFT))
{
slot->Prev=csample;
}
if((slot->TL>>SHIFT)!=slot->DstTL)
slot->TL+=slot->TLStep;
if(slot->Regs[7]&7) //Tremolo enabled
{
sample=sample*ALFO_Step(&(slot->ALFO));
sample>>=SHIFT;
}
sample=(sample*EG_Update(slot))>>10;
smpl+=(LPANTABLE[vol]*sample)>>SHIFT;
smpr+=(RPANTABLE[vol]*sample)>>SHIFT;
}
}
#define ICLIP16(x) (x<-32768)?-32768:((x>32767)?32767:x)
datap[0][i]=ICLIP16(smpl);
datap[1][i]=ICLIP16(smpr);
}
}
|