summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/machine/pit8253.c
blob: a54d6edda14d914d5d20718905d52f59a6f28442 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
/*****************************************************************************
 *
 *  Programmable Interval Timer 8253/8254
 *
 *  Three Independent Timers
 *  (gate, clock, out pins)
 *
 *  8254 has an additional readback feature
 *
 *  Revision History
 *      1-Apr-2008 - WFP:   Changed the implementation into a device.
 *      8-Jul-2004 - AJ:    Fixed some bugs. Styx now runs correctly.
 *                          Implemented 8254 features.
 *      1-Mar-2004 - NPW:   Did an almost total rewrite and cleaned out much
 *                          of the ugliness in the previous design.  Bug #430
 *                          seems to be fixed
 *      1-Jul-2000 - PeT:   Split off from PC driver and componentized
 *
 *****************************************************************************/

#include <math.h>
#include "driver.h"
#include "devconv.h"
#include "machine/pit8253.h"



/***************************************************************************

    Structures & macros

***************************************************************************/

#define	MAX_TIMER		3
#define	VERBOSE			0

#define	LOG1(msg)		do { if (VERBOSE >= 1) logerror msg; } while (0)
#define	LOG2(msg)		do { if (VERBOSE >= 2) logerror msg; } while (0)


#define	TIMER_TIME_NEVER ((UINT64) -1)

#define	CYCLES_NEVER ((UINT32) -1)

/* device types */
enum {
	TYPE_PIT8253 = 0,
	TYPE_PIT8254,

	NUM_TYPES
};


/* device tags */
static const char * const device_tags[NUM_TYPES] = { "pit8253", "pit8254" };


struct pit8253_timer
{
	double clockin;					/* input clock frequency in Hz */

	pit8253_output_changed_func		output_changed;	/* callback function for when output changes */
	pit8253_frequency_changed_func	frequency_changed;	/* callback function for when output frequency changes */

	attotime last_updated;			/* time when last updated */

	emu_timer *outputtimer;		/* MAME timer for output change callback */
	emu_timer *freqtimer;			/* MAME timer for output frequency change callback */

	UINT16 value;					/* current counter value ("CE" in Intel docs) */
	UINT16 latch;					/* latched counter value ("OL" in Intel docs) */
	UINT16 count;					/* new counter value ("CR" in Intel docs) */
	UINT8 control;					/* 6-bit control byte */
	UINT8 status;					/* status byte - 8254 only */
	UINT8 lowcount;					/* LSB of new counter value for 16-bit writes */
	INT32 rmsb;						/* 1 = Next read is MSB of 16-bit value */
	INT32 wmsb;						/* 1 = Next write is MSB of 16-bit value */
	INT32 output;						/* 0 = low, 1 = high */

	INT32 gate;						/* gate input (0 = low, 1 = high) */
	INT32 latched_count;				/* number of bytes of count latched */
	INT32 latched_status;				/* 1 = status latched (8254 only) */
	INT32 null_count;					/* 1 = mode control or count written, 0 = count loaded */
	INT32 phase;						/* see phase definition tables in simulate2(), below */

	UINT32 cycles_to_output;		/* cycles until output callback called */
	UINT32 cycles_to_freq;			/* cycles until frequency callback called */
	UINT32 freq_count;				/* counter period for periodic modes, 0 if counter non-periodic */
};

typedef struct _pit8253_t	pit8253_t;
struct _pit8253_t
{
	const struct pit8253_config *config;
	int	device_type;
	struct pit8253_timer timers[MAX_TIMER];
};

#define	CTRL_ACCESS(control)		(((control)	>> 4) &	0x03)
#define	CTRL_MODE(control)			(((control)	>> 1) &	(((control)	& 0x04)	? 0x03 : 0x07))
#define	CTRL_BCD(control)			(((control)	>> 0) &	0x01)


/***************************************************************************

    Functions

***************************************************************************/

/* makes sure that the passed in device is of the right type */
INLINE pit8253_t *get_safe_token(const device_config *device) {
	assert( device != NULL );
	assert( device->token != NULL );
	assert( ( device->type == DEVICE_GET_INFO_NAME(pit8253) ) ||
		    ( device->type == DEVICE_GET_INFO_NAME(pit8254) ) );
	return ( pit8253_t * ) device->token;
}


static struct pit8253_timer	*get_timer(struct _pit8253_t *pit,int which)
{
	which &= 3;
	if (which < MAX_TIMER)
		return &pit->timers[which];
	return NULL;
}


INLINE UINT32 decimal_from_bcd(UINT16 val)
{
	/* In BCD mode, a nybble loaded with value A-F counts down the same as in
       binary mode, but wraps around to 9 instead of F after 0, so loading the
       count register with 0xFFFF gives a period of
              0xF  - for the units to count down to 0
       +   10*0xF  - for the tens to count down to 0
       +  100*0xF  - for the hundreds to count down to 0
       + 1000*0xF  - for the thousands to count down to 0
       = 16665 cycles
    */
	return
		((val>>12) & 0xF) *	 1000 +
		((val>>	8) & 0xF) *	  100 +
		((val>>	4) & 0xF) *	   10 +
		( val	   & 0xF);
}


static UINT32 adjusted_count(int bcd,UINT16	val)
{
	if (bcd	== 0)
		return val == 0	? 0x10000 :	val;
	return val == 0	? 10000	: decimal_from_bcd(val);
}


/* This function subtracts 1 from timer->value "cycles" times, taking into
   account binary or BCD operation, and wrapping around from 0 to 0xFFFF or
   0x9999 as necessary. */
static void	decrease_counter_value(struct pit8253_timer	*timer,UINT64 cycles)
{
	UINT16 value;
	int units, tens, hundreds, thousands;

	if (CTRL_BCD(timer->control) ==	0)
	{
		timer->value -=	(cycles	& 0xFFFF);
		return;
	}

	value = timer->value;
	units	  =	 value		  &	0xF;
	tens	  =	(value >>  4) &	0xF;
	hundreds  =	(value >>  8) &	0xF;
	thousands =	(value >> 12) &	0xF;

	if (cycles <= units)
	{
		units -= cycles;
	}
	else
	{
		cycles -= units;
		units =	(10	- cycles%10)%10;

		cycles =(cycles+9)/10; /* the +9    is so we get a carry if cycles%10 wasn't 0 */
		if (cycles <= tens)
		{
			tens -=	cycles;
		}
		else
		{
			cycles -= tens;
			tens = (10 - cycles%10) % 10;

			cycles = (cycles+9) / 10;
			if (cycles <= hundreds)
			{
				hundreds -=	cycles;
			}
			else
			{
				cycles -= hundreds;
				hundreds = (10 - cycles%10)%10;
				cycles=(cycles+9)/10;
				thousands =	(10	+ thousands	- cycles%10)%10;
			}
		}
	}

	timer->value = (thousands << 12) | (hundreds <<	8) | (tens << 4) | units;
}


static double get_frequency(struct pit8253_timer *timer)
{
	LOG2(("pit8253: get_frequency() : %lf\n",(double)(timer->freq_count == 0 ? 0 : timer->clockin / timer->freq_count)));
	return timer->freq_count ==	0 ?	0 :	timer->clockin / timer->freq_count;
}


/* Call the frequency callback in "cycles" cycles */
static void	freq_callback_in(struct	pit8253_timer *timer,UINT32	cycles)
{
	LOG2(("pit8253: freq_callback_in(): %d cycles\n",cycles));

	if (timer->frequency_changed == NULL)
	{
		return;
	}

	if (timer->clockin == 0	|| cycles == CYCLES_NEVER)
	{
		timer_reset(timer->freqtimer,attotime_never);
	}
	else
	{
		timer_reset(timer->freqtimer,double_to_attotime(cycles / timer->clockin));
	}
	timer->cycles_to_freq =	cycles;
}


static void	set_freq_count(const device_config *device, struct pit8253_timer *timer)
{
	int	mode = CTRL_MODE(timer->control);
	UINT32 freq_count;

	if ((mode == 2 || mode == 3) &&	timer->gate	!= 0 &&	timer->phase !=	0)
	{
		freq_count = adjusted_count(CTRL_BCD(timer->control),timer->count);
	}
	else
	{
		freq_count = 0;
	}

	if (freq_count != timer->freq_count)
	{
		timer->freq_count =	freq_count;
		if (timer->frequency_changed != NULL)
		{
			timer->frequency_changed(device, get_frequency(timer));
			freq_callback_in(timer,CYCLES_NEVER);
		}
	}

	LOG2(("pit8253: set_freq_count() : %d\n",freq_count));
}


/* Call the output callback in "cycles" cycles */
static void	trigger_countdown(const device_config *device, struct pit8253_timer *timer)
{
	LOG2(("pit8253: trigger_countdown()\n"));

	timer->phase = 1;
	timer->value = timer->count;
	if (CTRL_MODE(timer->control) == 3 && timer->output	== 0)
		timer->value &=	0xfffe;

	set_freq_count(device, timer);
}


static void	set_output(const device_config *device, struct pit8253_timer *timer,int output)
{
	if (output != timer->output)
	{
		timer->output =	output;
		if (timer->output_changed != NULL)
		{
			timer->output_changed(device, output);
		}
	}
}


/* This emulates timer "timer" for "elapsed_cycles" cycles and assumes no
   callbacks occur during that time. */
static void	simulate2(const device_config *device, struct pit8253_timer *timer,UINT64 elapsed_cycles)
{
	UINT32 adjusted_value;
	int	bcd	= CTRL_BCD(timer->control);
	int	mode = CTRL_MODE(timer->control);
	int	cycles_to_output = 0;

	if (timer->cycles_to_freq != CYCLES_NEVER)
	{
		timer->cycles_to_freq -= elapsed_cycles;
	}

	LOG2(("pit8253: simulate2(): simulating %d cycles in mode %d, bcd = %d, phase = %d, gate = %d, value = 0x%04x\n",
		  (int)elapsed_cycles,mode,bcd,timer->phase,timer->gate,timer->value));

	switch (mode) {
	case 0:
		/* Mode 0: (Interrupt on Terminal Count)

                  +------------------
                  |
        ----------+
          <- n+1 ->

          ^
          +- counter load

        phase|output|length  |value|next|comment
        -----+------+--------+-----+----+----------------------------------
            0|low   |infinity|     |1   |waiting for count
            1|low   |1       |     |2   |internal delay when counter loaded
            2|low   |n       |n..1 |3   |counting down
            3|high  |infinity|0..1 |3   |counting down

        Gate level sensitive only. Low disables counting, high enables it. */

		if (timer->gate	== 0 ||	timer->phase ==	0)
		{
			cycles_to_output = CYCLES_NEVER;
		}
		else
		{
			if (elapsed_cycles > 0 && timer->phase == 1)
			{
				--elapsed_cycles;
				timer->phase = 2;
			}

			if (timer->phase ==	2)
			{
				adjusted_value = adjusted_count(bcd,timer->value);
				if (elapsed_cycles < adjusted_value)
				{
					/* Counter didn't wrap */
					decrease_counter_value(timer,elapsed_cycles);
				}
				else
				{
					/* Counter wrapped, output goes high */
					elapsed_cycles -= adjusted_value;
					timer->phase = 3;
					timer->value = 0;
				}
			}

			if (timer->phase ==	3)
			{
				decrease_counter_value(timer,elapsed_cycles);
				cycles_to_output = CYCLES_NEVER;
			}
			else
			{
				cycles_to_output = adjusted_count(bcd,timer->value)	+ (timer->phase	== 1 ? 1 : 0);
			}
		}

		set_output(device, timer, timer->phase == 3 ? 1 : 0);
		break;


	case 1:
		/* Mode 1: (Hardware Retriggerable One-Shot a.k.a. Programmable One-Shot)

        --+       +------------------
          |       |
          +-------+
          <-  n  ->

          ^
          +- trigger

        phase|output|length  |value|next|comment
        -----+------+--------+-----+----+----------------------------------
            0|high  |infinity|0..1 |1   |counting down
            1|low   |n       |n..1 |0   |counting down

        Gate rising-edge sensitive only.
        Rising edge initiates counting and resets output after next clock. */

		adjusted_value = adjusted_count(bcd,timer->value);
		if (elapsed_cycles < adjusted_value)
		{
			/* Counter didn't wrap */
			decrease_counter_value(timer,elapsed_cycles);
			cycles_to_output = (timer->phase ==	0 ?	CYCLES_NEVER : adjusted_count(bcd,timer->value));
		}
		else
		{
			/* Counter wrapped, output goes high */
			elapsed_cycles -= adjusted_value;
			timer->phase = 0;
			timer->value = 0;
			decrease_counter_value(timer,elapsed_cycles);
			cycles_to_output = CYCLES_NEVER;
		}
		set_output(device, timer, timer->phase == 0 ? 1 : 0);
		break;


	case 2:
		/* Mode 2: (Rate Generator)

        --------------+ +---------+ +----
                      | |         | |
                      +-+         +-+
            <-    n    -X-    n    ->
                      <1>
            ^
            +- counter load or trigger

        phase|output|length  |value|next|comment
        -----+------+--------+-----+----+----------------------------------
            0|high  |infinity|     |1   |waiting for count
            1|v!=1  |n       |n..1 |1   |counting down

        Counter rewrite has no effect until repeated

        Gate rising-edge and level sensitive.
        Gate low disables counting and sets output immediately high.
        Rising-edge reloads count and initiates counting
        Gate high enables counting. */

		if (timer->gate	== 0 ||	timer->phase ==	0)
		{
			/* Gate low or mode control write forces output high */
			set_output(device, timer, 1);
			cycles_to_output = CYCLES_NEVER;
		}
		else
		{
			adjusted_value = adjusted_count(bcd,timer->value);
			if (elapsed_cycles < adjusted_value)
			{
				/* Counter didn't wrap */
				decrease_counter_value(timer,elapsed_cycles);
			}
			else
			{
				/* Counter wrapped around one or more times */
				elapsed_cycles -= adjusted_value;
				trigger_countdown(device, timer);
				decrease_counter_value(timer,elapsed_cycles	% adjusted_count(bcd,timer->count));
			}
			cycles_to_output = (timer->value ==	1 ?	1 :	(adjusted_count(bcd,timer->value) -	1));

			set_output(device, timer, timer->value != 1 ? 1 : 0);
		}
		break;


	case 3:
		/* Mode 3: (Square Wave Generator)

        ----------------+           +-----------+           +----
                        |           |           |           |
                        +-----------+           +-----------+
            <- (n+1)/2 -X-   n/2   ->
            ^
            +- counter load or trigger

        phase|output|length  |value|next|comment
        -----+------+--------+-----+----+----------------------------------
            0|high  |infinity|     |1   |waiting for count
            1|      |infinity|n..0 |1   |counting down double speed

        Counter rewrite has no effect until repeated (output falling or rising)

        Gate rising-edge and level sensitive.
        Gate low disables counting and sets output immediately high.
        Rising-edge reloads count and initiates counting
        Gate high enables counting. */

		if (timer->gate	== 0 ||	timer->phase ==	0)
		{
			/* Gate low or mode control write forces output high */
			set_output(device, timer, 1);
			cycles_to_output = CYCLES_NEVER;
		}
		else
		{
			adjusted_value = adjusted_count(bcd,timer->value);
			if ((elapsed_cycles<<1)	< adjusted_value)
			{
				/* Counter didn't wrap around */
				decrease_counter_value(timer,elapsed_cycles<<1);
			}
			else
			{
				/* Counter wrapped around one or more times */
				elapsed_cycles -= ((adjusted_value+1)>>1);

				set_output(device, timer, 1 - timer->output);
				trigger_countdown(device, timer);

				elapsed_cycles %= adjusted_count(bcd,timer->count);
				adjusted_value = adjusted_count(bcd,timer->value);
				if ((elapsed_cycles<<1)	>= adjusted_value)
				{
					/* Counter wrapped around an even number of times */
					elapsed_cycles -= ((adjusted_value+1)>>1);

					set_output(device, timer, 1 - timer->output);
					trigger_countdown(device, timer);
				}
				decrease_counter_value(timer,elapsed_cycles<<1);
			}
			cycles_to_output = (adjusted_count(bcd,timer->value) + 1) >> 1;
		}
		break;


	case 4:
	case 5:
		/* Mode 4: (Software Trigger Strobe)
           Mode 5: (Hardware Trigger Strobe)

        --------------+ +--------------------
                      | |
                      +-+
            <-  n+1  ->
            ^         <1>
            +- counter load (mode 4) or trigger (mode 5)

        phase|output|length  |value|next|comment
        -----+------+--------+-----+----+----------------------------------
            0|high  |infinity|0..1 |0   |waiting for count
            1|high  |1       |     |2   |internal delay when counter loaded
            2|high  |n       |n..1 |3   |counting down
            3|low   |1       |0    |0   |strobe

        Mode 4 only: counter rewrite loads new counter
        Mode 5 only: count not reloaded immediately.
        Mode control write doesn't stop count but sets output high

        Mode 4 only: Gate level sensitive only. Low disables counting, high enables it.
        Mode 5 only: Gate rising-edge sensitive only. Rising edge initiates counting */

		if (timer->gate	== 0 &&	mode ==	4)
		{
			cycles_to_output = CYCLES_NEVER;
		}
		else
		{
			if (elapsed_cycles > 0 && timer->phase == 1)
			{
				--elapsed_cycles;
				timer->phase = 2;
			}

			if (elapsed_cycles > 0 && timer->phase == 3)
			{
				--elapsed_cycles;
				timer->phase = 0;
				decrease_counter_value(timer,1);
			}

			if (timer->value ==	0 && timer->phase == 2)
				adjusted_value = 0;
			else
				adjusted_value = adjusted_count(bcd,timer->value);

			if (elapsed_cycles < adjusted_value)
			{
				/* Counter didn't wrap */
				decrease_counter_value(timer,elapsed_cycles);
			}
			else
			{
				elapsed_cycles -= adjusted_value;
				timer->value = 0;
				if (elapsed_cycles == 0)
				{
					/* We hit the strobe cycle */
					timer->phase = 3;
				}
				else
				{
					decrease_counter_value(timer,elapsed_cycles);
					timer->phase = 0;
				}
			}
			switch(timer->phase) {
			case 0:
				cycles_to_output = CYCLES_NEVER;
				break;
			case 1:
				cycles_to_output = adjusted_count(bcd,timer->value)	+ 1;
				break;
			case 2:
				cycles_to_output = adjusted_count(bcd,timer->value);
				break;
			case 3:
				cycles_to_output = 1;
				break;
			}
		}
		set_output(device, timer, timer->phase != 3 ? 1 : 0);
		break;
	}

	if (timer->output_changed != NULL)
	{
		timer->cycles_to_output	= cycles_to_output;
		if (cycles_to_output ==	CYCLES_NEVER ||	timer->clockin == 0)
		{
			timer_reset(timer->outputtimer,attotime_never);
		}
		else
		{
			timer_reset(timer->outputtimer,
				double_to_attotime(cycles_to_output / timer->clockin));
		}
	}

	if (timer->cycles_to_freq == 0)
		timer->cycles_to_freq =	CYCLES_NEVER;
}


/* This emulates timer "timer" for "elapsed_cycles" cycles, broken down into
   sections punctuated by callbacks.

   The loop technically should never execute even once. It's here to eliminate
   the following potential bug:

   1) The mame timer isn't perfectly accurate.
   2) The output callback is executed too late, after an update which
      brings the timer's local time past the callback time.
   3) A short pulse is skipped.
   4) That short pulse would have triggered an interrupt. The interrupt is
      skipped.

   This is a loop instead of an "if" statement in case the mame timer is
   inaccurate by more than one cycle, and the output changed multiple
   times during the discrepancy. In practice updates should still be O(1).
*/
static void	simulate(const device_config *device, struct pit8253_timer *timer,UINT64 elapsed_cycles)
{
	while ((timer->cycles_to_output	!= CYCLES_NEVER	&&
			timer->cycles_to_output	<= elapsed_cycles) ||
		   (timer->cycles_to_freq != CYCLES_NEVER &&
			timer->cycles_to_freq <= elapsed_cycles))
	{
		UINT32 cycles_to_callback;

		if (timer->cycles_to_output	< timer->cycles_to_freq	&&
			timer->cycles_to_output	!= CYCLES_NEVER)
		{
			cycles_to_callback = timer->cycles_to_output;
		}
		else
		{
			cycles_to_callback = timer->cycles_to_freq;
		}

		simulate2(device, timer, cycles_to_callback);
		elapsed_cycles -= cycles_to_callback;
	}
	simulate2(device, timer, elapsed_cycles);
}


/* This brings timer "timer" up to date */
static void	update(const device_config *device, struct pit8253_timer *timer)
{
	/* With the 82C54's maximum clockin of 10MHz, 64 bits is nearly 60,000
       years of time. Should be enough for now. */
	attotime now =	timer_get_time();
	attotime elapsed_time = attotime_sub(now,timer->last_updated);
	INT64 elapsed_cycles =	attotime_to_double(elapsed_time) *	timer->clockin;

	timer->last_updated	= attotime_add(timer->last_updated,double_to_attotime(elapsed_cycles/timer->clockin));

	simulate(device, timer,elapsed_cycles);
}


static TIMER_CALLBACK( frequency_changed )
{
	const device_config *device = ptr;
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer = get_timer(pit8253,param);
	INT64 cycles =	timer->cycles_to_freq;
	double t;

	LOG2(("pit8253: frequency_changed(): timer %d, %d cycles\n",param,(UINT32)cycles));

	simulate(device, timer,cycles);

	t = cycles / timer->clockin;

	timer->last_updated	= attotime_add(timer->last_updated, double_to_attotime(t));
}


static TIMER_CALLBACK( output_changed )
{
	const device_config *device = ptr;
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer = get_timer(pit8253,param);
	INT64 cycles =	timer->cycles_to_output;
	double t;

	LOG2(("pit8253: output_changed(): timer %d, %d cycles\n",param,(UINT32)cycles));

	simulate(device, timer,cycles);

	t = cycles / timer->clockin;

	timer->last_updated	= attotime_add(timer->last_updated, double_to_attotime(t));
}


/* We recycle bit 0 of timer->value to hold the phase in mode 3 when count is
   odd. Since read commands in mode 3 always return even numbers, we need to
   mask this bit off. */
static UINT16 masked_value(struct pit8253_timer	*timer)
{
	LOG2(("pit8253: masked_value\n"));

	if (CTRL_MODE(timer->control) == 3)
		return timer->value	& 0xfffe;
	return timer->value;
}

/* Reads only affect the following bits of the counter state:
     latched_status
     latched_count
     rmsb
  so they don't affect any timer operations except other reads. */
READ8_DEVICE_HANDLER( pit8253_r )
{
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer	= get_timer(pit8253,offset);
	UINT8	data;
	UINT16 value;

	LOG2(("pit8253_r(): offset %d\n", offset));

	if (timer == NULL)
	{
		/* Reading mode control register is illegal according to docs */
		/* Experimentally determined: reading it returns 0 */
		data = 0;
	}
	else
	{
		update(device, timer);

		if (timer->latched_status)
		{
			/* Read status register (8254 only) */
			data = timer->status;
			timer->latched_status =	0;
		}
		else
		{
			if (timer->latched_count !=	0)
			{
				/* Read back latched count */
				data = (timer->latch >>	(timer->rmsb !=	0 ?	8 :	0))	& 0xff;
				timer->rmsb	= 1	- timer->rmsb;
				--timer->latched_count;
			}
			else {
				value =	masked_value(timer);

				/* Read back current count */
				switch(CTRL_ACCESS(timer->control))	{
				case 0:
				default:
					/* This should never happen */
					data = 0; /* Appease compiler */
					break;

				case 1:
					/* read counter bits 0-7 only */
					data = (value >> 0)	& 0xff;
					break;

				case 2:
					/* read counter bits 8-15 only */
					data = (value >> 8)	& 0xff;
					break;

				case 3:
					/* read bits 0-7 first, then 8-15 */
					data = (value >> (timer->rmsb != 0 ? 8 : 0)) & 0xff;
					timer->rmsb	= 1	- timer->rmsb;
					break;
				}
			}
		}
	}

	LOG2(("pit8253_r(): offset=%d data=0x%02x\n", offset, data));
	return data;
}


/* Loads a new value from the bus to the count register (CR) */
static void	load_count(const device_config *device, struct pit8253_timer *timer, UINT16 newcount)
{
	int	mode = CTRL_MODE(timer->control);

	LOG1(("pit8253: load_count(): %04x\n",newcount));

	if (newcount ==	1)
	{
		/* Count of 1 is illegal in modes 2 and 3. What happens here was
           determined experimentally. */
		if (mode ==	2)
			newcount = 2;
		if (mode ==	3)
			newcount = 0;
	}
	timer->count = newcount;
	timer->null_count =	1;
	if (mode ==	2 || mode == 3)
	{
		if (timer->phase ==	0)
		{
			trigger_countdown(device, timer);
		}
		else
		{
			int	bcd	= CTRL_BCD(timer->control);
			if (mode ==	2)
			{
				freq_callback_in(timer,adjusted_count(bcd,timer->value));
			}
			else
			{
				freq_callback_in(timer,(adjusted_count(bcd,timer->value) + 1) >> 1);
			}
		}
	}
	else
	{
		if (mode ==	0 || mode == 4)
		{
			trigger_countdown(device, timer);
		}
	}
}


static void	readback(const device_config *device, struct pit8253_timer *timer,int command)
{
	UINT16 value;
	update(device, timer);

	if ((command & 1) == 0)
	{
		/* readback status command */
		if (timer->latched_status == 0)
		{
			timer->status =	timer->control | (timer->output	!= 0 ? 0x80	: 0) | (timer->null_count != 0 ? 0x40 :	0);
		}

		timer->latched_status =	1;
	}
	/* Experimentally determined: the read latch command seems to have no
       effect if we're halfway through a 16-bit read */
	if ((command & 2) == 0 && timer->rmsb == 0)
	{
		/* readback count command */

		if (timer->latched_count ==	0)
		{
			value =	masked_value(timer);
			switch(CTRL_ACCESS(timer->control))	{
			case 0:
				/* This should never happen */
				break;

			case 1:
				/* latch bits 0-7 only */
				timer->latch = ((value << 8) & 0xff00) | (value	& 0xff);
				timer->latched_count = 1;
				break;

			case 2:
				/* read bits 8-15 only */
				timer->latch = (value &	0xff00)	| ((value >> 8)	& 0xff);
				timer->latched_count = 1;
				break;

			case 3:
				/* latch all 16 bits */
				timer->latch = value;
				timer->latched_count = 2;
				break;
			}
		}
	}
}


WRITE8_DEVICE_HANDLER( pit8253_w )
{
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer	= get_timer(pit8253,offset);
	int	read_command;

	LOG2(("pit8253_w(): offset=%d data=0x%02x\n", offset, data));

	if (timer == NULL) {
		/* Write to mode control register */
		timer =	get_timer(pit8253, (data >>	6) & 3);
		if (timer == NULL)
		{
			/* Readback command. Illegal on 8253 */
			/* Todo: find out what (if anything) the 8253 hardware actually does here. */
			if (pit8253->device_type == TYPE_PIT8254)
			{
				LOG1(("pit8253_w(): readback %02x\n", data & 0x3f));

				/* Bit 0 of data must be 0. Todo: find out what the hardware does if it isn't. */
				read_command = (data >>	4) & 3;
				if ((data &	2) != 0)
					readback(device, get_timer(pit8253,0), read_command);
				if ((data &	4) != 0)
					readback(device, get_timer(pit8253,1), read_command);
				if ((data &	8) != 0)
					readback(device, get_timer(pit8253,2), read_command);
			}
			return;
		}

		update(device, timer);

		if (CTRL_ACCESS(data) == 0)
		{
			LOG1(("pit8253_write(): timer=%d readback\n", (data >> 6) & 3));

			/* Latch current timer value */
			/* Experimentally verified: this command does not affect the mode control register */
			readback(device, timer, 1);
		}
		else {
			LOG1(("pit8253_write(): timer=%d bytes=%d mode=%d bcd=%d\n", (data >> 6) & 3, (data >> 4) & 3, (data >> 1) & 7,data & 1));

			timer->control = (data & 0x3f);
			timer->null_count =	1;
			timer->wmsb	= timer->rmsb =	0;
			/* Phase 0 is always the phase after a mode control write */
			timer->phase = 0;
			set_output(device, timer, 1);
			set_freq_count(device, timer);
		}
	}
	else
	{
		update(device, timer);

		switch(CTRL_ACCESS(timer->control))	{
		case 0:
			/* This should never happen */
			break;

		case 1:
			/* read/write counter bits 0-7 only */
			load_count(device, timer, data);
			break;

		case 2:
			/* read/write counter bits 8-15 only */
			load_count(device, timer, data << 8);
			break;

		case 3:
			/* read/write bits 0-7 first, then 8-15 */
			if (timer->wmsb	!= 0)
			{
				load_count(device, timer,timer->lowcount | (data << 8));
			}
			else
			{
				timer->lowcount	= data;
				if (CTRL_MODE(timer->control) == 0)
				{
					/* The Intel docs say that writing the MSB in mode 0, phase
                       2 won't stop the count, but this was experimentally
                       determined to be false. */
					timer->phase = 0;
				}
			}
			timer->wmsb	= 1	- timer->wmsb;
			break;
		}
	}
	update(device, timer);
}


WRITE8_DEVICE_HANDLER( pit8253_gate_w )
{
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer	= get_timer(pit8253,offset);
	int	mode;
	int	gate = (data!=0	? 1	: 0);

	LOG2(("pit8253_gate_w(): offset=%d gate=%d\n", offset, data));

	if (timer == NULL)
		return;

	mode = CTRL_MODE(timer->control);

	if (gate !=	timer->gate)
	{
		update(device, timer);
		timer->gate	= gate;
		set_freq_count(device, timer);
		if (gate !=	0 &&
			(mode == 1 || mode == 5	||
			 (timer->phase == 1	&& (mode ==	2 || mode == 3))))
		{
			trigger_countdown(device, timer);
		}
		update(device, timer);
	}
}



/* ----------------------------------------------------------------------- */

int	pit8253_get_frequency(const device_config *device, int timerno)
{
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer	= get_timer(pit8253,timerno);

	update(device, timer);
	return get_frequency(timer);
}



int	pit8253_get_output(const device_config *device, int timerno)
{
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer	= get_timer(pit8253,timerno);
	int	result;

	update(device, timer);
	result = timer->output;
	LOG2(("pit8253_get_output(): PIT timer=%d result=%d\n", timerno, result));
	return result;
}



void pit8253_set_clockin(const device_config *device, int timerno, double new_clockin)
{
	pit8253_t	*pit8253 = get_safe_token(device);
	struct pit8253_timer *timer	= get_timer(pit8253,timerno);

	LOG2(("pit8253_set_clockin(): PIT timer=%d, clockin = %lf\n", timerno,new_clockin));

	update(device, timer);
	timer->clockin = new_clockin;
	update(device, timer);

	if (timer->frequency_changed != NULL)
	{
		timer->frequency_changed(device, get_frequency(timer));
		if (timer->cycles_to_freq != CYCLES_NEVER)
		{
			freq_callback_in(timer,timer->cycles_to_freq);
		}
	}
}


static void common_start( const device_config *device, int device_type ) {
	pit8253_t	*pit8253 = get_safe_token(device);
	char		unique_tag[30];
	int			timerno;

	pit8253->config = device->static_config;
	pit8253->device_type = device_type;

	/* register for state saving */
	state_save_combine_module_and_tag(unique_tag, device_tags[device_type], device->tag);

	for (timerno = 0; timerno < MAX_TIMER; timerno++)
	{
		struct pit8253_timer *timer = get_timer(pit8253,timerno);

		timer->clockin = pit8253->config->timer[timerno].clockin;
		timer->output_changed = pit8253->config->timer[timerno].output_changed;
		timer->frequency_changed = pit8253->config->timer[timerno].frequency_changed;

		if (timer->output_changed == NULL)
			timer->outputtimer = NULL;
		else
		{
			timer->outputtimer = timer_alloc(output_changed, (void *)device);
			timer_adjust_oneshot(timer->outputtimer, attotime_never, timerno);
		}
		if (timer->frequency_changed == NULL)
			timer->freqtimer = NULL;
		else
		{
			timer->freqtimer = timer_alloc(frequency_changed, (void *)device);
			timer_adjust_oneshot(timer->freqtimer,  attotime_never, timerno);
		}

		/* set up state save values */
		state_save_register_item(unique_tag, timerno, timer->clockin);
		state_save_register_item(unique_tag, timerno, timer->control);
		state_save_register_item(unique_tag, timerno, timer->status);
		state_save_register_item(unique_tag, timerno, timer->lowcount);
		state_save_register_item(unique_tag, timerno, timer->latch);
		state_save_register_item(unique_tag, timerno, timer->count);
		state_save_register_item(unique_tag, timerno, timer->value);
		state_save_register_item(unique_tag, timerno, timer->wmsb);
		state_save_register_item(unique_tag, timerno, timer->rmsb);
		state_save_register_item(unique_tag, timerno, timer->output);
		state_save_register_item(unique_tag, timerno, timer->gate);
		state_save_register_item(unique_tag, timerno, timer->latched_count);
		state_save_register_item(unique_tag, timerno, timer->latched_status);
		state_save_register_item(unique_tag, timerno, timer->null_count);
		state_save_register_item(unique_tag, timerno, timer->phase);
		state_save_register_item(unique_tag, timerno, timer->cycles_to_output);
		state_save_register_item(unique_tag, timerno, timer->cycles_to_freq);
		state_save_register_item(unique_tag, timerno, timer->freq_count);
		state_save_register_item(unique_tag, timerno, timer->last_updated.seconds);
		state_save_register_item(unique_tag, timerno, timer->last_updated.attoseconds);
	}
}


static DEVICE_START( pit8253 ) {
	common_start( device, TYPE_PIT8253 );
}


static DEVICE_START( pit8254 ) {
	common_start( device, TYPE_PIT8254 );
}


static DEVICE_RESET( pit8253 ) {
	pit8253_t *pit  = get_safe_token(device);
	int i;

	for (i = 0; i < MAX_TIMER; i++)
	{
		struct pit8253_timer *timer = get_timer(pit,i);
		/* According to Intel's 8254 docs, the state of a timer is undefined
           until the first mode control word is written. Here we define this
           undefined behaviour */
		timer->control = timer->status = 0x30;
		timer->rmsb = timer->wmsb = 0;
		timer->count = timer->value = timer->latch = 0;
		timer->lowcount = 0;
		timer->gate = 1;
		timer->output = 0;
		timer->latched_count = 0;
		timer->latched_status = 0;
		timer->null_count = 1;
		timer->cycles_to_output = timer->cycles_to_freq = CYCLES_NEVER;

		timer->last_updated = timer_get_time();

		update(device, timer);
	}
}


static DEVICE_SET_INFO( pit8253 ) {
	switch ( state ) {
		/* no parameters to set */
	}
}


DEVICE_GET_INFO( pit8253 ) {
	switch ( state ) {
		/* --- the following bits of info are returned as 64-bit signed integers --- */
		case DEVINFO_INT_TOKEN_BYTES:				info->i = sizeof(pit8253_t);				break;
		case DEVINFO_INT_INLINE_CONFIG_BYTES:		info->i = 0;								break;
		case DEVINFO_INT_CLASS:						info->i = DEVICE_CLASS_PERIPHERAL;			break;

		/* --- the following bits of info are returned as pointers to data or functions --- */
		case DEVINFO_FCT_SET_INFO:					info->set_info = DEVICE_SET_INFO_NAME(pit8253);	break;
		case DEVINFO_FCT_START:						info->start = DEVICE_START_NAME(pit8253);	break;
		case DEVINFO_FCT_STOP:						/* nothing */								break;
		case DEVINFO_FCT_RESET:						info->reset = DEVICE_RESET_NAME(pit8253);	break;

		/* --- the following bits of info are returned as NULL-terminated strings --- */
		case DEVINFO_STR_NAME:						info->s = "Intel PIT8253";					break;
		case DEVINFO_STR_FAMILY:					info->s = "PIT8253";						break;
		case DEVINFO_STR_VERSION:					info->s = "1.00";							break;
		case DEVINFO_STR_SOURCE_FILE:				info->s = __FILE__;							break;
		case DEVINFO_STR_CREDITS:					info->s = "Copyright the MAME and MESS Teams"; break;
	}
}


DEVICE_GET_INFO( pit8254 ) {
	switch ( state ) {
		/* --- the following bits of info are returned as 64-bit signed integers --- */
		case DEVINFO_STR_NAME:						info->s = "Intel PIT8254";					break;

		/* --- the following bits of info are returned as pointers to data or functions --- */
		case DEVINFO_FCT_START:						info->start = DEVICE_START_NAME(pit8254);	break;

		default:									DEVICE_GET_INFO_CALL(pit8253);				break;
	}
}