summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/sound/es1373.c
blob: af4054e241e2042ae23a0a488b010abd81a9718b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#include "es1373.h"

#define LOG_ES            (0)
#define LOG_ES_REG        (0)
#define LOG_ES_FILE      	(0)


static MACHINE_CONFIG_FRAGMENT( es1373 )
	MCFG_SPEAKER_STANDARD_STEREO("lspeaker", "rspeaker")
MACHINE_CONFIG_END

machine_config_constructor es1373_device::device_mconfig_additions() const
{
	return MACHINE_CONFIG_NAME( es1373 );
}

const device_type ES1373 = &device_creator<es1373_device>;

DEVICE_ADDRESS_MAP_START(map, 32, es1373_device)
	AM_RANGE(0x00, 0x3f) AM_READWRITE  (reg_r,  reg_w)
ADDRESS_MAP_END

es1373_device::es1373_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
	: pci_device(mconfig, ES1373, "Creative Labs Ensoniq AudioPCI97 ES1373", tag, owner, clock, "es1373", __FILE__),
		device_sound_interface(mconfig, *this),
		m_eslog(NULL),
		m_irq_num(-1)
{
}

void es1373_device::set_irq_info(const char *tag, const int irq_num)
{
	m_cpu_tag = tag;
	m_irq_num = irq_num;
}

//-------------------------------------------------
//  device_stop - device-specific stop
//-------------------------------------------------
void es1373_device::device_stop()
{
	/* debugging */
	if (LOG_ES_FILE && m_eslog)
	{
		fclose(m_eslog);
		m_eslog = NULL;
	}
}

//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------
void es1373_device::device_start()
{
	m_cpu = machine().device<cpu_device>(m_cpu_tag);
	pci_device::device_start();
	add_map(0x40, M_IO, FUNC(es1373_device::map));

	// create the stream
	m_stream = machine().sound().stream_alloc(*this, 0, 2, 44100/2);

	m_timer = timer_alloc(0, NULL);
	m_timer->adjust(attotime::zero, 0, attotime::from_hz(44100/2/16));

}

void es1373_device::device_reset()
{
	// debugging
	m_tempCount = 0;
	if (LOG_ES_FILE && m_eslog)
	{
		fclose(m_eslog);
		m_eslog = NULL;
	}
	if (LOG_ES_FILE && !m_eslog)
		m_eslog = fopen("es.log", "w");

	pci_device::device_reset();
	memset(m_es_regs, 0, sizeof(m_es_regs));
	memset(m_ac97_regs, 0, sizeof(m_ac97_regs));
	m_ac97_regs[0] = 0x0800;
	// Reset ADC channel info
	m_adc.number = 0;
	m_adc.enable = false;
	m_adc.initialized = false;
	m_adc.buf_rptr = 0x20;
	m_adc.buf_wptr = 0x20;
	// Reset DAC1 channel info
	m_dac1.number = 1;
	m_dac1.enable = false;
	m_dac1.initialized = false;
	m_dac1.buf_rptr = 0x0;
	m_dac1.buf_wptr = 0x0;
	// Reset DAC2 channel info
	m_dac2.number = 2;
	m_dac2.enable = false;
	m_dac2.initialized = false;
	m_dac2.buf_rptr = 0x10;
	m_dac2.buf_wptr = 0x10;  // Start PCI writing to bottom half of buffer

	m_stream->update();
}

void es1373_device::map_extra(UINT64 memory_window_start, UINT64 memory_window_end, UINT64 memory_offset, address_space *memory_space,
							UINT64 io_window_start, UINT64 io_window_end, UINT64 io_offset, address_space *io_space)
{
	m_memory_space = memory_space;
}

//-------------------------------------------------
//  device_timer - called when our device timer expires
//-------------------------------------------------
void es1373_device::device_timer(emu_timer &timer, device_timer_id tid, int param, void *ptr)
{
	m_stream->update();
}

//-------------------------------------------------
//  sound_stream_update - handle update requests for
//  our sound stream
//-------------------------------------------------
void es1373_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
{

	if (m_dac1.enable) {
		logerror("%s: sound_stream_update DAC1 not implemented yet\n", tag());
	}

	if (m_dac2.enable) {
		send_audio_out(m_dac2, ICSTATUS_DAC2_INT_MASK, outputs[0], outputs[1], samples);
	}

	if (m_adc.enable) {
		if (m_adc.format!=SCTRL_16BIT_MONO) {
			logerror("%s: sound_stream_update Only SCTRL_16BIT_MONO recorded supported\n", tag());
		} else {
			for (int i=0; i<samples; i++) {
				if (m_adc.buf_count<=m_adc.buf_size) {
					if (LOG_ES)
						logerror("%s: ADC buf_count: %i buf_size: %i buf_rptr: %i buf_wptr: %i\n", machine().describe_context(),
							m_adc.buf_count, m_adc.buf_size, m_adc.buf_rptr, m_adc.buf_wptr);
					if ((m_adc.buf_count&0x1)) {
						m_adc.buf_wptr++;
					}
					m_adc.buf_count++;
					if (m_adc.buf_count>m_adc.buf_size) {
						if (m_adc.loop_en) {
							// Keep playing
							m_adc.buf_count = 0;
							if (LOG_ES)
								logerror("%X: send_audio_out ADC clearing buf_count\n", machine().device("maincpu")->safe_pc());
						}
						if (m_adc.int_en) {
							m_es_regs[ES_INT_CS_STATUS] |= ICSTATUS_ADC_INT_MASK;
							if (LOG_ES)
								logerror("%X: send_audio_out Setting ADC interrupt\n", machine().device("maincpu")->safe_pc());
						}
					}
					if (!(m_adc.buf_count&1) && !(m_adc.buf_wptr&0xf)) {
						m_adc.buf_wptr -= 0x10;
					}
					// PCI Write Transfer
					if (command & 0x4) {
						if ((m_adc.buf_rptr&8)^(m_adc.buf_wptr&8)) {
							transfer_pci_audio(m_adc, ES_PCI_WRITE);
						}
					}
				}
			}
		}
	}
	if (m_es_regs[ES_INT_CS_STATUS]&(ICSTATUS_DAC1_INT_MASK|ICSTATUS_DAC2_INT_MASK|ICSTATUS_ADC_INT_MASK)) {
		m_es_regs[ES_INT_CS_STATUS] |= ICSTATUS_INTR_MASK;
		// Assert interrupt
		//m_cpu->set_input_line(ES_IRQ_NUM, ASSERT_LINE);
		if (m_irq_num!=-1) {
			m_cpu->set_input_line(m_irq_num, ASSERT_LINE);
		}
	}
}

//-------------------------------------------------
//  send_audio_out - Sends channel audio output data
//-------------------------------------------------
void es1373_device::send_audio_out(chan_info& chan, UINT32 intr_mask, stream_sample_t *outL, stream_sample_t *outR, int samples)
{
	// Only transfer PCI data if bus mastering is enabled
	// Fill initial half buffer
	if (1 && (command & 0x4) && (!chan.initialized)) {
		chan.initialized = true;
		transfer_pci_audio(chan, ES_PCI_READ);
	}
	//UINT32 sample_size = calc_size(chan.format);
	// Send data to sound stream
	bool buf_row_done;
	for (int i=0; i<samples; i++) {
		buf_row_done = false;
		if (chan.buf_count<=chan.buf_size) {
			// Only transfer PCI data if bus mastering is enabled
			// Fill half-buffer when read pointer is at start of next half
			//if ((command & 0x4) && ((chan.buf_rptr&8)^(chan.buf_wptr&8)) && !(m_es_regs[ES_INT_CS_STATUS] & intr_mask)) {
			if ((command & 0x4) && ((chan.buf_rptr&8)^(chan.buf_wptr&8))) {
				transfer_pci_audio(chan, ES_PCI_READ);
			}
			if (LOG_ES && i==0)
				logerror("%X: chan: %X samples: %i buf_count: %X buf_size: %X buf_rptr: %X buf_wptr: %X\n",
					machine().device("maincpu")->safe_pc(), chan.number, samples, chan.buf_count, chan.buf_size, chan.buf_rptr, chan.buf_wptr);
			// Buffer is 4 bytes per location, need to switch on sample mode
			switch (chan.format) {
				case SCTRL_8BIT_MONO:
					logerror("es1373_device::send_audio_out SCTRL_8BIT_MONO not implemented yet\n");
					break;
				case SCTRL_8BIT_STEREO:
					logerror("es1373_device::send_audio_out SCTRL_8BIT_STEREO not implemented yet\n");
					break;
				case SCTRL_16BIT_MONO:
						// The sound cache is 32 bit wide fifo, so each entry is two mono 16 bit samples
						if ((chan.buf_count&0x1)) {
							// Read high 16 bits
							outL[i] = outR[i] = (INT16)(m_sound_cache[chan.buf_rptr]>>16);
							chan.buf_rptr++;
							buf_row_done = true;
						} else {
							// Read low 16 bits
							outL[i] = outR[i] = (INT16)(m_sound_cache[chan.buf_rptr]&0xffff);
						}
					break;
				case SCTRL_16BIT_STEREO:
						// The sound cache is 32 bit wide fifo, so each entry is one stereo 16 bit sample
						outL[i] = (INT16) m_sound_cache[chan.buf_rptr]&0xffff;
						outR[i] = (INT16) m_sound_cache[chan.buf_rptr]>>16;
						chan.buf_rptr++;
						buf_row_done = true;
					break;
			}
			if (LOG_ES_FILE && m_tempCount<1000000) {
				m_tempCount++;
				//logerror("es1373_device::sound_stream_update count: %i samp16: %X\n", i, samp16);
				//if (LOG_ES_FILE && m_eslog)
					//fprintf(m_eslog, "%i\n", samp16);
			}
			chan.buf_count++;
			if (chan.buf_count > chan.buf_size) {
				if (chan.loop_en) {
					// Keep playing
					//chan.buf_count -= 1;  // Should check SCTRL_P2_END_MASK
					chan.buf_count = 0;
					//chan.buf_rptr -= 1;
					if (LOG_ES)
						logerror("%X: send_audio_out DAC2 clearing buf_count\n", machine().device("maincpu")->safe_pc());
				}
				if (chan.int_en) {
					m_es_regs[ES_INT_CS_STATUS] |= intr_mask;
					if (LOG_ES)
						logerror("%X: send_audio_out Setting DAC2 interrupt\n", machine().device("maincpu")->safe_pc());
				}
			}
			if (buf_row_done && !(chan.buf_rptr&0xf)) {
				chan.buf_rptr -= 0x10;
			}
		} else {
			// Send zeros?
			outL[i] = outR[i] = 0;
		}
	}
}

void es1373_device::transfer_pci_audio(chan_info& chan, int type)
{
	UINT32 pci_addr, data;
	pci_addr = chan.pci_addr + (chan.pci_count<<2);
	if (LOG_ES)
		logerror("%s: transfer_pci_audio start chan: %X pci_addr: %08X pci_count: %X pci_size: %X buf_rptr: %X buf_wptr: %X\n",
			machine().describe_context(), chan.number, pci_addr, chan.pci_count, chan.pci_size, chan.buf_rptr, chan.buf_wptr);
	// Always transfer 8 longwords
	for (int i=0; i<8; i++) {
		pci_addr = chan.pci_addr + (chan.pci_count<<2);
		if (type==ES_PCI_READ) {
			data = m_memory_space->read_dword(pci_addr, 0xffffffff);
			m_sound_cache[chan.buf_wptr++] = data;
			if (!(chan.buf_wptr&0xf)) {
				chan.buf_wptr -= 0x10;
			}
		} else {
			data = m_sound_cache[chan.buf_rptr++];
			m_memory_space->write_dword(pci_addr, data);
			if (!(chan.buf_rptr&0xf)) {
				chan.buf_rptr -= 0x10;
			}
		}
		if (chan.pci_count==chan.pci_size) {
			chan.pci_count = 0;
		} else {
			chan.pci_count++;
		}
	}
}

UINT32 es1373_device::calc_size(const UINT8 &format)
{
	switch (format) {
		case SCTRL_8BIT_MONO:
			return 1;
			break;
		case SCTRL_8BIT_STEREO:
			return 2;
			break;
		case SCTRL_16BIT_MONO:
			return 2;
			break;
		case SCTRL_16BIT_STEREO:
			return 4;
			break;
	}
	logerror("%s: calc_size Invalid format = %X specified\n", tag(), format);
	return 0;
}

READ32_MEMBER (es1373_device::reg_r)
{
	UINT32 result = m_es_regs[offset];
	switch (offset) {
		case ES_CODEC:
			break;
		case ES_DAC2_CNT:
				result = ((m_dac2.buf_size-m_dac2.buf_count)<<16) | m_dac2.buf_size;
			break;
		case ES_HOST_IF0: // 0x30
			result = m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x0];
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					result = m_dac1.pci_addr;
					break;
				case 0xd:
					result = m_adc.pci_addr;
					break;
				default:
					break;
			}
			break;
		case ES_HOST_IF1: // 0x34
			result = m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x1];
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					result = (m_dac1.pci_count<<16) | m_dac1.pci_size;
					break;
				case 0xd:
					result = (m_adc.pci_count<<16) | m_adc.pci_size;
					break;
				default:
					break;
			}
			break;
		case ES_HOST_IF2: // 0x38
			result = m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x2];
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					result = m_dac2.pci_addr;
					break;
				default:
					break;
			}
			break;
		case ES_HOST_IF3: // 0x3C
			result = m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x3];
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					result = ((m_dac2.pci_count)<<16) | m_dac2.pci_size;
					break;
				default:
					break;
			}
			break;
		default:
			break;
	}
	if (LOG_ES_REG)
		logerror("%08X:ES1373 read from offset %02X = %08X & %08X\n", machine().device("maincpu")->safe_pc(), offset*4, result, mem_mask);
	return result;
}

WRITE32_MEMBER(es1373_device::reg_w)
{
	COMBINE_DATA(&m_es_regs[offset]);
	switch (offset) {
		case ES_INT_CS_CTRL:
				m_dac1.enable = (m_es_regs[ES_INT_CS_CTRL] & ICCTRL_DAC1_EN_MASK);
				m_dac2.enable = (m_es_regs[ES_INT_CS_CTRL] & ICCTRL_DAC2_EN_MASK);
				m_adc.enable = (m_es_regs[ES_INT_CS_CTRL] & ICCTRL_ADC_EN_MASK);
			break;
		case ES_SRC_IF:
			if (data&(1<<24)) {
				// Write to Sample Rate Converter Ram
				m_src_ram[(data>>25)&0x7F] = data&0xFFFF;
			} else {
				// Read From Sample Rate Converter Ram
				m_es_regs[offset] = (data&0xFFFF0000) | m_src_ram[(data>>25)&0x7F];
			}
			break;
		case ES_CODEC:
			if (data&(1<<23)) {
				// Read from AC97 codec registers
				m_es_regs[offset] = (data&0xFFFF0000) | m_ac97_regs[(data>>16)&0x7f] | 0x80000000;
			} else {
				// Write to AC97 codec registers
				m_ac97_regs[(data>>16)&0x7f] = data&0xFFFF;
			}
			break;
		case ES_SERIAL_CTRL:
				m_adc.loop_en  = !(m_es_regs[ES_SERIAL_CTRL] & SCTRL_R1_LOOP_MASK);
				m_dac2.loop_en = !(m_es_regs[ES_SERIAL_CTRL] & SCTRL_P2_LOOP_MASK);
				m_dac1.loop_en = !(m_es_regs[ES_SERIAL_CTRL] & SCTRL_P1_LOOP_MASK);
				m_adc.int_en  = m_es_regs[ES_SERIAL_CTRL] & SCTRL_R1_INT_EN_MASK;
				m_dac2.int_en = m_es_regs[ES_SERIAL_CTRL] & SCTRL_P2_INT_EN_MASK;
				m_dac1.int_en = m_es_regs[ES_SERIAL_CTRL] & SCTRL_P1_INT_EN_MASK;
				m_adc.format = (m_es_regs[ES_SERIAL_CTRL] & SCTRL_R1_S_MASK)>>4;
				m_dac2.format = (m_es_regs[ES_SERIAL_CTRL] & SCTRL_P2_S_MASK)>>2;
				m_dac1.format = (m_es_regs[ES_SERIAL_CTRL] & SCTRL_P1_S_MASK)>>0;
				if (!m_adc.int_en) m_es_regs[ES_INT_CS_STATUS]  &= ~ICSTATUS_ADC_INT_MASK;
				if (!m_dac1.int_en) m_es_regs[ES_INT_CS_STATUS] &= ~ICSTATUS_DAC1_INT_MASK;
				if (!m_dac2.int_en) m_es_regs[ES_INT_CS_STATUS] &= ~ICSTATUS_DAC2_INT_MASK;
				// Clear the summary interrupt and irq line
				if (!(m_es_regs[ES_INT_CS_STATUS]&(ICSTATUS_DAC1_INT_MASK|ICSTATUS_DAC2_INT_MASK|ICSTATUS_ADC_INT_MASK))) {
					// Deassert interrupt
					if (m_es_regs[ES_INT_CS_STATUS]&ICSTATUS_INTR_MASK && m_irq_num!=-1) {
						m_cpu->set_input_line(m_irq_num, CLEAR_LINE);
						m_es_regs[ES_INT_CS_STATUS] &= ~ICSTATUS_INTR_MASK;
						if (0 && LOG_ES_REG)
							logerror("%X: es1373_device::reg_w Clearing interrupt\n", machine().device("maincpu")->safe_pc());
					}
				}
				if (0 && LOG_ES_REG)
					logerror("%s: es1373_device::reg_w adc_int_en: %i dac1_int_en: %i dac2_int_en: %i\n", tag(), m_adc.int_en, m_dac1.int_en, m_dac2.int_en);
			break;
		case ES_DAC2_CNT:
				m_dac2.buf_count = 0;
				m_dac2.buf_size = data&0xffff;
			break;
		case ES_HOST_IF0: // 0x30
			m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x0] = data;
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					m_dac1.pci_addr = data;
					break;
				case 0xd:
					m_adc.pci_addr = data;
					break;
				default:
					break;
			}
			break;
		case ES_HOST_IF1: // 0x34
			m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x1] = data;
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					m_dac1.pci_count = (data>>16)&0xffff;
					m_dac1.pci_size = data&0xffff;
					break;
				case 0xd:
					m_adc.pci_count = (data>>16)&0xffff;
					m_adc.pci_size = data&0xffff;
					break;
				default:
					break;
			}
			break;
		case ES_HOST_IF2: // 0x38
			m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x2] = data;
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					m_dac2.pci_addr = data;
					break;
				default:
					break;
			}
			break;
		case ES_HOST_IF3: // 0x3C
			m_sound_cache[(m_es_regs[ES_MEM_PAGE]<<2) | 0x3] = data;
			switch (m_es_regs[ES_MEM_PAGE]&0xf) {
				case 0xc:
					m_dac2.pci_count = (data>>16)&0xffff;
					m_dac2.pci_size = data&0xffff;
					if (LOG_ES_REG)
						logerror("%08X:ES1373 write to offset %02X = %08X & %08X\n", machine().device("maincpu")->safe_pc(), offset*4, data, mem_mask);
					break;
				default:
					break;
			}
			break;
		default:
			break;
	}

	if (LOG_ES_REG)
		logerror("%08X:ES1373 write to offset %02X = %08X & %08X\n", machine().device("maincpu")->safe_pc(), offset*4, data, mem_mask);

}