1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
|
// license:BSD-3-Clause
// copyright-holders:Aaron Giles,Olivier Galibert
/***************************************************************************
emumem.h
Functions which handle device memory accesses.
***************************************************************************/
#pragma once
#ifndef __EMU_H__
#error Dont include this file directly; include emu.h instead.
#endif
#ifndef __EMUMEM_H__
#define __EMUMEM_H__
//**************************************************************************
// CONSTANTS
//**************************************************************************
enum { TOTAL_MEMORY_BANKS = 512 };
// address spaces
enum address_spacenum
{
AS_0, // first address space
AS_1, // second address space
AS_2, // third address space
AS_3, // fourth address space
ADDRESS_SPACES, // maximum number of address spaces
// alternate address space names for common use
AS_PROGRAM = AS_0, // program address space
AS_DATA = AS_1, // data address space
AS_IO = AS_2, // I/O address space
AS_DECRYPTED_OPCODES = AS_3 // decrypted opcodes, when separate from data accesses
};
DECLARE_ENUM_OPERATORS(address_spacenum)
// read or write constants
enum read_or_write
{
ROW_READ = 1,
ROW_WRITE = 2,
ROW_READWRITE = 3
};
//**************************************************************************
// TYPE DEFINITIONS
//**************************************************************************
// referenced types from other classes
class device_memory_interface;
class device_t;
struct game_driver;
// forward declarations of classes defined here
class address_map;
class address_map_entry;
class memory_manager;
class memory_bank;
class memory_block;
class memory_share;
class direct_read_data;
class address_space;
class address_table;
class address_table_read;
class address_table_write;
class address_table_setoffset;
// offsets and addresses are 32-bit (for now...)
typedef UINT32 offs_t;
// address map constructors are functions that build up an address_map
typedef void (*address_map_constructor)(address_map &map, device_t &devconfig);
// submap retriever delegate
typedef delegate<void (address_map &, device_t &)> address_map_delegate;
// struct with function pointers for accessors; use is generally discouraged unless necessary
struct data_accessors
{
UINT8 (*read_byte)(address_space &space, offs_t byteaddress);
UINT16 (*read_word)(address_space &space, offs_t byteaddress);
UINT16 (*read_word_masked)(address_space &space, offs_t byteaddress, UINT16 mask);
UINT32 (*read_dword)(address_space &space, offs_t byteaddress);
UINT32 (*read_dword_masked)(address_space &space, offs_t byteaddress, UINT32 mask);
UINT64 (*read_qword)(address_space &space, offs_t byteaddress);
UINT64 (*read_qword_masked)(address_space &space, offs_t byteaddress, UINT64 mask);
void (*write_byte)(address_space &space, offs_t byteaddress, UINT8 data);
void (*write_word)(address_space &space, offs_t byteaddress, UINT16 data);
void (*write_word_masked)(address_space &space, offs_t byteaddress, UINT16 data, UINT16 mask);
void (*write_dword)(address_space &space, offs_t byteaddress, UINT32 data);
void (*write_dword_masked)(address_space &space, offs_t byteaddress, UINT32 data, UINT32 mask);
void (*write_qword)(address_space &space, offs_t byteaddress, UINT64 data);
void (*write_qword_masked)(address_space &space, offs_t byteaddress, UINT64 data, UINT64 mask);
};
// ======================> direct_update_delegate
// direct region update handler
typedef delegate<offs_t (direct_read_data &, offs_t)> direct_update_delegate;
// ======================> read_delegate
// declare delegates for each width
typedef device_delegate<UINT8 (address_space &, offs_t, UINT8)> read8_delegate;
typedef device_delegate<UINT16 (address_space &, offs_t, UINT16)> read16_delegate;
typedef device_delegate<UINT32 (address_space &, offs_t, UINT32)> read32_delegate;
typedef device_delegate<UINT64 (address_space &, offs_t, UINT64)> read64_delegate;
// ======================> write_delegate
// declare delegates for each width
typedef device_delegate<void (address_space &, offs_t, UINT8, UINT8)> write8_delegate;
typedef device_delegate<void (address_space &, offs_t, UINT16, UINT16)> write16_delegate;
typedef device_delegate<void (address_space &, offs_t, UINT32, UINT32)> write32_delegate;
typedef device_delegate<void (address_space &, offs_t, UINT64, UINT64)> write64_delegate;
// ======================> setoffset_delegate
typedef device_delegate<void (address_space &, offs_t)> setoffset_delegate;
// ======================> direct_read_data
// direct_read_data contains state data for direct read access
class direct_read_data
{
friend class address_table;
public:
// direct_range is an internal class that is part of a list of start/end ranges
class direct_range
{
public:
// construction
direct_range()
: m_next(nullptr),
m_bytestart(0),
m_byteend(~0) { }
// getters
direct_range *next() const { return m_next; }
// internal state
direct_range * m_next; // pointer to the next range in the list
offs_t m_bytestart; // starting byte offset of the range
offs_t m_byteend; // ending byte offset of the range
};
// construction/destruction
direct_read_data(address_space &space);
~direct_read_data();
// getters
address_space &space() const { return m_space; }
UINT8 *ptr() const { return m_ptr; }
// see if an address is within bounds, or attempt to update it if not
bool address_is_valid(offs_t byteaddress) { return EXPECTED(byteaddress >= m_bytestart && byteaddress <= m_byteend) || set_direct_region(byteaddress); }
// force a recomputation on the next read
void force_update() { m_byteend = 0; m_bytestart = 1; }
void force_update(UINT16 if_match) { if (m_entry == if_match) force_update(); }
// custom update callbacks and configuration
direct_update_delegate set_direct_update(direct_update_delegate function);
void explicit_configure(offs_t bytestart, offs_t byteend, offs_t bytemask, void *raw);
// accessor methods
void *read_ptr(offs_t byteaddress, offs_t directxor = 0);
UINT8 read_byte(offs_t byteaddress, offs_t directxor = 0);
UINT16 read_word(offs_t byteaddress, offs_t directxor = 0);
UINT32 read_dword(offs_t byteaddress, offs_t directxor = 0);
UINT64 read_qword(offs_t byteaddress, offs_t directxor = 0);
private:
// internal helpers
bool set_direct_region(offs_t &byteaddress);
direct_range *find_range(offs_t byteaddress, UINT16 &entry);
void remove_intersecting_ranges(offs_t bytestart, offs_t byteend);
// internal state
address_space & m_space;
UINT8 * m_ptr; // direct access data pointer
offs_t m_bytemask; // byte address mask
offs_t m_bytestart; // minimum valid byte address
offs_t m_byteend; // maximum valid byte address
UINT16 m_entry; // live entry
simple_list<direct_range> m_rangelist[TOTAL_MEMORY_BANKS]; // list of ranges for each entry
simple_list<direct_range> m_freerangelist; // list of recycled range entries
direct_update_delegate m_directupdate; // fast direct-access update callback
};
// ======================> address_space_config
// describes an address space and provides basic functions to map addresses to bytes
class address_space_config
{
public:
// construction/destruction
address_space_config();
address_space_config(const char *name, endianness_t endian, UINT8 datawidth, UINT8 addrwidth, INT8 addrshift = 0, address_map_constructor internal = nullptr, address_map_constructor defmap = nullptr);
address_space_config(const char *name, endianness_t endian, UINT8 datawidth, UINT8 addrwidth, INT8 addrshift, UINT8 logwidth, UINT8 pageshift, address_map_constructor internal = nullptr, address_map_constructor defmap = nullptr);
address_space_config(const char *name, endianness_t endian, UINT8 datawidth, UINT8 addrwidth, INT8 addrshift, address_map_delegate internal, address_map_delegate defmap = address_map_delegate());
address_space_config(const char *name, endianness_t endian, UINT8 datawidth, UINT8 addrwidth, INT8 addrshift, UINT8 logwidth, UINT8 pageshift, address_map_delegate internal, address_map_delegate defmap = address_map_delegate());
// getters
const char *name() const { return m_name; }
endianness_t endianness() const { return m_endianness; }
int data_width() const { return m_databus_width; }
int addr_width() const { return m_addrbus_width; }
// address-to-byte conversion helpers
inline offs_t addr2byte(offs_t address) const { return (m_addrbus_shift < 0) ? (address << -m_addrbus_shift) : (address >> m_addrbus_shift); }
inline offs_t addr2byte_end(offs_t address) const { return (m_addrbus_shift < 0) ? ((address << -m_addrbus_shift) | ((1 << -m_addrbus_shift) - 1)) : (address >> m_addrbus_shift); }
inline offs_t byte2addr(offs_t address) const { return (m_addrbus_shift > 0) ? (address << m_addrbus_shift) : (address >> -m_addrbus_shift); }
inline offs_t byte2addr_end(offs_t address) const { return (m_addrbus_shift > 0) ? ((address << m_addrbus_shift) | ((1 << m_addrbus_shift) - 1)) : (address >> -m_addrbus_shift); }
// state
const char * m_name;
endianness_t m_endianness;
UINT8 m_databus_width;
UINT8 m_addrbus_width;
INT8 m_addrbus_shift;
UINT8 m_logaddr_width;
UINT8 m_page_shift;
bool m_is_octal; // to determine if messages/debugger will show octal or hex
address_map_constructor m_internal_map;
address_map_constructor m_default_map;
address_map_delegate m_internal_map_delegate;
address_map_delegate m_default_map_delegate;
};
// ======================> address_space
// address_space holds live information about an address space
class address_space
{
friend class address_table;
friend class address_table_read;
friend class address_table_write;
friend class address_table_setoffset;
friend class direct_read_data;
friend class simple_list<address_space>;
friend resource_pool_object<address_space>::~resource_pool_object();
protected:
// construction/destruction
address_space(memory_manager &manager, device_memory_interface &memory, address_spacenum spacenum, bool large);
virtual ~address_space();
public:
// public allocator
static address_space &allocate(memory_manager &manager, const address_space_config &config, device_memory_interface &memory, address_spacenum spacenum);
// getters
address_space *next() const { return m_next; }
memory_manager &manager() const { return m_manager; }
device_t &device() const { return m_device; }
running_machine &machine() const { return m_machine; }
const char *name() const { return m_name; }
address_spacenum spacenum() const { return m_spacenum; }
address_map *map() const { return m_map.get(); }
direct_read_data &direct() const { return *m_direct; }
int data_width() const { return m_config.data_width(); }
int addr_width() const { return m_config.addr_width(); }
endianness_t endianness() const { return m_config.endianness(); }
UINT64 unmap() const { return m_unmap; }
bool is_octal() const { return m_config.m_is_octal; }
offs_t addrmask() const { return m_addrmask; }
offs_t bytemask() const { return m_bytemask; }
UINT8 addrchars() const { return m_addrchars; }
offs_t logaddrmask() const { return m_logaddrmask; }
offs_t logbytemask() const { return m_logbytemask; }
UINT8 logaddrchars() const { return m_logaddrchars; }
// debug helpers
const char *get_handler_string(read_or_write readorwrite, offs_t byteaddress);
bool debugger_access() const { return m_debugger_access; }
void set_debugger_access(bool debugger) { m_debugger_access = debugger; }
bool log_unmap() const { return m_log_unmap; }
void set_log_unmap(bool log) { m_log_unmap = log; }
void dump_map(FILE *file, read_or_write readorwrite);
// watchpoint enablers
virtual void enable_read_watchpoints(bool enable = true) = 0;
virtual void enable_write_watchpoints(bool enable = true) = 0;
// general accessors
virtual void accessors(data_accessors &accessors) const = 0;
virtual void *get_read_ptr(offs_t byteaddress) = 0;
virtual void *get_write_ptr(offs_t byteaddress) = 0;
// read accessors
virtual UINT8 read_byte(offs_t byteaddress) = 0;
virtual UINT16 read_word(offs_t byteaddress) = 0;
virtual UINT16 read_word(offs_t byteaddress, UINT16 mask) = 0;
virtual UINT16 read_word_unaligned(offs_t byteaddress) = 0;
virtual UINT16 read_word_unaligned(offs_t byteaddress, UINT16 mask) = 0;
virtual UINT32 read_dword(offs_t byteaddress) = 0;
virtual UINT32 read_dword(offs_t byteaddress, UINT32 mask) = 0;
virtual UINT32 read_dword_unaligned(offs_t byteaddress) = 0;
virtual UINT32 read_dword_unaligned(offs_t byteaddress, UINT32 mask) = 0;
virtual UINT64 read_qword(offs_t byteaddress) = 0;
virtual UINT64 read_qword(offs_t byteaddress, UINT64 mask) = 0;
virtual UINT64 read_qword_unaligned(offs_t byteaddress) = 0;
virtual UINT64 read_qword_unaligned(offs_t byteaddress, UINT64 mask) = 0;
// write accessors
virtual void write_byte(offs_t byteaddress, UINT8 data) = 0;
virtual void write_word(offs_t byteaddress, UINT16 data) = 0;
virtual void write_word(offs_t byteaddress, UINT16 data, UINT16 mask) = 0;
virtual void write_word_unaligned(offs_t byteaddress, UINT16 data) = 0;
virtual void write_word_unaligned(offs_t byteaddress, UINT16 data, UINT16 mask) = 0;
virtual void write_dword(offs_t byteaddress, UINT32 data) = 0;
virtual void write_dword(offs_t byteaddress, UINT32 data, UINT32 mask) = 0;
virtual void write_dword_unaligned(offs_t byteaddress, UINT32 data) = 0;
virtual void write_dword_unaligned(offs_t byteaddress, UINT32 data, UINT32 mask) = 0;
virtual void write_qword(offs_t byteaddress, UINT64 data) = 0;
virtual void write_qword(offs_t byteaddress, UINT64 data, UINT64 mask) = 0;
virtual void write_qword_unaligned(offs_t byteaddress, UINT64 data) = 0;
virtual void write_qword_unaligned(offs_t byteaddress, UINT64 data, UINT64 mask) = 0;
// Set address. This will invoke setoffset handlers for the respective entries.
virtual void set_address(offs_t byteaddress) = 0;
// address-to-byte conversion helpers
offs_t address_to_byte(offs_t address) const { return m_config.addr2byte(address); }
offs_t address_to_byte_end(offs_t address) const { return m_config.addr2byte_end(address); }
offs_t byte_to_address(offs_t address) const { return m_config.byte2addr(address); }
offs_t byte_to_address_end(offs_t address) const { return m_config.byte2addr_end(address); }
// direct access
direct_update_delegate set_direct_update_handler(direct_update_delegate function) { return m_direct->set_direct_update(function); }
// umap ranges (short form)
void unmap_read(offs_t addrstart, offs_t addrend) { unmap_read(addrstart, addrend, 0, 0); }
void unmap_write(offs_t addrstart, offs_t addrend) { unmap_write(addrstart, addrend, 0, 0); }
void unmap_readwrite(offs_t addrstart, offs_t addrend) { unmap_readwrite(addrstart, addrend, 0, 0); }
void nop_read(offs_t addrstart, offs_t addrend) { nop_read(addrstart, addrend, 0, 0); }
void nop_write(offs_t addrstart, offs_t addrend) { nop_write(addrstart, addrend, 0, 0); }
void nop_readwrite(offs_t addrstart, offs_t addrend) { nop_readwrite(addrstart, addrend, 0, 0); }
// umap ranges (with mirror/mask)
void unmap_read(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror) { unmap_generic(addrstart, addrend, addrmask, addrmirror, ROW_READ, false); }
void unmap_write(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror) { unmap_generic(addrstart, addrend, addrmask, addrmirror, ROW_WRITE, false); }
void unmap_readwrite(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror) { unmap_generic(addrstart, addrend, addrmask, addrmirror, ROW_READWRITE, false); }
void nop_read(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror) { unmap_generic(addrstart, addrend, addrmask, addrmirror, ROW_READ, true); }
void nop_write(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror) { unmap_generic(addrstart, addrend, addrmask, addrmirror, ROW_WRITE, true); }
void nop_readwrite(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror) { unmap_generic(addrstart, addrend, addrmask, addrmirror, ROW_READWRITE, true); }
// install ports, banks, RAM (short form)
void install_read_port(offs_t addrstart, offs_t addrend, const char *rtag) { install_read_port(addrstart, addrend, 0, 0, rtag); }
void install_write_port(offs_t addrstart, offs_t addrend, const char *wtag) { install_write_port(addrstart, addrend, 0, 0, wtag); }
void install_readwrite_port(offs_t addrstart, offs_t addrend, const char *rtag, const char *wtag) { install_readwrite_port(addrstart, addrend, 0, 0, rtag, wtag); }
void install_read_bank(offs_t addrstart, offs_t addrend, const char *tag) { install_read_bank(addrstart, addrend, 0, 0, tag); }
void install_write_bank(offs_t addrstart, offs_t addrend, const char *tag) { install_write_bank(addrstart, addrend, 0, 0, tag); }
void install_readwrite_bank(offs_t addrstart, offs_t addrend, const char *tag) { install_readwrite_bank(addrstart, addrend, 0, 0, tag); }
void install_read_bank(offs_t addrstart, offs_t addrend, memory_bank *bank) { install_read_bank(addrstart, addrend, 0, 0, bank); }
void install_write_bank(offs_t addrstart, offs_t addrend, memory_bank *bank) { install_write_bank(addrstart, addrend, 0, 0, bank); }
void install_readwrite_bank(offs_t addrstart, offs_t addrend, memory_bank *bank) { install_readwrite_bank(addrstart, addrend, 0, 0, bank); }
void install_rom(offs_t addrstart, offs_t addrend, void *baseptr = nullptr) { install_rom(addrstart, addrend, 0, 0, baseptr); }
void install_writeonly(offs_t addrstart, offs_t addrend, void *baseptr = nullptr) { install_writeonly(addrstart, addrend, 0, 0, baseptr); }
void install_ram(offs_t addrstart, offs_t addrend, void *baseptr = nullptr) { install_ram(addrstart, addrend, 0, 0, baseptr); }
// install ports, banks, RAM (with mirror/mask)
void install_read_port(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *rtag) { install_readwrite_port(addrstart, addrend, addrmask, addrmirror, rtag, nullptr); }
void install_write_port(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *wtag) { install_readwrite_port(addrstart, addrend, addrmask, addrmirror, nullptr, wtag); }
void install_readwrite_port(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *rtag, const char *wtag);
void install_read_bank(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *tag) { install_bank_generic(addrstart, addrend, addrmask, addrmirror, tag, nullptr); }
void install_write_bank(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *tag) { install_bank_generic(addrstart, addrend, addrmask, addrmirror, nullptr, tag); }
void install_readwrite_bank(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *tag) { install_bank_generic(addrstart, addrend, addrmask, addrmirror, tag, tag); }
void install_read_bank(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, memory_bank *bank) { install_bank_generic(addrstart, addrend, addrmask, addrmirror, bank, nullptr); }
void install_write_bank(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, memory_bank *bank) { install_bank_generic(addrstart, addrend, addrmask, addrmirror, nullptr, bank); }
void install_readwrite_bank(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, memory_bank *bank) { install_bank_generic(addrstart, addrend, addrmask, addrmirror, bank, bank); }
void install_rom(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, void *baseptr = nullptr) { install_ram_generic(addrstart, addrend, addrmask, addrmirror, ROW_READ, baseptr); }
void install_writeonly(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, void *baseptr = nullptr) { install_ram_generic(addrstart, addrend, addrmask, addrmirror, ROW_WRITE, baseptr); }
void install_ram(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, void *baseptr = nullptr) { install_ram_generic(addrstart, addrend, addrmask, addrmirror, ROW_READWRITE, baseptr); }
// install device memory maps
template <typename T> void install_device(offs_t addrstart, offs_t addrend, T &device, void (T::*map)(address_map &map, device_t &device), int bits = 0, UINT64 unitmask = 0) {
address_map_delegate delegate(map, "dynamic_device_install", &device);
install_device_delegate(addrstart, addrend, device, delegate, bits, unitmask);
}
void install_device_delegate(offs_t addrstart, offs_t addrend, device_t &device, address_map_delegate &map, int bits = 0, UINT64 unitmask = 0);
// install setoffset handler
void install_setoffset_handler(offs_t addrstart, offs_t addrend, setoffset_delegate sohandler, UINT64 unitmask = 0) { install_setoffset_handler(addrstart, addrend, 0, 0, sohandler, unitmask); }
void install_setoffset_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, setoffset_delegate sohandler, UINT64 unitmask = 0);
// install new-style delegate handlers (short form)
void install_read_handler(offs_t addrstart, offs_t addrend, read8_delegate rhandler, UINT64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, rhandler, unitmask); }
void install_write_handler(offs_t addrstart, offs_t addrend, write8_delegate whandler, UINT64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, whandler, unitmask); }
void install_readwrite_handler(offs_t addrstart, offs_t addrend, read8_delegate rhandler, write8_delegate whandler, UINT64 unitmask = 0) { return install_readwrite_handler(addrstart, addrend, 0, 0, rhandler, whandler, unitmask); }
void install_read_handler(offs_t addrstart, offs_t addrend, read16_delegate rhandler, UINT64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, rhandler, unitmask); }
void install_write_handler(offs_t addrstart, offs_t addrend, write16_delegate whandler, UINT64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, whandler, unitmask); }
void install_readwrite_handler(offs_t addrstart, offs_t addrend, read16_delegate rhandler, write16_delegate whandler, UINT64 unitmask = 0) { return install_readwrite_handler(addrstart, addrend, 0, 0, rhandler, whandler, unitmask); }
void install_read_handler(offs_t addrstart, offs_t addrend, read32_delegate rhandler, UINT64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, rhandler, unitmask); }
void install_write_handler(offs_t addrstart, offs_t addrend, write32_delegate whandler, UINT64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, whandler, unitmask); }
void install_readwrite_handler(offs_t addrstart, offs_t addrend, read32_delegate rhandler, write32_delegate whandler, UINT64 unitmask = 0) { return install_readwrite_handler(addrstart, addrend, 0, 0, rhandler, whandler, unitmask); }
void install_read_handler(offs_t addrstart, offs_t addrend, read64_delegate rhandler, UINT64 unitmask = 0) { install_read_handler(addrstart, addrend, 0, 0, rhandler, unitmask); }
void install_write_handler(offs_t addrstart, offs_t addrend, write64_delegate whandler, UINT64 unitmask = 0) { install_write_handler(addrstart, addrend, 0, 0, whandler, unitmask); }
void install_readwrite_handler(offs_t addrstart, offs_t addrend, read64_delegate rhandler, write64_delegate whandler, UINT64 unitmask = 0) { install_readwrite_handler(addrstart, addrend, 0, 0, rhandler, whandler, unitmask); }
// install new-style delegate handlers (with mirror/mask)
void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_delegate rhandler, UINT64 unitmask = 0);
void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write8_delegate whandler, UINT64 unitmask = 0);
void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read8_delegate rhandler, write8_delegate whandler, UINT64 unitmask = 0);
void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_delegate rhandler, UINT64 unitmask = 0);
void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write16_delegate whandler, UINT64 unitmask = 0);
void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read16_delegate rhandler, write16_delegate whandler, UINT64 unitmask = 0);
void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_delegate rhandler, UINT64 unitmask = 0);
void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write32_delegate whandler, UINT64 unitmask = 0);
void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read32_delegate rhandler, write32_delegate whandler, UINT64 unitmask = 0);
void install_read_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_delegate rhandler, UINT64 unitmask = 0);
void install_write_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, write64_delegate whandler, UINT64 unitmask = 0);
void install_readwrite_handler(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read64_delegate rhandler, write64_delegate whandler, UINT64 unitmask = 0);
// setup
void prepare_map();
void populate_from_map(address_map *map = nullptr);
void allocate_memory();
void locate_memory();
private:
// internal helpers
virtual address_table_read &read() = 0;
virtual address_table_write &write() = 0;
virtual address_table_setoffset &setoffset() = 0;
void populate_map_entry(const address_map_entry &entry, read_or_write readorwrite);
void populate_map_entry_setoffset(const address_map_entry &entry);
void unmap_generic(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read_or_write readorwrite, bool quiet);
void install_ram_generic(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read_or_write readorwrite, void *baseptr);
void install_bank_generic(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, const char *rtag, const char *wtag);
void install_bank_generic(offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, memory_bank *rbank, memory_bank *wbank);
void adjust_addresses(offs_t &start, offs_t &end, offs_t &mask, offs_t &mirror);
void *find_backing_memory(offs_t addrstart, offs_t addrend);
bool needs_backing_store(const address_map_entry &entry);
memory_bank &bank_find_or_allocate(const char *tag, offs_t addrstart, offs_t addrend, offs_t addrmask, offs_t addrmirror, read_or_write readorwrite);
memory_bank *bank_find_anonymous(offs_t bytestart, offs_t byteend) const;
address_map_entry *block_assign_intersecting(offs_t bytestart, offs_t byteend, UINT8 *base);
protected:
// private state
address_space * m_next; // next address space in the global list
const address_space_config &m_config; // configuration of this space
device_t & m_device; // reference to the owning device
std::unique_ptr<address_map> m_map; // original memory map
offs_t m_addrmask; // physical address mask
offs_t m_bytemask; // byte-converted physical address mask
offs_t m_logaddrmask; // logical address mask
offs_t m_logbytemask; // byte-converted logical address mask
UINT64 m_unmap; // unmapped value
address_spacenum m_spacenum; // address space index
bool m_debugger_access; // treat accesses as coming from the debugger
bool m_log_unmap; // log unmapped accesses in this space?
std::unique_ptr<direct_read_data> m_direct; // fast direct-access read info
const char * m_name; // friendly name of the address space
UINT8 m_addrchars; // number of characters to use for physical addresses
UINT8 m_logaddrchars; // number of characters to use for logical addresses
private:
memory_manager & m_manager; // reference to the owning manager
running_machine & m_machine; // reference to the owning machine
};
// ======================> memory_block
// a memory block is a chunk of RAM associated with a range of memory in a device's address space
class memory_block
{
DISABLE_COPYING(memory_block);
friend class simple_list<memory_block>;
friend resource_pool_object<memory_block>::~resource_pool_object();
public:
// construction/destruction
memory_block(address_space &space, offs_t bytestart, offs_t byteend, void *memory = nullptr);
~memory_block();
// getters
running_machine &machine() const { return m_machine; }
memory_block *next() const { return m_next; }
offs_t bytestart() const { return m_bytestart; }
offs_t byteend() const { return m_byteend; }
UINT8 *data() const { return m_data; }
// is the given range contained by this memory block?
bool contains(address_space &space, offs_t bytestart, offs_t byteend) const
{
return (&space == &m_space && m_bytestart <= bytestart && m_byteend >= byteend);
}
private:
// internal state
memory_block * m_next; // next memory block in the list
running_machine & m_machine; // need the machine to free our memory
address_space & m_space; // which address space are we associated with?
offs_t m_bytestart, m_byteend; // byte-normalized start/end for verifying a match
UINT8 * m_data; // pointer to the data for this block
dynamic_buffer m_allocated; // pointer to the actually allocated block
};
// ======================> memory_bank
// a memory bank is a global pointer to memory that can be shared across devices and changed dynamically
class memory_bank
{
friend class simple_list<memory_bank>;
friend resource_pool_object<memory_bank>::~resource_pool_object();
// a bank reference is an entry in a list of address spaces that reference a given bank
class bank_reference
{
friend class simple_list<bank_reference>;
friend resource_pool_object<bank_reference>::~resource_pool_object();
public:
// construction/destruction
bank_reference(address_space &space, read_or_write readorwrite)
: m_next(nullptr),
m_space(space),
m_readorwrite(readorwrite) { }
// getters
bank_reference *next() const { return m_next; }
address_space &space() const { return m_space; }
// does this reference match the space+read/write combination?
bool matches(const address_space &space, read_or_write readorwrite) const
{
return (&space == &m_space && (readorwrite == ROW_READWRITE || readorwrite == m_readorwrite));
}
private:
// internal state
bank_reference * m_next; // link to the next reference
address_space & m_space; // address space that references us
read_or_write m_readorwrite; // used for read or write?
};
// a bank_entry contains a pointer
struct bank_entry
{
UINT8 * m_ptr;
};
public:
// construction/destruction
memory_bank(address_space &space, int index, offs_t bytestart, offs_t byteend, const char *tag = nullptr);
~memory_bank();
// getters
memory_bank *next() const { return m_next; }
running_machine &machine() const { return m_machine; }
int index() const { return m_index; }
int entry() const { return m_curentry; }
bool anonymous() const { return m_anonymous; }
offs_t bytestart() const { return m_bytestart; }
void *base() const { return *m_baseptr; }
const char *tag() const { return m_tag.c_str(); }
const char *name() const { return m_name.c_str(); }
// compare a range against our range
bool matches_exactly(offs_t bytestart, offs_t byteend) const { return (m_bytestart == bytestart && m_byteend == byteend); }
bool fully_covers(offs_t bytestart, offs_t byteend) const { return (m_bytestart <= bytestart && m_byteend >= byteend); }
bool is_covered_by(offs_t bytestart, offs_t byteend) const { return (m_bytestart >= bytestart && m_byteend <= byteend); }
bool straddles(offs_t bytestart, offs_t byteend) const { return (m_bytestart < byteend && m_byteend > bytestart); }
// track and verify address space references to this bank
bool references_space(const address_space &space, read_or_write readorwrite) const;
void add_reference(address_space &space, read_or_write readorwrite);
// set the base explicitly
void set_base(void *base);
// configure and set entries
void configure_entry(int entrynum, void *base);
void configure_entries(int startentry, int numentries, void *base, offs_t stride);
void set_entry(int entrynum);
private:
// internal helpers
void invalidate_references();
void expand_entries(int entrynum);
// internal state
memory_bank * m_next; // next bank in sequence
running_machine & m_machine; // need the machine to free our memory
UINT8 ** m_baseptr; // pointer to our base pointer in the global array
UINT16 m_index; // array index for this handler
bool m_anonymous; // are we anonymous or explicit?
offs_t m_bytestart; // byte-adjusted start offset
offs_t m_byteend; // byte-adjusted end offset
int m_curentry; // current entry
std::vector<bank_entry> m_entry; // array of entries (dynamically allocated)
std::string m_name; // friendly name for this bank
std::string m_tag; // tag for this bank
simple_list<bank_reference> m_reflist; // linked list of address spaces referencing this bank
};
// ======================> memory_share
// a memory share contains information about shared memory region
class memory_share
{
friend class simple_list<memory_share>;
public:
// construction/destruction
memory_share(UINT8 width, size_t bytes, endianness_t endianness, void *ptr = nullptr)
: m_next(nullptr),
m_ptr(ptr),
m_bytes(bytes),
m_endianness(endianness),
m_bitwidth(width),
m_bytewidth(width <= 8 ? 1 : width <= 16 ? 2 : width <= 32 ? 4 : 8)
{ }
// getters
memory_share *next() const { return m_next; }
void *ptr() const { return m_ptr; }
size_t bytes() const { return m_bytes; }
endianness_t endianness() const { return m_endianness; }
UINT8 bitwidth() const { return m_bitwidth; }
UINT8 bytewidth() const { return m_bytewidth; }
// setters
void set_ptr(void *ptr) { m_ptr = ptr; }
private:
// internal state
memory_share * m_next; // next share in the list
void * m_ptr; // pointer to the memory backing the region
size_t m_bytes; // size of the shared region in bytes
endianness_t m_endianness; // endianness of the memory
UINT8 m_bitwidth; // width of the shared region in bits
UINT8 m_bytewidth; // width in bytes, rounded up to a power of 2
};
// ======================> memory_region
// memory region object
class memory_region
{
DISABLE_COPYING(memory_region);
friend class memory_manager;
friend class simple_list<memory_region>;
friend resource_pool_object<memory_region>::~resource_pool_object();
// construction/destruction
memory_region(running_machine &machine, const char *name, UINT32 length, UINT8 width, endianness_t endian);
public:
// getters
running_machine &machine() const { return m_machine; }
memory_region *next() const { return m_next; }
UINT8 *base() { return (m_buffer.size() > 0) ? &m_buffer[0] : nullptr; }
UINT8 *end() { return base() + m_buffer.size(); }
UINT32 bytes() const { return m_buffer.size(); }
const char *name() const { return m_name.c_str(); }
// flag expansion
endianness_t endianness() const { return m_endianness; }
UINT8 bitwidth() const { return m_bitwidth; }
UINT8 bytewidth() const { return m_bytewidth; }
// data access
UINT8 &u8(offs_t offset = 0) { return m_buffer[offset]; }
UINT16 &u16(offs_t offset = 0) { return reinterpret_cast<UINT16 *>(base())[offset]; }
UINT32 &u32(offs_t offset = 0) { return reinterpret_cast<UINT32 *>(base())[offset]; }
UINT64 &u64(offs_t offset = 0) { return reinterpret_cast<UINT64 *>(base())[offset]; }
private:
// internal data
running_machine & m_machine;
memory_region * m_next;
std::string m_name;
dynamic_buffer m_buffer;
endianness_t m_endianness;
UINT8 m_bitwidth;
UINT8 m_bytewidth;
};
// ======================> memory_manager
// holds internal state for the memory system
class memory_manager
{
friend class address_space;
public:
// construction/destruction
memory_manager(running_machine &machine);
void initialize();
// getters
running_machine &machine() const { return m_machine; }
const tagged_list<memory_bank> &banks() const { return m_banklist; }
const tagged_list<memory_region> ®ions() const { return m_regionlist; }
const tagged_list<memory_share> &shares() const { return m_sharelist; }
// dump the internal memory tables to the given file
void dump(FILE *file);
// pointers to a bank pointer (internal usage only)
UINT8 **bank_pointer_addr(UINT8 index) { return &m_bank_ptr[index]; }
// regions
memory_region *region_alloc(const char *name, UINT32 length, UINT8 width, endianness_t endian);
void region_free(const char *name);
memory_region *region_containing(const void *memory, offs_t bytes) const;
private:
// internal helpers
void bank_reattach();
// internal state
running_machine & m_machine; // reference to the machine
bool m_initialized; // have we completed initialization?
UINT8 * m_bank_ptr[TOTAL_MEMORY_BANKS]; // array of bank pointers
simple_list<address_space> m_spacelist; // list of address spaces
simple_list<memory_block> m_blocklist; // head of the list of memory blocks
tagged_list<memory_bank> m_banklist; // data gathered for each bank
UINT16 m_banknext; // next bank to allocate
tagged_list<memory_share> m_sharelist; // map for share lookups
tagged_list<memory_region> m_regionlist; // list of memory regions
};
//**************************************************************************
// MACROS
//**************************************************************************
// opcode base adjustment handler function macro
#define DIRECT_UPDATE_MEMBER(name) offs_t name(ATTR_UNUSED direct_read_data &direct, ATTR_UNUSED offs_t address)
#define DECLARE_DIRECT_UPDATE_MEMBER(name) offs_t name(ATTR_UNUSED direct_read_data &direct, ATTR_UNUSED offs_t address)
// space read/write handler function macros
#define READ8_MEMBER(name) UINT8 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT8 mem_mask)
#define WRITE8_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT8 data, ATTR_UNUSED UINT8 mem_mask)
#define READ16_MEMBER(name) UINT16 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT16 mem_mask)
#define WRITE16_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT16 data, ATTR_UNUSED UINT16 mem_mask)
#define READ32_MEMBER(name) UINT32 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT32 mem_mask)
#define WRITE32_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT32 data, ATTR_UNUSED UINT32 mem_mask)
#define READ64_MEMBER(name) UINT64 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT64 mem_mask)
#define WRITE64_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT64 data, ATTR_UNUSED UINT64 mem_mask)
#define DECLARE_READ8_MEMBER(name) UINT8 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT8 mem_mask = 0xff)
#define DECLARE_WRITE8_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT8 data, ATTR_UNUSED UINT8 mem_mask = 0xff)
#define DECLARE_READ16_MEMBER(name) UINT16 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT16 mem_mask = 0xffff)
#define DECLARE_WRITE16_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT16 data, ATTR_UNUSED UINT16 mem_mask = 0xffff)
#define DECLARE_READ32_MEMBER(name) UINT32 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT32 mem_mask = 0xffffffff)
#define DECLARE_WRITE32_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT32 data, ATTR_UNUSED UINT32 mem_mask = 0xffffffff)
#define DECLARE_READ64_MEMBER(name) UINT64 name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT64 mem_mask = U64(0xffffffffffffffff))
#define DECLARE_WRITE64_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset, ATTR_UNUSED UINT64 data, ATTR_UNUSED UINT64 mem_mask = U64(0xffffffffffffffff))
#define SETOFFSET_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset)
#define DECLARE_SETOFFSET_MEMBER(name) void name(ATTR_UNUSED address_space &space, ATTR_UNUSED offs_t offset)
// device delegate macros
#define READ8_DELEGATE(_class, _member) read8_delegate(FUNC(_class::_member), this)
#define WRITE8_DELEGATE(_class, _member) write8_delegate(FUNC(_class::_member), this)
#define READ16_DELEGATE(_class, _member) read16_delegate(FUNC(_class::_member), this)
#define WRITE16_DELEGATE(_class, _member) write16_delegate(FUNC(_class::_member), this)
#define READ32_DELEGATE(_class, _member) read32_delegate(FUNC(_class::_member), this)
#define WRITE32_DELEGATE(_class, _member) write32_delegate(FUNC(_class::_member), this)
#define READ64_DELEGATE(_class, _member) read64_delegate(FUNC(_class::_member), this)
#define WRITE64_DELEGATE(_class, _member) write64_delegate(FUNC(_class::_member), this)
#define READ8_DEVICE_DELEGATE(_device, _class, _member) read8_delegate(FUNC(_class::_member), (_class *)_device)
#define WRITE8_DEVICE_DELEGATE(_device, _class, _member) write8_delegate(FUNC(_class::_member), (_class *)_device)
#define READ16_DEVICE_DELEGATE(_device, _class, _member) read16_delegate(FUNC(_class::_member), (_class *)_device)
#define WRITE16_DEVICE_DELEGATE(_device, _class, _member) write16_delegate(FUNC(_class::_member), (_class *)_device)
#define READ32_DEVICE_DELEGATE(_device, _class, _member) read32_delegate(FUNC(_class::_member), (_class *)_device)
#define WRITE32_DEVICE_DELEGATE(_device, _class, _member) write32_delegate(FUNC(_class::_member), (_class *)_device)
#define READ64_DEVICE_DELEGATE(_device, _class, _member) read64_delegate(FUNC(_class::_member), (_class *)_device)
#define WRITE64_DEVICE_DELEGATE(_device, _class, _member) write64_delegate(FUNC(_class::_member), (_class *)_device)
// helper macro for merging data with the memory mask
#define COMBINE_DATA(varptr) (*(varptr) = (*(varptr) & ~mem_mask) | (data & mem_mask))
#define ACCESSING_BITS_0_7 ((mem_mask & 0x000000ff) != 0)
#define ACCESSING_BITS_8_15 ((mem_mask & 0x0000ff00) != 0)
#define ACCESSING_BITS_16_23 ((mem_mask & 0x00ff0000) != 0)
#define ACCESSING_BITS_24_31 ((mem_mask & 0xff000000) != 0)
#define ACCESSING_BITS_32_39 ((mem_mask & U64(0x000000ff00000000)) != 0)
#define ACCESSING_BITS_40_47 ((mem_mask & U64(0x0000ff0000000000)) != 0)
#define ACCESSING_BITS_48_55 ((mem_mask & U64(0x00ff000000000000)) != 0)
#define ACCESSING_BITS_56_63 ((mem_mask & U64(0xff00000000000000)) != 0)
#define ACCESSING_BITS_0_15 ((mem_mask & 0x0000ffff) != 0)
#define ACCESSING_BITS_16_31 ((mem_mask & 0xffff0000) != 0)
#define ACCESSING_BITS_32_47 ((mem_mask & U64(0x0000ffff00000000)) != 0)
#define ACCESSING_BITS_48_63 ((mem_mask & U64(0xffff000000000000)) != 0)
#define ACCESSING_BITS_0_31 ((mem_mask & 0xffffffff) != 0)
#define ACCESSING_BITS_32_63 ((mem_mask & U64(0xffffffff00000000)) != 0)
// macros for accessing bytes and words within larger chunks
// read/write a byte to a 16-bit space
#define BYTE_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(1,0))
#define BYTE_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,1))
// read/write a byte to a 32-bit space
#define BYTE4_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(3,0))
#define BYTE4_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,3))
// read/write a word to a 32-bit space
#define WORD_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(2,0))
#define WORD_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,2))
// read/write a byte to a 64-bit space
#define BYTE8_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(7,0))
#define BYTE8_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,7))
// read/write a word to a 64-bit space
#define WORD2_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(6,0))
#define WORD2_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,6))
// read/write a dword to a 64-bit space
#define DWORD_XOR_BE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(4,0))
#define DWORD_XOR_LE(a) ((a) ^ NATIVE_ENDIAN_VALUE_LE_BE(0,4))
// helpers for checking address alignment
#define WORD_ALIGNED(a) (((a) & 1) == 0)
#define DWORD_ALIGNED(a) (((a) & 3) == 0)
#define QWORD_ALIGNED(a) (((a) & 7) == 0)
//**************************************************************************
// INLINE FUNCTIONS
//**************************************************************************
//-------------------------------------------------
// read_ptr - return a pointer to valid RAM
// referenced by the address, or nullptr if no RAM
// backing that address
//-------------------------------------------------
inline void *direct_read_data::read_ptr(offs_t byteaddress, offs_t directxor)
{
if (address_is_valid(byteaddress))
return &m_ptr[(byteaddress ^ directxor) & m_bytemask];
return nullptr;
}
//-------------------------------------------------
// read_byte - read a byte via the
// direct_read_data class
//-------------------------------------------------
inline UINT8 direct_read_data::read_byte(offs_t byteaddress, offs_t directxor)
{
if (address_is_valid(byteaddress))
return m_ptr[(byteaddress ^ directxor) & m_bytemask];
return m_space.read_byte(byteaddress);
}
//-------------------------------------------------
// read_word - read a word via the
// direct_read_data class
//-------------------------------------------------
inline UINT16 direct_read_data::read_word(offs_t byteaddress, offs_t directxor)
{
if (address_is_valid(byteaddress))
return *reinterpret_cast<UINT16 *>(&m_ptr[(byteaddress ^ directxor) & m_bytemask]);
return m_space.read_word(byteaddress);
}
//-------------------------------------------------
// read_dword - read a dword via the
// direct_read_data class
//-------------------------------------------------
inline UINT32 direct_read_data::read_dword(offs_t byteaddress, offs_t directxor)
{
if (address_is_valid(byteaddress))
return *reinterpret_cast<UINT32 *>(&m_ptr[(byteaddress ^ directxor) & m_bytemask]);
return m_space.read_dword(byteaddress);
}
//-------------------------------------------------
// read_qword - read a qword via the
// direct_read_data class
//-------------------------------------------------
inline UINT64 direct_read_data::read_qword(offs_t byteaddress, offs_t directxor)
{
if (address_is_valid(byteaddress))
return *reinterpret_cast<UINT64 *>(&m_ptr[(byteaddress ^ directxor) & m_bytemask]);
return m_space.read_qword(byteaddress);
}
#endif /* __EMUMEM_H__ */
|