summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/sound/disc_dev.c
blob: 57799fdb40b89f1aeb413c8a5fee5d745298537a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
/************************************************************************
 *
 *  MAME - Discrete sound system emulation library
 *
 *  Written by Keith Wilkins (mame@dysfunction.demon.co.uk)
 *
 *  (c) K.Wilkins 2000
 *  (c) D.Renaud 2003-2004
 *
 ************************************************************************
 *
 * DSD_555_ASTBL         - NE555 Simulation - Astable mode
 * DSD_555_MSTBL         - NE555 Simulation - Monostable mode
 * DSD_555_CC            - NE555 Constant Current VCO
 * DSD_555_VCO1          - Op-Amp linear ramp based 555 VCO
 * DSD_566               - NE566 Simulation
 * DSD_LS624             - 74LS624/629 Simulation
 *
 ************************************************************************
 *
 * You will notice that the code for a lot of these routines are similar.
 * I tried to make a common charging routine, but there are too many
 * minor differences that affect each module.
 *
 ************************************************************************/

#define DEFAULT_555_BLEED_R	RES_M(10)

struct dsd_555_astbl_context
{
	int		use_ctrlv;
	int		output_type;
	int		output_is_ac;
	double	ac_shift;			/* DC shift needed to make waveform ac */
	int		flip_flop;			/* 555 flip/flop output state */
	double	cap_voltage;		/* voltage on cap */
	double	threshold;
	double	trigger;
	double	v_out_high;			/* Logic 1 voltage level */
	double	v_charge;
	double *v_charge_node;		/* point to output of node */
	int		has_rc_nodes;
	double	exp_bleed;
	double	exp_charge;
	double	exp_discharge;
	double	t_rc_bleed;
	double	t_rc_charge;
	double	t_rc_discharge;
	double	last_r1;
	double	last_r2;
	double	last_c;
};

struct dsd_555_mstbl_context
{
	int		trig_is_logic;
	int		trig_discharges_cap;
	int		output_type;
	double	ac_shift;				/* DC shift needed to make waveform ac */
	int		flip_flop;				/* 555 flip/flop output state */
	int		has_rc_nodes;
	double	exp_charge;
	double	cap_voltage;			/* voltage on cap */
	double	threshold;
	double	trigger;
	double	v_out_high;				/* Logic 1 voltage level */
	double	v_charge;
};

struct dsd_555_cc_context
{
	unsigned int	type;			/* type of 555cc circuit */
	int				output_type;
	int				output_is_ac;
	double			ac_shift;		/* DC shift needed to make waveform ac */
	int				flip_flop;		/* 555 flip/flop output state */
	double			cap_voltage;	/* voltage on cap */
	double			threshold;
	double			trigger;
	double			v_out_high;		/* Logic 1 voltage level */
	double			v_cc_source;
	int				has_rc_nodes;
	double			exp_bleed;
	double			exp_charge;
	double			exp_discharge;
	double			exp_discharge_01;
	double			exp_discharge_no_i;
	double			t_rc_charge;
	double			t_rc_discharge;
	double			t_rc_discharge_01;
	double			t_rc_discharge_no_i;
};

struct dsd_555_vco1_context
{
	int		ctrlv_is_node;
	int		output_type;
	int		output_is_ac;
	double	ac_shift;			/* DC shift needed to make waveform ac */
	int		flip_flop;			/* flip/flop output state */
	double	v_out_high;			/* 555 high voltage */
	double	threshold;			/* falling threshold */
	double	trigger;			/* rising threshold */
	double	i_charge;			/* charge current */
	double	i_discharge;		/* discharge current */
	double	cap_voltage;		/* current capacitor voltage */
};

struct dsd_566_context
{
	unsigned int state[2];			/* keeps track of excess flip_flop changes during the current step */
	int			flip_flop;			/* 566 flip/flop output state */
	double		cap_voltage;		/* voltage on cap */
	double		v_sqr_low;			/* voltage for a squarewave at low */
	double		v_sqr_high;			/* voltage for a squarewave at high */
	double		v_sqr_diff;
	double		threshold_low;		/* falling threshold */
	double		threshold_high;		/* rising threshold */
	double		ac_shift;			/* used to fake AC */
	double		v_osc_stable;
	double		v_osc_stop;
	int			fake_ac;
	int			out_type;
};

struct dsd_ls624_context
{
	double	exponent;
	double	t_used;
	double	v_cap_freq_in;
	double	v_freq_scale;
	double	v_rng_scale;
	int		flip_flop;
	int		has_freq_in_cap;
	int		out_type;
};


/************************************************************************
 *
 * DSD_555_ASTBL -  - 555 Astable simulation
 *
 * input[0]    - Reset value
 * input[1]    - R1 value
 * input[2]    - R2 value
 * input[3]    - C value
 * input[4]    - Control Voltage value
 *
 * also passed discrete_555_desc structure
 *
 * Jan 2004, D Renaud.
 ************************************************************************/
#define DSD_555_ASTBL__RESET	(! DISCRETE_INPUT(0))
#define DSD_555_ASTBL__R1		DISCRETE_INPUT(1)
#define DSD_555_ASTBL__R2		DISCRETE_INPUT(2)
#define DSD_555_ASTBL__C		DISCRETE_INPUT(3)
#define DSD_555_ASTBL__CTRLV	DISCRETE_INPUT(4)

/* bit mask of the above RC inputs */
#define DSD_555_ASTBL_RC_MASK	0x0e

/* charge/discharge constants */
#define DSD_555_ASTBL_T_RC_BLEED		(DEFAULT_555_BLEED_R * DSD_555_ASTBL__C)
/* Use quick charge if specified. */
#define DSD_555_ASTBL_T_RC_CHARGE		((DSD_555_ASTBL__R1 + ((info->options & DISC_555_ASTABLE_HAS_FAST_CHARGE_DIODE) ? 0 : DSD_555_ASTBL__R2)) * DSD_555_ASTBL__C)
#define DSD_555_ASTBL_T_RC_DISCHARGE	(DSD_555_ASTBL__R2 * DSD_555_ASTBL__C)

DISCRETE_STEP(dsd_555_astbl)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_astbl)
	DISCRETE_DECLARE_INFO(discrete_555_desc)

	int		count_f = 0;
	int		count_r = 0;
	double	dt;								/* change in time */
	double	x_time  = 0;					/* time since change happened */
	double	v_cap   = context->cap_voltage;	/* Current voltage on capacitor, before dt */
	double	v_cap_next = 0;					/* Voltage on capacitor, after dt */
	double	v_charge, exponent = 0;
	UINT8	flip_flop = context->flip_flop;
	UINT8	update_exponent = 0;

	/* put commonly used stuff in local variables for speed */
	double	threshold = context->threshold;
	double	trigger   = context->trigger;

	if(DSD_555_ASTBL__RESET)
	{
		/* We are in RESET */
		node->output[0]      = 0;
		context->flip_flop   = 1;
		context->cap_voltage = 0;
		return;
	}

	/* Check: if the Control Voltage node is connected. */
	if (context->use_ctrlv)
	{
		/* If CV is less then .25V, the circuit will oscillate way out of range.
         * So we will just ignore it when it happens. */
		if (DSD_555_ASTBL__CTRLV < .25) return;
		/* If it is a node then calculate thresholds based on Control Voltage */
		threshold = DSD_555_ASTBL__CTRLV;
		trigger   = DSD_555_ASTBL__CTRLV / 2.0;
		/* Since the thresholds may have changed we need to update the FF */
		if (v_cap >= threshold)
		{
			flip_flop = 0;
			count_f++;
		}
		else
		if (v_cap <= trigger)
		{
			flip_flop = 1;
			count_r++;
		}
	}

	/* get the v_charge and update each step if it is a node */
	if (context->v_charge_node != NULL)
	{
		v_charge = *context->v_charge_node;
		if (info->options & DISC_555_ASTABLE_HAS_FAST_CHARGE_DIODE) v_charge -= 0.5;
	}
	else
		v_charge = context->v_charge;


	/* Calculate future capacitor voltage.
     * ref@ http://www.physics.rutgers.edu/ugrad/205/capacitance.html
     * The formulas from the ref pages have been modified to reflect that we are stepping the change.
     * dt = time of sample (1/sample frequency)
     * VC = Voltage across capacitor
     * VC' = Future voltage across capacitor
     * Vc = Voltage change
     * Vr = is the voltage across the resistor.  For charging it is Vcc - VC.  Discharging it is VC - 0.
     * R = R1+R2 (for charging)  R = R2 for discharging.
     * Vc = Vr*(1-exp(-dt/(R*C)))
     * VC' = VC + Vc (for charging) VC' = VC - Vc for discharging.
     *
     * We will also need to calculate the amount of time we overshoot the thresholds
     * dt = amount of time we overshot
     * Vc = voltage change overshoot
     * dt = R*C(log(1/(1-(Vc/Vr))))
     */

	dt = node->info->sample_time;

	/* Sometimes a switching network is used to setup the capacitance.
     * These may select no capacitor, causing oscillation to stop.
     */
	if (DSD_555_ASTBL__C == 0)
	{
		flip_flop = 1;
		/* The voltage goes high because the cap circuit is open. */
		v_cap_next = v_charge;
		v_cap      = v_charge;
		context->cap_voltage = 0;
	}
	else
	{
		/* Update charge contstants and exponents if nodes changed */
		if (context->has_rc_nodes && (DSD_555_ASTBL__R1 != context->last_r1 || DSD_555_ASTBL__C != context->last_c || DSD_555_ASTBL__R2 != context->last_r2))
		{
			context->t_rc_bleed  = DSD_555_ASTBL_T_RC_BLEED;
			context->t_rc_charge = DSD_555_ASTBL_T_RC_CHARGE;
			context->t_rc_discharge = DSD_555_ASTBL_T_RC_DISCHARGE;
			context->exp_bleed  = RC_CHARGE_EXP(context->t_rc_bleed);
			context->exp_charge = RC_CHARGE_EXP(context->t_rc_charge);
			context->exp_discharge = RC_CHARGE_EXP(context->t_rc_discharge);
			context->last_r1 = DSD_555_ASTBL__R1;
			context->last_r2 = DSD_555_ASTBL__R2;
			context->last_c  = DSD_555_ASTBL__C;
		}
		/* Keep looping until all toggling in time sample is used up. */
		do
		{
			if (flip_flop)
			{
				if (DSD_555_ASTBL__R1 == 0)
				{
					/* Oscillation disabled because there is no longer any charge resistor. */
					/* Bleed the cap due to circuit losses. */
					if (update_exponent)
						exponent = RC_CHARGE_EXP_DT(context->t_rc_bleed, dt);
					else
						exponent = context->exp_bleed;
					v_cap_next = v_cap - (v_cap * exponent);
					dt = 0;
				}
				else
				{
					/* Charging */
					if (update_exponent)
						exponent = RC_CHARGE_EXP_DT(context->t_rc_charge, dt);
					else
						exponent = context->exp_charge;
					v_cap_next = v_cap + ((v_charge - v_cap) * exponent);
					dt = 0;

					/* has it charged past upper limit? */
					if (v_cap_next >= threshold)
					{
						/* calculate the overshoot time */
						dt     = context->t_rc_charge  * log(1.0 / (1.0 - ((v_cap_next - threshold) / (v_charge - v_cap))));
						x_time = dt;
						v_cap_next  = threshold;
						flip_flop = 0;
						count_f++;
						update_exponent = 1;
					}
				}
			}
			else
			{
				/* Discharging */
				if(DSD_555_ASTBL__R2 != 0)
				{
					if (update_exponent)
						exponent = RC_CHARGE_EXP_DT(context->t_rc_discharge, dt);
					else
						exponent = context->exp_discharge;
					v_cap_next = v_cap - (v_cap * exponent);
					dt = 0;
				}
				else
				{
					/* no discharge resistor so we imediately discharge */
					v_cap_next = trigger;
				}

				/* has it discharged past lower limit? */
				if (v_cap_next <= trigger)
				{
					/* calculate the overshoot time */
					if (v_cap_next < trigger)
						dt = context->t_rc_discharge  * log(1.0 / (1.0 - ((trigger - v_cap_next) / v_cap)));
					x_time = dt;
					v_cap_next  = trigger;
					flip_flop = 1;
					count_r++;
					update_exponent = 1;
				}
			}
			v_cap = v_cap_next;
		} while(dt);

		context->cap_voltage = v_cap;
	}

	/* Convert last switch time to a ratio */
	x_time = x_time / node->info->sample_time;

	switch (context->output_type)
	{
		case DISC_555_OUT_SQW:
			if (count_f + count_r >= 2)
				/* force at least 1 toggle */
				node->output[0] = context->flip_flop ? 0 : context->v_out_high;
			else
				node->output[0] = flip_flop * context->v_out_high;
			node->output[0] += context->ac_shift;
			break;
		case DISC_555_OUT_CAP:
			node->output[0] = v_cap;
			/* Fake it to AC if needed */
			if (context->output_is_ac)
				node->output[0] -= threshold * 3.0 /4.0;
			break;
		case DISC_555_OUT_ENERGY:
			if (x_time == 0) x_time = 1.0;
			node->output[0]  = context->v_out_high * (flip_flop ? x_time : (1.0 - x_time));
			node->output[0] += context->ac_shift;
			break;
		case DISC_555_OUT_LOGIC_X:
			node->output[0] = flip_flop + x_time;
			break;
		case DISC_555_OUT_COUNT_F_X:
			node->output[0] = count_f ? count_f + x_time : count_f;
			break;
		case DISC_555_OUT_COUNT_R_X:
			node->output[0] =  count_r ? count_r + x_time : count_r;
			break;
		case DISC_555_OUT_COUNT_F:
			node->output[0] = count_f;
			break;
		case DISC_555_OUT_COUNT_R:
			node->output[0] = count_r;
			break;
	}
	context->flip_flop = flip_flop;
}

DISCRETE_RESET(dsd_555_astbl)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_astbl)
	DISCRETE_DECLARE_INFO(discrete_555_desc)

	node_description *v_charge_node;

	context->use_ctrlv   = (node->input_is_node >> 4) & 1;
	context->output_type = info->options & DISC_555_OUT_MASK;

	/* Use the defaults or supplied values. */
	context->v_out_high = (info->v_out_high == DEFAULT_555_HIGH) ? info->v_pos - 1.2 : info->v_out_high;

	/* setup v_charge or node */
	v_charge_node = discrete_find_node(node->info, info->v_charge);
	if (v_charge_node)
		context->v_charge_node = &(v_charge_node->output[NODE_CHILD_NODE_NUM(info->v_charge)]);
	else
	{
		context->v_charge   = (info->v_charge == DEFAULT_555_CHARGE) ? info->v_pos : info->v_charge;
		context->v_charge_node = NULL;

		if (info->options & DISC_555_ASTABLE_HAS_FAST_CHARGE_DIODE) context->v_charge -= 0.5;
	}

	if ((DSD_555_ASTBL__CTRLV != -1) && !context->use_ctrlv)
	{
		/* Setup based on supplied Control Voltage static value */
		context->threshold = DSD_555_ASTBL__CTRLV;
		context->trigger   = DSD_555_ASTBL__CTRLV / 2.0;
	}
	else
	{
		/* Setup based on v_pos power source */
		context->threshold = info->v_pos * 2.0 / 3.0;
		context->trigger   = info->v_pos / 3.0;
	}

	/* optimization if none of the values are nodes */
	context->has_rc_nodes = 0;
	if (node->input_is_node & DSD_555_ASTBL_RC_MASK)
		context->has_rc_nodes = 1;
	else
	{
		context->t_rc_bleed  = DSD_555_ASTBL_T_RC_BLEED;
		context->exp_bleed   = RC_CHARGE_EXP(context->t_rc_bleed);
		context->t_rc_charge = DSD_555_ASTBL_T_RC_CHARGE;
		context->exp_charge  = RC_CHARGE_EXP(context->t_rc_charge);
		context->t_rc_discharge = DSD_555_ASTBL_T_RC_DISCHARGE;
		context->exp_discharge  = RC_CHARGE_EXP(context->t_rc_discharge);
	}

	context->output_is_ac = info->options & DISC_555_OUT_AC;
	/* Calculate DC shift needed to make squarewave waveform AC */
	context->ac_shift = context->output_is_ac ? -context->v_out_high / 2.0 : 0;

	context->flip_flop = 1;
	context->cap_voltage = 0;

	/* Step to set the output */
	DISCRETE_STEP_CALL(dsd_555_astbl);
}


/************************************************************************
 *
 * DSD_555_MSTBL - 555 Monostable simulation
 *
 * input[0]    - Reset value
 * input[1]    - Trigger input
 * input[2]    - R2 value
 * input[3]    - C value
 *
 * also passed discrete_555_desc structure
 *
 * Oct 2004, D Renaud.
 ************************************************************************/
#define DSD_555_MSTBL__RESET	(! DISCRETE_INPUT(0))
#define DSD_555_MSTBL__TRIGGER	DISCRETE_INPUT(1)
#define DSD_555_MSTBL__R		DISCRETE_INPUT(2)
#define DSD_555_MSTBL__C		DISCRETE_INPUT(3)

/* bit mask of the above RC inputs */
#define DSD_555_MSTBL_RC_MASK	0x0c

DISCRETE_STEP(dsd_555_mstbl)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_mstbl)
	DISCRETE_DECLARE_INFO(discrete_555_desc)

	double v_cap;			/* Current voltage on capacitor, before dt */
	double x_time = 0;		/* time since change happened */
	double dt, exponent;
	double out = 0;
	int trigger = 0;
	int trigger_type;
	int update_exponent = context->has_rc_nodes;
	int flip_flop;

	if(UNEXPECTED(DSD_555_MSTBL__RESET))
	{
		/* We are in RESET */
		node->output[0]     = 0;
		context->flip_flop  = 0;
		context->cap_voltage = 0;
		return;
	}

	dt = node->info->sample_time;
	flip_flop = context->flip_flop;
	trigger_type = info->options;
	v_cap = context->cap_voltage;

	switch (trigger_type & DSD_555_TRIGGER_TYPE_MASK)
	{
		case DISC_555_TRIGGER_IS_LOGIC:
			trigger = ((int)DSD_555_MSTBL__TRIGGER) ? 0 : 1;
			if (UNEXPECTED(trigger))
				x_time = 1.0 - DSD_555_MSTBL__TRIGGER;
			break;
		case DISC_555_TRIGGER_IS_VOLTAGE:
			trigger = (int)(DSD_555_MSTBL__TRIGGER < context->trigger);
			break;
		case DISC_555_TRIGGER_IS_COUNT:
			trigger = (int)DSD_555_MSTBL__TRIGGER;
			if (UNEXPECTED(trigger))
				x_time = DSD_555_MSTBL__TRIGGER - trigger;
			break;
	}

	if (UNEXPECTED(trigger && !flip_flop && x_time != 0))
	{
		/* adjust sample to after trigger */
		update_exponent = 1;
		dt *= x_time;
	}
	x_time = 0;

	if ((trigger_type & DISC_555_TRIGGER_DISCHARGES_CAP) && trigger)
		context->cap_voltage = 0;

	/* Wait for trigger */
	if (UNEXPECTED(!flip_flop && trigger))
	{
		flip_flop = 1;
		context->flip_flop = 1;
	}

	if (flip_flop)
	{
		/* Sometimes a switching network is used to setup the capacitance.
         * These may select 'no' capacitor, causing oscillation to stop.
         */
		if (UNEXPECTED(DSD_555_MSTBL__C == 0))
		{
			/* The trigger voltage goes high because the cap circuit is open.
             * and the cap discharges */
			v_cap = info->v_pos;	/* needed for cap output type */
			context->cap_voltage = 0;

			if (!trigger)
			{
				flip_flop = 0;
				context->flip_flop = 0;
			}
		}
		else
		{
			/* Charging */
			double v_diff = context->v_charge - v_cap;

			if (UNEXPECTED(update_exponent))
				exponent = RC_CHARGE_EXP_DT(DSD_555_MSTBL__R * DSD_555_MSTBL__C, dt);
			else
				exponent = context->exp_charge;
			v_cap += v_diff * exponent;

			/* Has it charged past upper limit? */
			/* If trigger is still enabled, then we keep charging,
             * regardless of threshold. */
			if (UNEXPECTED((v_cap >= context->threshold) && !trigger))
			{
				dt = DSD_555_MSTBL__R * DSD_555_MSTBL__C  * log(1.0 / (1.0 - ((v_cap - context->threshold) / v_diff)));
				x_time = 1.0 - dt / node->info->sample_time;
				v_cap  = 0;
				flip_flop = 0;
				context->flip_flop = 0;
			}
			context->cap_voltage = v_cap;
		}
	}

	switch (context->output_type)
	{
		case DISC_555_OUT_SQW:
			out = flip_flop * context->v_out_high - context->ac_shift;
			break;
		case DISC_555_OUT_CAP:
			if (x_time > 0)
				out = v_cap * x_time;
			else
				out = v_cap;

			out -= context->ac_shift;
			break;
		case DISC_555_OUT_ENERGY:
			if (x_time > 0)
				out = context->v_out_high * x_time;
			else if (flip_flop)
				out = context->v_out_high;
			else
				out = 0;

			out -= context->ac_shift;
			break;
	}
	node->output[0] = out;
}

DISCRETE_RESET(dsd_555_mstbl)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_mstbl)
	DISCRETE_DECLARE_INFO(discrete_555_desc)

	context->output_type = info->options & DISC_555_OUT_MASK;
	if ((context->output_type == DISC_555_OUT_COUNT_F) || (context->output_type == DISC_555_OUT_COUNT_R))
	{
		discrete_log(node->info, "Invalid Output type in NODE_%d.\n", NODE_BLOCKINDEX(node));
		context->output_type = DISC_555_OUT_SQW;
	}

	/* Use the defaults or supplied values. */
	context->v_out_high = (info->v_out_high == DEFAULT_555_HIGH) ? info->v_pos - 1.2 : info->v_out_high;
	context->v_charge   = (info->v_charge   == DEFAULT_555_CHARGE) ? info->v_pos : info->v_charge;

	/* Setup based on v_pos power source */
	context->threshold = info->v_pos * 2.0 / 3.0;
	context->trigger   = info->v_pos / 3.0;

	/* Calculate DC shift needed to make waveform AC */
	if (info->options & DISC_555_OUT_AC)
	{
		if (context->output_type == DISC_555_OUT_CAP)
			context->ac_shift = context->threshold * 3.0 /4.0;
		else
			context->ac_shift = context->v_out_high / 2.0;
	}
	else
		context->ac_shift = 0;

	context->trig_is_logic       = (info->options & DISC_555_TRIGGER_IS_VOLTAGE) ? 0: 1;
	context->trig_discharges_cap = (info->options & DISC_555_TRIGGER_DISCHARGES_CAP) ? 1: 0;

	context->flip_flop   = 0;
	context->cap_voltage = 0;

	/* optimization if none of the values are nodes */
	context->has_rc_nodes = 0;
	if (node->input_is_node & DSD_555_MSTBL_RC_MASK)
		context->has_rc_nodes = 1;
	else
		context->exp_charge = RC_CHARGE_EXP(DSD_555_MSTBL__R * DSD_555_MSTBL__C);

	node->output[0] = 0;
}


/************************************************************************
 *
 * DSD_555_CC - Usage of node_description values
 *
 * input[0]    - Reset input value
 * input[1]    - Voltage input for Constant current source.
 * input[2]    - R value to set CC current.
 * input[3]    - C value
 * input[4]    - rBias value
 * input[5]    - rGnd value
 * input[6]    - rDischarge value
 *
 * also passed discrete_555_cc_desc structure
 *
 * Mar 2004, D Renaud.
 ************************************************************************/
#define DSD_555_CC__RESET	(! DISCRETE_INPUT(0))
#define DSD_555_CC__VIN		DISCRETE_INPUT(1)
#define DSD_555_CC__R		DISCRETE_INPUT(2)
#define DSD_555_CC__C		DISCRETE_INPUT(3)
#define DSD_555_CC__RBIAS	DISCRETE_INPUT(4)
#define DSD_555_CC__RGND	DISCRETE_INPUT(5)
#define DSD_555_CC__RDIS	DISCRETE_INPUT(6)

/* bit mask of the above RC inputs not including DSD_555_CC__R */
#define DSD_555_CC_RC_MASK	0x78

/* charge/discharge constants */
#define DSD_555_CC_T_RC_BLEED			(DEFAULT_555_BLEED_R * DSD_555_CC__C)
#define DSD_555_CC_T_RC_DISCHARGE_01	(DSD_555_CC__RDIS * DSD_555_CC__C)
#define DSD_555_CC_T_RC_DISCHARGE_NO_I	(DSD_555_CC__RGND * DSD_555_CC__C)
#define DSD_555_CC_T_RC_CHARGE			(r_charge * DSD_555_CC__C)
#define DSD_555_CC_T_RC_DISCHARGE		(r_discharge * DSD_555_CC__C)


DISCRETE_STEP(dsd_555_cc)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_cc)
	DISCRETE_DECLARE_INFO(discrete_555_cc_desc)

	int		count_f  = 0;
	int		count_r  = 0;
	double	i;					/* Charging current created by vIn */
	double	r_charge = 0;		/* Equivalent charging resistor */
	double	r_discharge = 0;	/* Equivalent discharging resistor */
	double	vi     = 0;			/* Equivalent voltage from current source */
	double	v_bias = 0;			/* Equivalent voltage from bias voltage */
	double	v      = 0;			/* Equivalent voltage total from current source and bias circuit if used */
	double	dt;					/* change in time */
	double	x_time = 0;			/* time since change happened */
	double	t_rc ;				/* RC time constant */
	double	v_cap;				/* Current voltage on capacitor, before dt */
	double	v_cap_next = 0;		/* Voltage on capacitor, after dt */
	double	v_vcharge_limit;	/* vIn and the junction voltage limit the max charging voltage from i */
	double	r_temp;				/* play thing */
	double	exponent;
	UINT8	update_exponent, update_t_rc;
	UINT8	flip_flop = context->flip_flop;


	if (UNEXPECTED(DSD_555_CC__RESET))
	{
		/* We are in RESET */
		node->output[0]      = 0;
		context->flip_flop   = 1;
		context->cap_voltage = 0;
		return;
	}

	dt    = node->info->sample_time;	/* Change in time */
	v_cap = context->cap_voltage;	/* Set to voltage before change */
	v_vcharge_limit = DSD_555_CC__VIN + info->v_cc_junction;	/* the max v_cap can be and still be charged by i */
	/* Calculate charging current */
	i = (context->v_cc_source - v_vcharge_limit) / DSD_555_CC__R;
	if ( i < 0) i = 0;

	if (info->options & DISCRETE_555_CC_TO_CAP)
	{
		vi = i * DSD_555_CC__RDIS;
	}
	else
	{
		switch (context->type)	/* see dsd_555_cc_reset for descriptions */
		{
			case 1:
				r_discharge = DSD_555_CC__RDIS;
			case 0:
				break;
			case 3:
				r_discharge = RES_2_PARALLEL(DSD_555_CC__RDIS, DSD_555_CC__RGND);
			case 2:
				r_charge = DSD_555_CC__RGND;
				vi       = i * r_charge;
				break;
			case 4:
				r_charge = DSD_555_CC__RBIAS;
				vi       = i * r_charge;
				v_bias   = info->v_pos;
				break;
			case 5:
				r_charge = DSD_555_CC__RBIAS + DSD_555_CC__RDIS;
				vi      = i * DSD_555_CC__RBIAS;
				v_bias  = info->v_pos;
				r_discharge = DSD_555_CC__RDIS;
				break;
			case 6:
				r_charge = RES_2_PARALLEL(DSD_555_CC__RBIAS, DSD_555_CC__RGND);
				vi      = i * r_charge;
				v_bias  = info->v_pos * RES_VOLTAGE_DIVIDER(DSD_555_CC__RGND, DSD_555_CC__RBIAS);
				break;
			case 7:
				r_temp   = DSD_555_CC__RBIAS + DSD_555_CC__RDIS;
				r_charge = RES_2_PARALLEL(r_temp, DSD_555_CC__RGND);
				r_temp  += DSD_555_CC__RGND;
				r_temp   = DSD_555_CC__RGND / r_temp;	/* now has voltage divider ratio, not resistance */
				vi      = i * DSD_555_CC__RBIAS * r_temp;
				v_bias  = info->v_pos * r_temp;
				r_discharge = RES_2_PARALLEL(DSD_555_CC__RGND, DSD_555_CC__RDIS);
				break;
		}
	}

	/* Keep looping until all toggling in time sample is used up. */
	update_t_rc = context->has_rc_nodes;
	update_exponent = update_t_rc;
	do
	{
		if (context->type <= 1)
		{
			/* Standard constant current charge */
			if (flip_flop)
			{
				if (i == 0)
				{
					/* No charging current, so we have to discharge the cap
                     * due to cap and circuit losses.
                     */
					if (update_exponent)
					{
						t_rc     = DSD_555_CC_T_RC_BLEED;
						exponent = RC_CHARGE_EXP_DT(t_rc, dt);
					}
					else
						exponent = context->exp_bleed;
					v_cap_next = v_cap - (v_cap * exponent);
					dt = 0;
				}
				else
				{
					/* Charging */
					/* iC=C*dv/dt  works out to dv=iC*dt/C */
					v_cap_next = v_cap + (i * dt / DSD_555_CC__C);
					/* Yes, if the cap voltage has reached the max voltage it can,
                     * and the 555 threshold has not been reached, then oscillation stops.
                     * This is the way the actual electronics works.
                     * This is why you never play with the pots after being factory adjusted
                     * to work in the proper range. */
					if (v_cap_next > v_vcharge_limit) v_cap_next = v_vcharge_limit;
					dt = 0;

					/* has it charged past upper limit? */
					if (v_cap_next >= context->threshold)
					{
						/* calculate the overshoot time */
						dt     = DSD_555_CC__C * (v_cap_next - context->threshold) / i;
						x_time = dt;
						v_cap_next = context->threshold;
						flip_flop = 0;
						count_f++;
						update_exponent = 1;
					}
				}
			}
			else if (DSD_555_CC__RDIS != 0)
			{
				/* Discharging */
				if (update_t_rc)
					t_rc = DSD_555_CC_T_RC_DISCHARGE_01;
				else
					t_rc = context->t_rc_discharge_01;
				if (update_exponent)
					exponent = RC_CHARGE_EXP_DT(t_rc, dt);
				else
					exponent = context->exp_discharge_01;

				if (info->options & DISCRETE_555_CC_TO_CAP)
				{
					/* Asteroids - Special Case */
					/* Charging in discharge mode */
					/* If the cap voltage is past the current source charging limit
                     * then only the bias voltage will charge the cap. */
					v          = (v_cap < v_vcharge_limit) ? vi : v_vcharge_limit;
					v_cap_next = v_cap + ((v - v_cap) * exponent);
				}
				else
				{
					v_cap_next = v_cap - (v_cap * exponent);
				}

				dt = 0;
				/* has it discharged past lower limit? */
				if (v_cap_next <= context->trigger)
				{
					dt     = t_rc  * log(1.0 / (1.0 - ((context->trigger - v_cap_next) / v_cap)));
					x_time = dt;
					v_cap_next  = context->trigger;
					flip_flop = 1;
					count_r++;
					update_exponent = 1;
				}
			}
			else	/* Immediate discharge. No change in dt. */
			{
				x_time = dt;
				v_cap_next = context->trigger;
				flip_flop = 1;
				count_r++;
			}
		}
		else
		{
			/* The constant current gets changed to a voltage due to a load resistor. */
			if (flip_flop)
			{
				if ((i == 0) && (DSD_555_CC__RBIAS == 0))
				{
					/* No charging current, so we have to discharge the cap
                     * due to rGnd.
                     */
					if (update_t_rc)
						t_rc = DSD_555_CC_T_RC_DISCHARGE_NO_I;
					else
						t_rc = context->t_rc_discharge_no_i;
					if (update_exponent)
						exponent = RC_CHARGE_EXP_DT(t_rc, dt);
					else
						exponent = context->exp_discharge_no_i;

					v_cap_next = v_cap - (v_cap * exponent);
					dt = 0;
				}
				else
				{
					/* Charging */
					/* If the cap voltage is past the current source charging limit
                     * then only the bias voltage will charge the cap. */
					v = v_bias;
					if (v_cap < v_vcharge_limit) v += vi;
					else if (context->type <= 3) v = v_vcharge_limit;

					if (update_t_rc)
						t_rc = DSD_555_CC_T_RC_CHARGE;
					else
						t_rc = context->t_rc_charge;
					if (update_exponent)
						exponent = RC_CHARGE_EXP_DT(t_rc, dt);
					else
						exponent = context->exp_charge;

					v_cap_next = v_cap + ((v - v_cap) * exponent);
					dt         = 0;

					/* has it charged past upper limit? */
					if (v_cap_next >= context->threshold)
					{
						/* calculate the overshoot time */
						dt     = t_rc  * log(1.0 / (1.0 - ((v_cap_next - context->threshold) / (v - v_cap))));
						x_time = dt;
						v_cap_next = context->threshold;
						flip_flop = 0;
						count_f++;
						update_exponent = 1;
					}
				}
			}
			else /* Discharging */
			if (r_discharge)
			{
				if (update_t_rc)
					t_rc = DSD_555_CC_T_RC_DISCHARGE;
				else
					t_rc = context->t_rc_discharge;
				if (update_exponent)
					exponent = RC_CHARGE_EXP_DT(t_rc, dt);
				else
					exponent = context->exp_discharge;

				v_cap_next = v_cap - (v_cap * exponent);
				dt = 0;

				/* has it discharged past lower limit? */
				if (v_cap_next <= context->trigger)
				{
					/* calculate the overshoot time */
					dt     = t_rc  * log(1.0 / (1.0 - ((context->trigger - v_cap_next) / v_cap)));
					x_time = dt;
					v_cap_next = context->trigger;
					flip_flop = 1;
					count_r++;
					update_exponent = 1;
				}
			}
			else	/* Immediate discharge. No change in dt. */
			{
				x_time = dt;
				v_cap_next = context->trigger;
				flip_flop = 1;
				count_r++;
			}
		}
		v_cap = v_cap_next;
	} while(dt);

	context->cap_voltage = v_cap;

	/* Convert last switch time to a ratio */
	x_time = x_time / node->info->sample_time;

	switch (context->output_type)
	{
		case DISC_555_OUT_SQW:
			if (count_f + count_r >= 2)
				/* force at least 1 toggle */
				node->output[0] = context->flip_flop ? 0 : context->v_out_high;
			else
				node->output[0] = flip_flop * context->v_out_high;
			/* Fake it to AC if needed */
			node->output[0] += context->ac_shift;
			break;
		case DISC_555_OUT_CAP:
			node->output[0] = v_cap + context->ac_shift;
			break;
		case DISC_555_OUT_ENERGY:
			if (x_time == 0) x_time = 1.0;
			node->output[0]  = context->v_out_high * (flip_flop ? x_time : (1.0 - x_time));
			node->output[0] += context->ac_shift;
			break;
		case DISC_555_OUT_LOGIC_X:
			node->output[0] = flip_flop + x_time;
			break;
		case DISC_555_OUT_COUNT_F_X:
			node->output[0] = count_f ? count_f + x_time : count_f;
			break;
		case DISC_555_OUT_COUNT_R_X:
			node->output[0] =  count_r ? count_r + x_time : count_r;
			break;
		case DISC_555_OUT_COUNT_F:
			node->output[0] = count_f;
			break;
		case DISC_555_OUT_COUNT_R:
			node->output[0] = count_r;
			break;
	}
	context->flip_flop = flip_flop;
}

DISCRETE_RESET(dsd_555_cc)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_cc)
	DISCRETE_DECLARE_INFO(discrete_555_cc_desc)

	double	r_temp, r_discharge = 0, r_charge = 0;

	context->flip_flop   = 1;
	context->cap_voltage = 0;

	context->output_type = info->options & DISC_555_OUT_MASK;

	/* Use the defaults or supplied values. */
	context->v_out_high  = (info->v_out_high  == DEFAULT_555_HIGH) ? info->v_pos - 1.2 : info->v_out_high;
	context->v_cc_source = (info->v_cc_source == DEFAULT_555_CC_SOURCE) ? info->v_pos : info->v_cc_source;

	/* Setup based on v_pos power source */
	context->threshold = info->v_pos * 2.0 / 3.0;
	context->trigger   = info->v_pos / 3.0;

	context->output_is_ac = info->options & DISC_555_OUT_AC;
	/* Calculate DC shift needed to make squarewave waveform AC */
	context->ac_shift     = context->output_is_ac ? -context->v_out_high / 2.0 : 0;

	/* There are 8 different types of basic oscillators
     * depending on the resistors used.  We will determine
     * the type of circuit at reset, because the ciruit type
     * is constant.  See Below.
     */
	context->type = (DSD_555_CC__RDIS > 0) | ((DSD_555_CC__RGND  > 0) << 1) | ((DSD_555_CC__RBIAS  > 0) << 2);

	/* optimization if none of the values are nodes */
	context->has_rc_nodes = 0;
	if (node->input_is_node & DSD_555_CC_RC_MASK)
		context->has_rc_nodes = 1;
	else
	{
		switch (context->type)	/* see dsd_555_cc_reset for descriptions */
		{
			case 1:
				r_discharge = DSD_555_CC__RDIS;
			case 0:
				break;
			case 3:
				r_discharge = RES_2_PARALLEL(DSD_555_CC__RDIS, DSD_555_CC__RGND);
			case 2:
				r_charge = DSD_555_CC__RGND;
				break;
			case 4:
				r_charge = DSD_555_CC__RBIAS;
				break;
			case 5:
				r_charge = DSD_555_CC__RBIAS + DSD_555_CC__RDIS;
				r_discharge = DSD_555_CC__RDIS;
				break;
			case 6:
				r_charge = RES_2_PARALLEL(DSD_555_CC__RBIAS, DSD_555_CC__RGND);
				break;
			case 7:
				r_temp   = DSD_555_CC__RBIAS + DSD_555_CC__RDIS;
				r_charge = RES_2_PARALLEL(r_temp, DSD_555_CC__RGND);
				r_discharge = RES_2_PARALLEL(DSD_555_CC__RGND, DSD_555_CC__RDIS);
				break;
		}

		context->exp_bleed  = RC_CHARGE_EXP(DSD_555_CC_T_RC_BLEED);
		context->t_rc_discharge_01 = DSD_555_CC_T_RC_DISCHARGE_01;
		context->exp_discharge_01  = RC_CHARGE_EXP(context->t_rc_discharge_01);
		context->t_rc_discharge_no_i = DSD_555_CC_T_RC_DISCHARGE_NO_I;
		context->exp_discharge_no_i  = RC_CHARGE_EXP(context->t_rc_discharge_no_i);
		context->t_rc_charge = DSD_555_CC_T_RC_CHARGE;
		context->exp_charge  = RC_CHARGE_EXP(context->t_rc_charge);
		context->t_rc_discharge = DSD_555_CC_T_RC_DISCHARGE;
		context->exp_discharge  = RC_CHARGE_EXP(context->t_rc_discharge);
	}

	/* Step to set the output */
	DISCRETE_STEP_CALL(dsd_555_cc);

	/*
     * TYPES:
     * Note: These are equivalent circuits shown without the 555 circuitry.
     *       See the schematic in src\sound\discrete.h for full hookup info.
     *
     * DISCRETE_555_CC_TO_DISCHARGE_PIN
     * When the CC source is connected to the discharge pin, it allows the
     * circuit to charge when the 555 is in charge mode.  But when in discharge
     * mode, the CC source is grounded, disabling it's effect.
     *
     * [0]
     * No resistors.  Straight constant current charge of capacitor.
     * When there is not any charge current, the cap will bleed off.
     * Once the lower threshold(trigger) is reached, the output will
     * go high but the cap will continue to discharge due to losses.
     *   .------+---> cap_voltage      CHARGING:
     *   |      |                 dv (change in voltage) compared to dt (change in time in seconds).
     * .---.   ---                dv = i * dt / C; where i is current in amps and C is capacitance in farads.
     * | i |   --- C              cap_voltage = cap_voltage + dv
     * '---'    |
     *   |      |               DISCHARGING:
     *  gnd    gnd                instantaneous
     *
     * [1]
     * Same as type 1 but with rDischarge.  rDischarge has no effect on the charge rate because
     * of the constant current source i.
     * When there is not any charge current, the cap will bleed off.
     * Once the lower threshold(trigger) is reached, the output will
     * go high but the cap will continue to discharge due to losses.
     *   .----ZZZ-----+---> cap_voltage      CHARGING:
     *   | rDischarge |                 dv (change in voltage) compared to dt (change in time in seconds).
     * .---.         ---                dv = i * dt / C; where i is current in amps and C is capacitance in farads.
     * | i |         --- C              cap_voltage = cap_voltage + dv
     * '---'          |
     *   |            |               DISCHARGING:
     *  gnd          gnd                thru rDischarge
     *
     * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
     * !!!!! IMPORTANT NOTE ABOUT TYPES 3 - 7 !!!!!
     * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
     *
     * From here on in all the circuits have either an rBias or rGnd resistor.
     * This converts the constant current into a voltage source.
     * So all the remaining circuit types will be converted to this circuit.
     * When discharging, rBias is out of the equation because the 555 is grounding the circuit
     * after that point.
     *
     * .------------.     Rc                  Rc is the equivilent circuit resistance.
     * |     v      |----ZZZZ---+---> cap_voltage    v  is the equivilent circuit voltage.
     * |            |           |
     * '------------'          ---            Then the standard RC charging formula applies.
     *       |                 --- C
     *       |                  |             NOTE: All the following types are converted to Rc and v values.
     *      gnd                gnd
     *
     * [2]
     * When there is not any charge current, the cap will bleed off.
     * Once the lower threshold(trigger) is reached, the output will
     * go high but the cap will continue to discharge due to rGnd.
     *   .-------+------+------> cap_voltage         CHARGING:
     *   |       |      |                       v = vi = i * rGnd
     * .---.    ---     Z                       Rc = rGnd
     * | i |    --- C   Z rGnd
     * '---'     |      |                     DISCHARGING:
     *   |       |      |                       instantaneous
     *  gnd     gnd    gnd
     *
     * [3]
     * When there is not any charge current, the cap will bleed off.
     * Once the lower threshold(trigger) is reached, the output will
     * go high but the cap will continue to discharge due to rGnd.
     *   .----ZZZ-----+------+------> cap_voltage    CHARGING:
     *   | rDischarge |      |                  v = vi = i * rGnd
     * .---.         ---     Z                  Rc = rGnd
     * | i |         --- C   Z rGnd
     * '---'          |      |                DISCHARGING:
     *   |            |      |                  thru rDischarge || rGnd  ( || means in parallel)
     *  gnd          gnd    gnd
     *
     * [4]
     *     .---ZZZ---+------------+-------------> cap_voltage      CHARGING:
     *     |  rBias  |            |                           Rc = rBias
     * .-------.   .---.         ---                          vi = i * rBias
     * | vBias |   | i |         --- C                        v = vBias + vi
     * '-------'   '---'          |
     *     |         |            |                         DISCHARGING:
     *    gnd       gnd          gnd                          instantaneous
     *
     * [5]
     *     .---ZZZ---+----ZZZ-----+-------------> cap_voltage      CHARGING:
     *     |  rBias  | rDischarge |                           Rc = rBias + rDischarge
     * .-------.   .---.         ---                          vi = i * rBias
     * | vBias |   | i |         --- C                        v = vBias + vi
     * '-------'   '---'          |
     *     |         |            |                         DISCHARGING:
     *    gnd       gnd          gnd                          thru rDischarge
     *
     * [6]
     *     .---ZZZ---+------------+------+------> cap_voltage      CHARGING:
     *     |  rBias  |            |      |                    Rc = rBias || rGnd
     * .-------.   .---.         ---     Z                    vi = i * Rc
     * | vBias |   | i |         --- C   Z rGnd               v = vBias * (rGnd / (rBias + rGnd)) + vi
     * '-------'   '---'          |      |
     *     |         |            |      |                  DISCHARGING:
     *    gnd       gnd          gnd    gnd                   instantaneous
     *
     * [7]
     *     .---ZZZ---+----ZZZ-----+------+------> cap_voltage      CHARGING:
     *     |  rBias  | rDischarge |      |                    Rc = (rBias + rDischarge) || rGnd
     * .-------.   .---.         ---     Z                    vi = i * rBias * (rGnd / (rBias + rDischarge + rGnd))
     * | vBias |   | i |         --- C   Z rGnd               v = vBias * (rGnd / (rBias + rDischarge + rGnd)) + vi
     * '-------'   '---'          |      |
     *     |         |            |      |                  DISCHARGING:
     *    gnd       gnd          gnd    gnd                   thru rDischarge || rGnd
     */

    /*
     * DISCRETE_555_CC_TO_CAP
     *
     * When the CC source is connected to the capacitor, it allows the
     * current to charge the cap while it is in discharge mode, slowing the
     * discharge.  So in charge mode it charges linearly from the constant
     * current cource.  But when in discharge mode it behaves like circuit
     * type 2 above.
     *   .-------+------+------> cap_voltage         CHARGING:
     *   |       |      |                       dv = i * dt / C
     * .---.    ---     Z                       cap_voltage = cap_voltage + dv
     * | i |    --- C   Z rDischarge
     * '---'     |      |                     DISCHARGING:
     *   |       |      |                       v = vi = i * rGnd
     *  gnd     gnd   discharge                 Rc = rDischarge
     */
}


/************************************************************************
 *
 * DSD_555_VCO1 - Usage of node_description values
 *
 * input[0]    - Reset input value
 * input[1]    - Modulation Voltage (Vin1)
 * input[2]    - Control Voltage (Vin2)
 *
 * also passed discrete_5555_vco1_desc structure
 *
 * Apr 2006, D Renaud.
 ************************************************************************/
#define DSD_555_VCO1__RESET	DISCRETE_INPUT(0)	/* reset active low */
#define DSD_555_VCO1__VIN1	DISCRETE_INPUT(1)
#define DSD_555_VCO1__VIN2	DISCRETE_INPUT(2)

DISCRETE_STEP(dsd_555_vco1)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_vco1)
	DISCRETE_DECLARE_INFO(discrete_555_vco1_desc)

	int		count_f = 0;
	int		count_r = 0;
	double	dt;				/* change in time */
	double	x_time  = 0;	/* time since change happened */
	double	v_cap;			/* Current voltage on capacitor, before dt */
	double	v_cap_next = 0;	/* Voltage on capacitor, after dt */

	dt    = node->info->sample_time;	/* Change in time */
	v_cap = context->cap_voltage;

	/* Check: if the Control Voltage node is connected. */
	if (context->ctrlv_is_node && DSD_555_VCO1__RESET)	/* reset active low */
	{
		/* If CV is less then .25V, the circuit will oscillate way out of range.
         * So we will just ignore it when it happens. */
		if (DSD_555_VCO1__VIN2 < .25) return;
		/* If it is a node then calculate thresholds based on Control Voltage */
		context->threshold = DSD_555_VCO1__VIN2;
		context->trigger   = DSD_555_VCO1__VIN2 / 2.0;
		/* Since the thresholds may have changed we need to update the FF */
		if (v_cap >= context->threshold)
		{
			x_time = dt;
			context->flip_flop = 0;
			count_f++;
		}
		else
		if (v_cap <= context->trigger)
		{
			x_time = dt;
			context->flip_flop = 1;
			count_r++;
		}
	}

	/* Keep looping until all toggling in time sample is used up. */
	do
	{
		if (context->flip_flop)
		{
			/* if we are in reset then toggle f/f and discharge */
			if (!DSD_555_VCO1__RESET)	/* reset active low */
			{
				context->flip_flop = 0;
				count_f++;
			}
			else
			{
				/* Charging */
				/* iC=C*dv/dt  works out to dv=iC*dt/C */
				v_cap_next = v_cap + (context->i_charge * dt / info->c);
				dt         = 0;

				/* has it charged past upper limit? */
				if (v_cap_next >= context->threshold)
				{
					/* calculate the overshoot time */
					dt     = info->c * (v_cap_next - context->threshold) / context->i_charge;
					v_cap  = context->threshold;
					x_time = dt;
					context->flip_flop = 0;
					count_f++;
				}
			}
		}
		else
		{
			/* Discharging */
			/* iC=C*dv/dt  works out to dv=iC*dt/C */
			v_cap_next = v_cap - (context->i_discharge * dt / info->c);

			/* if we are in reset, then the cap can discharge to 0 */
			if (!DSD_555_VCO1__RESET)	/* reset active low */
			{
				if (v_cap_next < 0) v_cap_next = 0;
				dt = 0;
			}
			else
			{
				/* if we are out of reset and the cap voltage is less then
                 * the lower threshold, toggle f/f and start charging */
				if (v_cap <= context->trigger)
				{
					if (context->flip_flop == 0)
					{
						/* don't need to track x_time here */
						context->flip_flop = 1;
						count_r++;
					}
				}
				else
				{
					dt = 0;
					/* has it discharged past lower limit? */
					if (v_cap_next <= context->trigger)
					{
						/* calculate the overshoot time */
						dt     = info->c * (v_cap_next - context->trigger) / context->i_discharge;
						v_cap  = context->trigger;
						x_time = dt;
						context->flip_flop = 1;
						count_r++;
					}
				}
			}
		}
	} while(dt);

	context->cap_voltage = v_cap_next;

	/* Convert last switch time to a ratio.  No x_time in reset. */
	x_time = x_time / node->info->sample_time;
	if (!DSD_555_VCO1__RESET) x_time = 0;

	switch (context->output_type)
	{
		case DISC_555_OUT_SQW:
			node->output[0] = context->flip_flop * context->v_out_high + context->ac_shift;
			break;
		case DISC_555_OUT_CAP:
			node->output[0] = v_cap_next;
			/* Fake it to AC if needed */
			if (context->output_is_ac)
				node->output[0] -= context->threshold * 3.0 /4.0;
			break;
		case DISC_555_OUT_ENERGY:
			if (x_time == 0) x_time = 1.0;
			node->output[0]  = context->v_out_high * (context->flip_flop ? x_time : (1.0 - x_time));
			node->output[0] += context->ac_shift;
			break;
		case DISC_555_OUT_LOGIC_X:
			node->output[0] = context->flip_flop + x_time;
			break;
		case DISC_555_OUT_COUNT_F_X:
			node->output[0] = count_f ? count_f + x_time : count_f;
			break;
		case DISC_555_OUT_COUNT_R_X:
			node->output[0] =  count_r ? count_r + x_time : count_r;
			break;
		case DISC_555_OUT_COUNT_F:
			node->output[0] = count_f;
			break;
		case DISC_555_OUT_COUNT_R:
			node->output[0] = count_r;
			break;
	}
}

DISCRETE_RESET(dsd_555_vco1)
{
	DISCRETE_DECLARE_CONTEXT(dsd_555_vco1)
	DISCRETE_DECLARE_INFO(discrete_555_vco1_desc)

	double v_ratio_r3, v_ratio_r4_1, r_in_1;

	context->output_type  = info->options & DISC_555_OUT_MASK;
	context->output_is_ac = info->options & DISC_555_OUT_AC;

	/* Setup op-amp parameters */

	/* The voltage at op-amp +in is always a fixed ratio of the modulation voltage. */
	v_ratio_r3 = info->r3 / (info->r2 + info->r3);			/* +in voltage */
	/* The voltage at op-amp -in is 1 of 2 fixed ratios of the modulation voltage,
     * based on the 555 Flip-Flop state. */
	/* If the FF is 0, then only R1 is connected allowing the full modulation volatge to pass. */
	/* v_ratio_r4_0 = 1 */
	/* If the FF is 1, then R1 & R4 make a voltage divider similar to R2 & R3 */
	v_ratio_r4_1 = info->r4 / (info->r1 + info->r4);		/* -in voltage */
	/* the input resistance to the op amp depends on the FF state */
	/* r_in_0 = info->r1 when FF = 0 */
	r_in_1 = 1.0 / (1.0 / info->r1 + 1.0 / info->r4);	/* input resistance when r4 switched in */

	/* Now that we know the voltages entering the op amp and the resistance for the
     * FF states, we can predetermine the ratios for the charge/discharge currents. */
	context->i_discharge = (1 - v_ratio_r3) / info->r1;
	context->i_charge    = (v_ratio_r3 - v_ratio_r4_1) / r_in_1;

	/* the cap starts off discharged */
	context->cap_voltage = 0;

	/* Setup 555 parameters */

	/* There is no charge on the cap so the 555 goes high at init. */
	context->flip_flop     = 1;
	context->ctrlv_is_node = (node->input_is_node >> 2) & 1;
	context->v_out_high    = (info->v_out_high == DEFAULT_555_HIGH) ? info->v_pos - 1.2 : info->v_out_high;

	/* Calculate 555 thresholds.
     * If the Control Voltage is a node, then the thresholds will be calculated each step.
     * If the Control Voltage is a fixed voltage, then the thresholds will be calculated
     * from that.  Otherwise we will use thresholds based on v_pos. */
	if (!context->ctrlv_is_node && (DSD_555_VCO1__VIN2 != -1))
	{
		/* Setup based on supplied Control Voltage static value */
		context->threshold = DSD_555_VCO1__VIN2;
		context->trigger   = DSD_555_VCO1__VIN2 / 2.0;
	}
	else
	{
		/* Setup based on v_pos power source */
		context->threshold = info->v_pos * 2.0 / 3.0;
		context->trigger   = info->v_pos / 3.0;
	}

	/* Calculate DC shift needed to make squarewave waveform AC */
	context->ac_shift = context->output_is_ac ? -context->v_out_high / 2.0 : 0;
}


/************************************************************************
 *
 * DSD_566 - Usage of node_description values
 *
 * Mar 2004, D Renaud. updated Sept 2009
 *
 * The data sheets for this are no where near correct.
 * This simulation is based on the internal schematic and testing of
 * a real Signetics IC.
 *
 * The 566 is a constant current based VCO.  If you change R, that affects
 * the charge/discharge rate.  A constant current source will charge the
 * cap linearly.  Of course due to the transistors there will be some
 * non-linear areas at the ends of the Vmod range.  As the Vmod voltage
 * drops from Vcharge, the frequency generated increases.
 *
 * The Triangle (pin 4) output is just a buffered version of the cap
 * charge.  It is about 1.35 higher then the cap voltage.
 * The Square (pin 3) output starts low as the cap voltages rises.
 * Once a threshold is reached, the cap starts to discharge, and the
 * Square output goes high.  The Square high output is about 1V less then
 * B+.  Unloaded it is .75V less.  With a 4.7k pull-down resistor, it
 * is 1.06V less.  So I will simulate at 1V less. The Square low voltage
 * is non-linear so I will use a table.  The cap toggle thresholds vary
 * depending on B+, so they will be simulated with a table.
 *
 * The data sheets show Vmod should be no less then 3/4*B+.  In reality
 * you can go to close to 1/2*B+ before you loose linearity.  Below 1/2,
 * oscillation stops.  When Vmod is 0V to 0.1V less then B+, it also
 * looses linearity, and stops oscillating when >= B+.  This is because
 * there is no voltage difference to create a current source.
 *
 * The current source is dependant on the voltage difference between B+
 * and Vmod.  Due to transistor action, it is not 100%, but this formula
 * gives a good approximation:
 * I = ((B+ - Vmod - 0.1) * 0.95) / R
 * You can test the current VS modulation function by using 10k for R
 * and replace C with a 10k resistor.  Then you can monitor the voltage
 * on pin 7 to work out the current.  I=V/R.  It will start to oscillate
 * when in the cap threshold range.
 *
 * When Vmod drops below the stable range, the current source no longer
 * functions properly.  Technically this is out of the range specified
 * for the IC.  Of course old games used this range anyways, so we need
 * to know how the real IC behaves.  When Vmod drops below the stable range,
 * the charge current is stops dropping instead of increasing, while the
 * discharge current still functions.  This means the frequency generated
 * starts to drop as the voltage lowers, instead of the normal increase
 * in frequency.
 *
 ************************************************************************/
#define DSD_566__VMOD		DISCRETE_INPUT(0)
#define DSD_566__R			DISCRETE_INPUT(1)
#define DSD_566__C			DISCRETE_INPUT(2)
#define DSD_566__VPOS		DISCRETE_INPUT(3)
#define DSD_566__VNEG		DISCRETE_INPUT(4)
#define DSD_566__VCHARGE	DISCRETE_INPUT(5)
#define DSD_566__OPTIONS	DISCRETE_INPUT(6)


static const struct
{
	double	c_high[6];
	double	c_low[6];
	double	sqr_low[6];
	double	osc_stable[6];
	double	osc_stop[6];
} ne566 =
{
	/* 10      10.5      11      11.5      12     13     14     15             B+ */
	{3.364, /*3.784,*/ 4.259, /*4.552,*/ 4.888, 5.384, 5.896, 6.416},		/* c_high */
	{1.940, /*2.100,*/ 2.276, /*2.404,*/ 2.580, 2.880, 3.180, 3.488},		/* c_low */
	{4.352, /*4.144,*/ 4.080, /*4.260,*/ 4.500, 4.960, 5.456, 5.940},		/* sqr_low */
	{4.885, /*5.316,*/ 5.772, /*6.075,*/ 6.335, 6.912, 7.492, 7.945},		/* osc_stable */
	{4.495, /*4.895,*/ 5.343, /*5.703,*/ 5.997, 6.507, 7.016, 7.518}		/* osc_stop */
};

DISCRETE_STEP(dsd_566)
{
	DISCRETE_DECLARE_CONTEXT(dsd_566)

	double	i = 0;			/* Charging current created by vIn */
	double	i_rise;			/* non-linear rise charge current */
	double	dt;				/* change in time */
	double	x_time = 0;
	double	v_cap;			/* Current voltage on capacitor, before dt */
	int		count_f = 0, count_r = 0;

	dt    = node->info->sample_time;	/* Change in time */
	v_cap = context->cap_voltage;	/* Set to voltage before change */

	/* Calculate charging current if it is in range */
	if (EXPECTED(DSD_566__VMOD > context->v_osc_stop))
	{
		double v_charge = DSD_566__VCHARGE - DSD_566__VMOD - 0.1;
		if (v_charge > 0)
		{
			i = (v_charge * .95) / DSD_566__R;
			if (DSD_566__VMOD < context->v_osc_stable)
			{
				/* no where near correct calculation of non linear range */
				i_rise = ((DSD_566__VCHARGE - context->v_osc_stable - 0.1) * .95) / DSD_566__R;
				i_rise *= 1.0 - (context->v_osc_stable - DSD_566__VMOD) / (context->v_osc_stable - context->v_osc_stop);
			}
			else
				i_rise = i;
		}
		else
			return;
	}
	else return;

	/* Keep looping until all toggling in this time sample is used up. */
	do
	{
		if (context->flip_flop)
		{
			/* Discharging */
			v_cap -= i * dt / DSD_566__C;
			dt     = 0;

			/* has it discharged past lower limit? */
			if (UNEXPECTED(v_cap < context->threshold_low))
			{
				/* calculate the overshoot time */
				dt = DSD_566__C * (context->threshold_low - v_cap) / i;
				v_cap = context->threshold_low;
				context->flip_flop = 0;
				count_f++;
				x_time = dt;
			}
		}
		else
		{
			/* Charging */
			/* iC=C*dv/dt  works out to dv=iC*dt/C */
			v_cap += i_rise * dt / DSD_566__C;
			dt     = 0;
			/* Yes, if the cap voltage has reached the max voltage it can,
             * and the 566 threshold has not been reached, then oscillation stops.
             * This is the way the actual electronics works.
             * This is why you never play with the pots after being factory adjusted
             * to work in the proper range. */
			if (UNEXPECTED(v_cap > DSD_566__VMOD)) v_cap = DSD_566__VMOD;

			/* has it charged past upper limit? */
			if (UNEXPECTED(v_cap > context->threshold_high))
			{
				/* calculate the overshoot time */
				dt = DSD_566__C * (v_cap - context->threshold_high) / i;
				v_cap = context->threshold_high;
				context->flip_flop = 1;
				count_r++;
				x_time = dt;
			}
		}
	} while(dt);

	context->cap_voltage = v_cap;

	/* Convert last switch time to a ratio */
	x_time /= node->info->sample_time;

	switch (context->out_type)
	{
		case DISC_566_OUT_SQUARE:
			node->output[0] = context->flip_flop ? context->v_sqr_high : context->v_sqr_low;
			if (context->fake_ac)
				node->output[0] += context->ac_shift;
			break;
		case DISC_566_OUT_ENERGY:
			if (x_time == 0) x_time = 1.0;
			node->output[0]  = context->v_sqr_low + context->v_sqr_diff * (context->flip_flop ? x_time : (1.0 - x_time));
			if (context->fake_ac)
				node->output[0] += context->ac_shift;
			break;
		case DISC_566_OUT_LOGIC:
				node->output[0] = context->flip_flop;
			break;
		case DISC_566_OUT_TRIANGLE:
			node->output[0] = v_cap;
			if (context->fake_ac)
				node->output[0] += context->ac_shift;
			break;
		case DISC_566_OUT_COUNT_F_X:
			node->output[0] = count_f ? count_f + x_time : count_f;
			break;
		case DISC_566_OUT_COUNT_R_X:
			node->output[0] =  count_r ? count_r + x_time : count_r;
			break;
		case DISC_566_OUT_COUNT_F:
			node->output[0] = count_f;
			break;
		case DISC_566_OUT_COUNT_R:
			node->output[0] = count_r;
			break;
	}
}

DISCRETE_RESET(dsd_566)
{
	DISCRETE_DECLARE_CONTEXT(dsd_566)

	int		v_int;
	double	v_float;

	context->out_type = (int)DSD_566__OPTIONS & DISC_566_OUT_MASK;
	context->fake_ac =  (int)DSD_566__OPTIONS & DISC_566_OUT_AC;

	if (DSD_566__VNEG >= DSD_566__VPOS)
		fatalerror("[v_neg >= v_pos] in NODE_%d!\n", NODE_BLOCKINDEX(node));

	v_float = DSD_566__VPOS - DSD_566__VNEG;
	v_int = (int)v_float;
	if ( v_float < 10 || v_float > 15 )
		fatalerror("v_neg and/or v_pos out of range in NODE_%d\n", NODE_BLOCKINDEX(node));
	if ( v_float != v_int )
		/* fatal for now. */
		fatalerror("Power should be integer in NODE_%d\n", NODE_BLOCKINDEX(node));

	context->flip_flop   = 0;
	context->cap_voltage = 0;

	v_int -= 10;
	context->threshold_high = ne566.c_high[v_int] + DSD_566__VNEG;
	context->threshold_low  = ne566.c_low[v_int] + DSD_566__VNEG;
	context->v_sqr_high     = DSD_566__VPOS - 1;
	context->v_sqr_low      = ne566.sqr_low[v_int] + DSD_566__VNEG;
	context->v_sqr_diff     = context->v_sqr_high - context->v_sqr_low;
	context->v_osc_stable	= ne566.osc_stable[v_int] + DSD_566__VNEG;
	context->v_osc_stop		= ne566.osc_stop[v_int] + DSD_566__VNEG;

	context->ac_shift = 0;
	if (context->fake_ac)
	{
		if (context->out_type == DISC_566_OUT_TRIANGLE)
			context->ac_shift = (context->threshold_high - context->threshold_low) / 2 - context->threshold_high;
		else
			context->ac_shift = context->v_sqr_diff / 2 - context->v_sqr_high;
	}

	/* Step the output */
	DISCRETE_STEP_CALL(dsd_566);
}


/************************************************************************
 *
 * DSD_LS624 - Usage of node_description values
 *
 * Dec 2007, Couriersud based on data sheet
 * Oct 2009, complete re-write based on IC testing
 ************************************************************************/
#define DSD_LS624__ENABLE		DISCRETE_INPUT(0)
#define DSD_LS624__VMOD			DISCRETE_INPUT(1)
#define DSD_LS624__VRNG			DISCRETE_INPUT(2)
#define DSD_LS624__C			DISCRETE_INPUT(3)
#define DSD_LS624__R_FREQ_IN	DISCRETE_INPUT(4)
#define DSD_LS624__C_FREQ_IN	DISCRETE_INPUT(5)
#define DSD_LS624__R_RNG_IN		DISCRETE_INPUT(6)
#define DSD_LS624__OUTTYPE		DISCRETE_INPUT(7)

#define LS624_R_EXT			600.0		/* as specified in data sheet */
#define LS624_OUT_HIGH		4.5			/* measured */
#define LS624_IN_R		RES_K(90)	/* measured & 70K + 20k per data sheet */

/*
 * The 74LS624 series are constant current based VCOs.  The Freq Control voltage
 * modulates the current source.  The current is created from Rext, which is
 * internally fixed at 600 ohms for all devices except the 74LS628 which has
 * external connections.  The current source linearly discharges the cap voltage.
 * The cap starts with 0V charge across it.  One side is connected to a fixed voltage
 * bias circuit.  The other side is charged negatively from the current source until
 * a certain low threshold is reached.  Once this threshold is reached, the output
 * toggles state and the pins on the cap reverse in respect to the charge/bias hookup.
 * This starts the one side of the cap to be at bias, and the other side of the cap is
 * now at bias + the charge on the cap which is bias - threshold.
 * Y = 0;  CX1 = bias;    CX2 = charge
 * Y = 1;  CX1 = charge;  CX2 = bias
 * The Range voltage adjusts the threshold voltage.  The higher the Range voltage,
 * the lower the threshold voltage, the longer the cap can charge, the lower the frequency.
 *
 * In a perfect world it would work like this:
 * The current is based on the mysterious Rext mentioned in the data sheet.
 * I = (VfreqControl  * 20k/90k) / Rext
 * where Rext = 600 ohms or external Rext on a 74LS628
 * The Freq Control has an input impedance of approximately 90k, so any input resistance
 * connected to the Freq Control pin works as a voltage divider.
 * I = (VfreqControl * 20k/(90k + RfreqControlIn)) / Rext
 * That gives us a change in voltage on the cap of
 * dV = I / sampleRate / C_inFarads
 *
 * Unfortunately the chip does not behave linearly do to internal interactions,
 * so I have just worked out the formula (using zunzun.com) of FreqControl and
 * range to frequency out for a fixed cap value of 0.1uf.  Other cap values can just
 * scale from that.  From the freq, we calculate the time of 1/2 cycle using 1/Freq/2.
 * Then just use that to toggle a waveform.
 */


DISCRETE_STEP(dsd_ls624)
{
	DISCRETE_DECLARE_CONTEXT(dsd_ls624)

	double	x_time = 0;
	double	freq, t1;
	double	v_freq_2, v_freq_3, v_freq_4;
	double	t_used = context->t_used;
	double	dt = node->info->sample_time;;
	double	v_freq = DSD_LS624__VMOD;
	double	v_rng = DSD_LS624__VRNG;
	int		count_f = 0, count_r = 0;

	/* coefficients */
	const double k1 = 1.9904769024796283E+03;
	const double k2 = 1.2070059213983407E+03;
	const double k3 = 1.3266985579561108E+03;
	const double k4 = -1.5500979825922698E+02;
	const double k5 = 2.8184536266938172E+00;
	const double k6 = -2.3503421582744556E+02;
	const double k7 = -3.3836786704527788E+02;
	const double k8 = -1.3569136703258670E+02;
	const double k9 = 2.9914575453819188E+00;
	const double k10 = 1.6855569086173170E+00;

	if (UNEXPECTED(DSD_LS624__ENABLE == 0))
		return;

	/* scale due to input resistance */
	v_freq *= context->v_freq_scale;
	v_rng *= context->v_rng_scale;

	/* apply cap if needed */
	if (context->has_freq_in_cap)
	{
		context->v_cap_freq_in += (v_freq - context->v_cap_freq_in) * context->exponent;
		v_freq = context->v_cap_freq_in;
	}

	/* Polyfunctional3D_model created by zunzun.com using sum of squared absolute error */
	v_freq_2 = v_freq * v_freq;
	v_freq_3 = v_freq_2 * v_freq;
	v_freq_4 = v_freq_3 * v_freq;
	freq = k1;
	freq += k2 * v_freq;
	freq += k3 * v_freq_2;
	freq += k4 * v_freq_3;
	freq += k5 * v_freq_4;
	freq += k6 * v_rng;
	freq += k7 * v_rng * v_freq;
	freq += k8 * v_rng * v_freq_2;
	freq += k9 * v_rng * v_freq_3;
	freq += k10 * v_rng * v_freq_4;

	freq *= CAP_U(0.1) / DSD_LS624__C;

	t1 = 0.5 / freq ;
	t_used += node->info->sample_time;
	do
	{
		dt = 0;
		if (t_used > t1)
		{
			/* calculate the overshoot time */
			t_used -= t1;
			context->flip_flop ^= 1;
			if (context->flip_flop)
				count_r++;
			else
				count_f++;
			/* fix up any frequency increase change errors */
			while(t_used > node->info->sample_time)
				t_used -= node->info->sample_time;
			x_time = t_used;
			dt = t_used;
		}
	}while(dt);

	context->t_used = t_used;

	/* Convert last switch time to a ratio */
	x_time = x_time / node->info->sample_time;

	switch (context->out_type)
	{
		case DISC_LS624_OUT_LOGIC_X:
				node->output[0] = context->flip_flop  + x_time;
			break;
		case DISC_LS624_OUT_COUNT_F_X:
			node->output[0] = count_f ? count_f + x_time : count_f;
			break;
		case DISC_LS624_OUT_COUNT_R_X:
			node->output[0] =  count_r ? count_r + x_time : count_r;
			break;
		case DISC_LS624_OUT_COUNT_F:
			node->output[0] = count_f;
			break;
		case DISC_LS624_OUT_COUNT_R:
			node->output[0] = count_r;
			break;
		case DISC_LS624_OUT_ENERGY:
			if (x_time == 0) x_time = 1.0;
			node->output[0] = LS624_OUT_HIGH * (context->flip_flop ? x_time : (1.0 - x_time));
			break;
		case DISC_LS624_OUT_LOGIC:
				node->output[0] = context->flip_flop;
			break;
		case DISC_LS624_OUT_SQUARE:
			node->output[0] = context->flip_flop ? LS624_OUT_HIGH : 0;
			break;
	}
}

DISCRETE_RESET(dsd_ls624)
{
	struct dsd_ls624_context *context = (struct dsd_ls624_context *)node->context;

	context->out_type = (int)DSD_LS624__OUTTYPE;

	context->flip_flop = 0;
	context->t_used = 0;
	context->v_freq_scale = LS624_IN_R / (DSD_LS624__R_FREQ_IN + LS624_IN_R);
	context->v_rng_scale = LS624_IN_R / (DSD_LS624__R_RNG_IN + LS624_IN_R);
	if (DSD_LS624__C_FREQ_IN > 0)
	{
		context->has_freq_in_cap = 1;
		context->exponent = RC_CHARGE_EXP(RES_2_PARALLEL(DSD_LS624__R_FREQ_IN, LS624_IN_R) * DSD_LS624__C_FREQ_IN);
		context->v_cap_freq_in = 0;
	}
	else
		context->has_freq_in_cap = 0;

	node->output[0] = 0;
}