summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/netlist/analog/nld_solver.c
blob: c20277e507caa02dd017ad5b21c1b583225aa617 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/*
 * nld_solver.c
 *
 */

/* Commented out for now. Relatively low number of terminals / nets make
 * the vectorizations fast-math enables pretty expensive
 */

#if 0
#pragma GCC optimize "-ffast-math"
//#pragma GCC optimize "-funroll-loops"
#pragma GCC optimize "-funswitch-loops"
#pragma GCC optimize "-fvariable-expansion-in-unroller"
#pragma GCC optimize "-funsafe-loop-optimizations"
#pragma GCC optimize "-fvect-cost-model"
#pragma GCC optimize "-fvariable-expansion-in-unroller"
#pragma GCC optimize "-ftree-loop-if-convert-stores"
#pragma GCC optimize "-ftree-loop-distribution"
#pragma GCC optimize "-ftree-loop-im"
#pragma GCC optimize "-ftree-loop-ivcanon"
#pragma GCC optimize "-fivopts"
#pragma GCC optimize "-ftree-parallelize-loops=4"
#endif

#define SOLVER_VERBOSE_OUT(x) do {} while (0)
//#define SOLVER_VERBOSE_OUT(x) printf x

#include <algorithm>
#include "nld_solver.h"
#include "nld_ms_direct.h"
#include "nld_ms_direct1.h"
#include "nld_ms_direct2.h"
#include "nld_ms_gauss_seidel.h"
#include "nld_twoterm.h"
#include "../nl_lists.h"

#if HAS_OPENMP
#include "omp.h"
#endif

vector_ops_t *vector_ops_t::create_ops(const int size)
{
	switch (size)
	{
		case 1:
			return nl_alloc(vector_ops_impl_t<1>);
		case 2:
			return nl_alloc(vector_ops_impl_t<2>);
		case 3:
			return nl_alloc(vector_ops_impl_t<3>);
		case 4:
			return nl_alloc(vector_ops_impl_t<4>);
		case 5:
			return nl_alloc(vector_ops_impl_t<5>);
		case 6:
			return nl_alloc(vector_ops_impl_t<6>);
		case 7:
			return nl_alloc(vector_ops_impl_t<7>);
		case 8:
			return nl_alloc(vector_ops_impl_t<8>);
		case 9:
			return nl_alloc(vector_ops_impl_t<9>);
		case 10:
			return nl_alloc(vector_ops_impl_t<10>);
		case 11:
			return nl_alloc(vector_ops_impl_t<11>);
		case 12:
			return nl_alloc(vector_ops_impl_t<12>);
		default:
			return nl_alloc(vector_ops_impl_t<0>, size);
	}
}

ATTR_COLD void terms_t::add(netlist_terminal_t *term, int net_other)
{
	m_term.add(term);
	m_net_other.add(net_other);
	m_gt.add(0.0);
	m_go.add(0.0);
	m_Idr.add(0.0);
	m_other_curanalog.add(NULL);
}

ATTR_COLD void terms_t::set_pointers()
{
	for (int i = 0; i < count(); i++)
	{
		m_term[i]->m_gt1 = &m_gt[i];
		m_term[i]->m_go1 = &m_go[i];
		m_term[i]->m_Idr1 = &m_Idr[i];
		m_other_curanalog[i] = &m_term[i]->m_otherterm->net().as_analog().m_cur_Analog;
	}
}

// ----------------------------------------------------------------------------------------
// netlist_matrix_solver
// ----------------------------------------------------------------------------------------

ATTR_COLD netlist_matrix_solver_t::netlist_matrix_solver_t(const eSolverType type, const netlist_solver_parameters_t &params)
: m_stat_calculations(0),
  m_stat_newton_raphson(0),
  m_stat_vsolver_calls(0),
 m_params(params),
 m_cur_ts(0),
 m_type(type)
{
}

ATTR_COLD netlist_matrix_solver_t::~netlist_matrix_solver_t()
{
	for (int i = 0; i < m_inps.count(); i++)
		global_free(m_inps[i]);
}

ATTR_COLD void netlist_matrix_solver_t::setup(netlist_analog_net_t::list_t &nets)
{
	NL_VERBOSE_OUT(("New solver setup\n"));

	m_nets.clear();

	for (int k = 0; k < nets.count(); k++)
	{
		m_nets.add(nets[k]);
	}

	for (int k = 0; k < nets.count(); k++)
	{
		NL_VERBOSE_OUT(("setting up net\n"));

		netlist_analog_net_t *net = nets[k];

		net->m_solver = this;

		for (int i = 0; i < net->m_core_terms.count(); i++)
		{
			netlist_core_terminal_t *p = net->m_core_terms[i];
			NL_VERBOSE_OUT(("%s %s %d\n", p->name().cstr(), net->name().cstr(), (int) net->isRailNet()));
			switch (p->type())
			{
				case netlist_terminal_t::TERMINAL:
					switch (p->netdev().family())
					{
						case netlist_device_t::CAPACITOR:
							if (!m_step_devices.contains(&p->netdev()))
								m_step_devices.add(&p->netdev());
							break;
						case netlist_device_t::BJT_EB:
						case netlist_device_t::DIODE:
						//case netlist_device_t::VCVS:
						case netlist_device_t::BJT_SWITCH:
							NL_VERBOSE_OUT(("found BJT/Diode\n"));
							if (!m_dynamic_devices.contains(&p->netdev()))
								m_dynamic_devices.add(&p->netdev());
							break;
						default:
							break;
					}
					{
						netlist_terminal_t *pterm = dynamic_cast<netlist_terminal_t *>(p);
						add_term(k, pterm);
					}
					NL_VERBOSE_OUT(("Added terminal\n"));
					break;
				case netlist_terminal_t::INPUT:
					{
						netlist_analog_output_t *net_proxy_output = NULL;
						for (int i = 0; i < m_inps.count(); i++)
							if (m_inps[i]->m_proxied_net == &p->net().as_analog())
							{
								net_proxy_output = m_inps[i];
								break;
							}

						if (net_proxy_output == NULL)
						{
							net_proxy_output = nl_alloc(netlist_analog_output_t);
							net_proxy_output->init_object(*this, this->name() + "." + pstring::sprintf("m%d", m_inps.count()));
							m_inps.add(net_proxy_output);
							net_proxy_output->m_proxied_net = &p->net().as_analog();
						}
						net_proxy_output->net().register_con(*p);
						// FIXME: repeated
						net_proxy_output->net().rebuild_list();
						NL_VERBOSE_OUT(("Added input\n"));
					}
					break;
				default:
					netlist().error("unhandled element found\n");
					break;
			}
		}
		NL_VERBOSE_OUT(("added net with %d populated connections\n", net->m_core_terms.count()));
	}
}


ATTR_HOT void netlist_matrix_solver_t::update_inputs()
{
	// avoid recursive calls. Inputs are updated outside this call
	for (netlist_analog_output_t * const *p = m_inps.first(); p != NULL; p = m_inps.next(p))
		(*p)->set_Q((*p)->m_proxied_net->m_cur_Analog);

}


ATTR_HOT void netlist_matrix_solver_t::update_dynamic()
{
	/* update all non-linear devices  */
	for (netlist_core_device_t * const *p = m_dynamic_devices.first(); p != NULL; p = m_dynamic_devices.next(p))
		switch ((*p)->family())
		{
			case netlist_device_t::DIODE:
				static_cast<NETLIB_NAME(D) *>((*p))->update_terminals();
				break;
			default:
				(*p)->update_terminals();
				break;
		}
}

ATTR_COLD void netlist_matrix_solver_t::start()
{
	register_output("Q_sync", m_Q_sync);
	register_input("FB_sync", m_fb_sync);
	connect(m_fb_sync, m_Q_sync);
}

ATTR_COLD void netlist_matrix_solver_t::reset()
{
	m_last_step = netlist_time::zero;
}

ATTR_COLD void netlist_matrix_solver_t::update()
{
	const nl_double new_timestep = solve();

	if (m_params.m_dynamic && is_timestep() && new_timestep > 0)
		m_Q_sync.net().reschedule_in_queue(netlist_time::from_double(new_timestep));
}

ATTR_COLD void netlist_matrix_solver_t::update_forced()
{
	ATTR_UNUSED const nl_double new_timestep = solve();

	if (m_params.m_dynamic && is_timestep())
		m_Q_sync.net().reschedule_in_queue(netlist_time::from_double(m_params.m_min_timestep));
}

ATTR_HOT void netlist_matrix_solver_t::step(const netlist_time delta)
{
	const nl_double dd = delta.as_double();
	for (int k=0; k < m_step_devices.count(); k++)
		m_step_devices[k]->step_time(dd);
}

template<class C >
void netlist_matrix_solver_t::solve_base(C *p)
{
    m_stat_vsolver_calls++;
	if (is_dynamic())
	{
		int this_resched;
		int newton_loops = 0;
		do
		{
			update_dynamic();
			// Gauss-Seidel will revert to Gaussian elemination if steps exceeded.
			this_resched = p->vsolve_non_dynamic();
			newton_loops++;
		} while (this_resched > 1 && newton_loops < m_params.m_nr_loops);

        m_stat_newton_raphson += newton_loops;
		// reschedule ....
		if (this_resched > 1 && !m_Q_sync.net().is_queued())
		{
			netlist().warning("NEWTON_LOOPS exceeded ... reschedule");
			m_Q_sync.net().reschedule_in_queue(m_params.m_nt_sync_delay);
		}
	}
	else
	{
		p->vsolve_non_dynamic();
	}
}

ATTR_HOT nl_double netlist_matrix_solver_t::solve()
{
	netlist_time now = netlist().time();
	netlist_time delta = now - m_last_step;

	// We are already up to date. Avoid oscillations.
	// FIXME: Make this a parameter!
	if (delta < netlist_time::from_nsec(1))
		return -1.0;

	/* update all terminals for new time step */
	m_last_step = now;
	m_cur_ts = delta.as_double();

	step(delta);

	const nl_double next_time_step = vsolve();

	update_inputs();
	return next_time_step;
}


// ----------------------------------------------------------------------------------------
// netlist_matrix_solver - Direct base
// ----------------------------------------------------------------------------------------

ATTR_COLD int netlist_matrix_solver_t::get_net_idx(netlist_net_t *net)
{
	for (int k = 0; k < m_nets.count(); k++)
		if (m_nets[k] == net)
			return k;
	return -1;
}







// ----------------------------------------------------------------------------------------
// solver
// ----------------------------------------------------------------------------------------



NETLIB_START(solver)
{
	register_output("Q_step", m_Q_step);

	register_param("SYNC_DELAY", m_sync_delay, NLTIME_FROM_NS(10).as_double());

	register_param("FREQ", m_freq, 48000.0);

	register_param("ACCURACY", m_accuracy, 1e-7);
	register_param("GS_LOOPS", m_gs_loops, 9);              // Gauss-Seidel loops
	register_param("GS_THRESHOLD", m_gs_threshold, 5);      // below this value, gaussian elimination is used
	register_param("NR_LOOPS", m_nr_loops, 25);             // Newton-Raphson loops
	register_param("PARALLEL", m_parallel, 0);
	register_param("SOR_FACTOR", m_sor, 1.059);
	register_param("GMIN", m_gmin, NETLIST_GMIN_DEFAULT);
	register_param("DYNAMIC_TS", m_dynamic, 0);
	register_param("LTE", m_lte, 5e-5);                     // diff/timestep
	register_param("MIN_TIMESTEP", m_min_timestep, 1e-6);   // nl_double timestep resolution

	// internal staff

	register_input("FB_step", m_fb_step);
	connect(m_fb_step, m_Q_step);

}

NETLIB_RESET(solver)
{
	for (int i = 0; i < m_mat_solvers.count(); i++)
		m_mat_solvers[i]->reset();
}


NETLIB_UPDATE_PARAM(solver)
{
	//m_inc = netlist_time::from_hz(m_freq.Value());
}

NETLIB_NAME(solver)::~NETLIB_NAME(solver)()
{
	for (int i = 0; i < m_mat_solvers.count(); i++)
		m_mat_solvers[i]->log_stats();

	netlist_matrix_solver_t * const *e = m_mat_solvers.first();
	while (e != NULL)
	{
		netlist_matrix_solver_t * const *en = m_mat_solvers.next(e);
		global_free(*e);
		e = en;
	}

}

NETLIB_UPDATE(solver)
{
	if (m_params.m_dynamic)
		return;

	const int t_cnt = m_mat_solvers.count();

#if HAS_OPENMP && USE_OPENMP
	if (m_parallel.Value())
	{
		omp_set_num_threads(4);
		omp_set_dynamic(0);
		#pragma omp parallel
		{
			#pragma omp for nowait
			for (int i = 0; i <  t_cnt; i++)
			{
				this_resched[i] = m_mat_solvers[i]->solve();
			}
		}
	}
	else
		for (int i = 0; i < t_cnt; i++)
		{
			if (do_full || (m_mat_solvers[i]->is_timestep()))
				this_resched[i] = m_mat_solvers[i]->solve();
		}
#else
	for (int i = 0; i < t_cnt; i++)
	{
		if (m_mat_solvers[i]->is_timestep())
			{
				// Ignore return value
				ATTR_UNUSED const nl_double ts = m_mat_solvers[i]->solve();
			}
	}
#endif

	/* step circuit */
	if (!m_Q_step.net().is_queued())
	{
		m_Q_step.net().push_to_queue(netlist_time::from_double(m_params.m_max_timestep));
	}
}

template <int m_N, int _storage_N>
netlist_matrix_solver_t * NETLIB_NAME(solver)::create_solver(int size, const int gs_threshold, const bool use_specific)
{
	if (use_specific && m_N == 1)
		return nl_alloc(netlist_matrix_solver_direct1_t, m_params);
	else if (use_specific && m_N == 2)
		return nl_alloc(netlist_matrix_solver_direct2_t, m_params);
	else
	{
	    typedef netlist_matrix_solver_gauss_seidel_t<m_N,_storage_N> solver_N;
		if (size >= gs_threshold)
			return nl_alloc(solver_N, m_params, size);
		else
			return nl_alloc(solver_N, m_params, size);
	}
}

ATTR_COLD void NETLIB_NAME(solver)::post_start()
{
	netlist_analog_net_t::list_t groups[100];
	int cur_group = -1;
	const int gs_threshold = m_gs_threshold.Value();
	const bool use_specific = true;

	m_params.m_accuracy = m_accuracy.Value();
	m_params.m_gs_loops = m_gs_loops.Value();
	m_params.m_nr_loops = m_nr_loops.Value();
	m_params.m_nt_sync_delay = m_sync_delay.Value();
	m_params.m_lte = m_lte.Value();
	m_params.m_sor = m_sor.Value();

	m_params.m_min_timestep = m_min_timestep.Value();
	m_params.m_dynamic = (m_dynamic.Value() == 1 ? true : false);
	m_params.m_max_timestep = netlist_time::from_hz(m_freq.Value()).as_double();

	if (m_params.m_dynamic)
	{
		m_params.m_max_timestep *= 1000.0;
	}
	else
	{
		m_params.m_min_timestep = m_params.m_max_timestep;
	}

	netlist().log("Scanning net groups ...");
	// determine net groups
	for (netlist_net_t * const *pn = netlist().m_nets.first(); pn != NULL; pn = netlist().m_nets.next(pn))
	{
		SOLVER_VERBOSE_OUT(("processing %s\n", (*pn)->name().cstr()));
		if (!(*pn)->isRailNet())
		{
			SOLVER_VERBOSE_OUT(("   ==> not a rail net\n"));
			netlist_analog_net_t *n = &(*pn)->as_analog();
			if (!n->already_processed(groups, cur_group))
			{
				cur_group++;
				n->process_net(groups, cur_group);
			}
		}
	}

	// setup the solvers
	netlist().log("Found %d net groups in %d nets\n", cur_group + 1, netlist().m_nets.count());
	for (int i = 0; i <= cur_group; i++)
	{
		netlist_matrix_solver_t *ms;
		int net_count = groups[i].count();

		switch (net_count)
		{
			case 1:
				ms = create_solver<1,1>(1, gs_threshold, use_specific);
				break;
			case 2:
				ms = create_solver<2,2>(2, gs_threshold, use_specific);
				break;
			case 3:
				ms = create_solver<3,3>(3, gs_threshold, use_specific);
				break;
			case 4:
				ms = create_solver<4,4>(4, gs_threshold, use_specific);
				break;
			case 5:
				ms = create_solver<5,5>(5, gs_threshold, use_specific);
				break;
			case 6:
				ms = create_solver<6,6>(6, gs_threshold, use_specific);
				break;
			case 7:
				ms = create_solver<7,7>(7, gs_threshold, use_specific);
				break;
			case 8:
				ms = create_solver<8,8>(8, gs_threshold, use_specific);
				break;
			case 12:
				ms = create_solver<12,12>(12, gs_threshold, use_specific);
				break;
			default:
				if (net_count <= 16)
				{
					ms = create_solver<0,16>(net_count, gs_threshold, use_specific);
				}
				else if (net_count <= 32)
				{
					ms = create_solver<0,32>(net_count, gs_threshold, use_specific);
				}
				else if (net_count <= 64)
				{
					ms = create_solver<0,64>(net_count, gs_threshold, use_specific);
				}
				else
				{
					netlist().error("Encountered netgroup with > 64 nets");
					ms = NULL; /* tease compilers */
				}

				break;
		}

		register_sub(*ms, pstring::sprintf("Solver %d",m_mat_solvers.count()));

		ms->vsetup(groups[i]);

		m_mat_solvers.add(ms);

		netlist().log("Solver %s", ms->name().cstr());
		netlist().log("       # %d ==> %d nets", i, groups[i].count()); //, (*(*groups[i].first())->m_core_terms.first())->name().cstr());
		netlist().log("       has %s elements", ms->is_dynamic() ? "dynamic" : "no dynamic");
		netlist().log("       has %s elements", ms->is_timestep() ? "timestep" : "no timestep");
		for (int j=0; j<groups[i].count(); j++)
		{
			netlist().log("Net %d: %s", j, groups[i][j]->name().cstr());
			netlist_net_t *n = groups[i][j];
			for (int k = 0; k < n->m_core_terms.count(); k++)
			{
				const netlist_core_terminal_t *p = n->m_core_terms[k];
				netlist().log("   %s", p->name().cstr());
			}
		}
	}
}