summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/cpu/tms0980/tms0980.c
blob: 163156517c9b4bf7af4cd6a37092b1c73c469f17 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
/*


TMS0980/TMS1000-family CPU cores

The tms0980 and tms1000-family cpu cores are very similar. The tms0980 has a
slightly bigger addressable area and uses 9bit instructions where the tms1000
family uses 8bit instruction. The instruction set themselves are very similar
though. The table below shows the differences between the different models.

Mode     | ROM       | RAM      | R pins | O pins | K pins | ids
---------+-----------+----------+--------+--------+--------|----------
tms0970* | 1024 *  8 |  64 *  4 |        |        |        | tms0972
tms0920* |  511?*  9 |  40 *  5 |        |        |        | tmc0921
tms0980  | 2048 *  9 |  64 *  9 |        |        |        | tmc0981
tms1000  | 1024 *  8 |  64 *  4 |     11 |      8 |      4 | tms1001
tms1040* | 1024 *  8 |  64 *  4 |        |        |        | tms1043
tms1070  | 1024 *  8 |  64 *  4 |     11 |      8 |      4 | tms1071
tms1100  | 2048 *  8 | 128 *  4 |     11 |      8 |      4 | tms1111/tms1115
tms1170* | 2048 *  8 | 128 *  4 |        |        |        | tmc1172
tms1200  | 1024 *  8 |  64 *  4 |     13 |      8 |      4 | tms1215
tms1270  | 1024 *  8 |  64 *  4 |     13 |     10 |      4 | tms1278
tms1300  | 2048 *  8 | 128 *  4 |     16 |      8 |      4 | tms1309
tms1370* | 2048 *  8 | 128 *  4 |        |        |        | za0543
tms1400* | 4096 *  8 | 128 *  4 |        |        |        | 
tms1470* | 4096 *  8 | 128 *  4 |        |        |        | tms1470
tms1500* | 2048 * 13 |  64 * 20 |        |        |        | tmc1501
tms1600* | 4096 *  8 | 128 *  4 |        |        |        |
tms1670* | 4096 *  8 | 128 *  4 |        |        |        |
tms1700* |  512 *  8 |  32 *  4 |        |        |        |
tms1980* | 2048 *  9 |  64 *  9 |        |        |        | tmc1982
tms1990* | 1024 *  8 |  64 *  4 |        |        |        | tmc1991
tp0310*  |  511?*  9 |  40 *  5 |        |        |        | tp0311
tp0320*  | 2048 *  9 |  64 * 13 |        |        |        | tp0321
tp0455*  |           |          |        |        |        | cd4501
tp0456*  |           |          |        |        |        | cd4555
tp0458*  |           |          |        |        |        | cd4812
tp0485*  |           |          |        |        |        | cd2901
tp0530*  |           |          |        |        |        | cd5402

* = not supported yet

The TMS1000 core has been tested with some example code, the other models
have not been tested lacking rom dumps.

Each instruction takes 12 cycles to execute in 2 phases: a fetch phase and an
execution phase. The execution phase takes place at the same time as the fetch
phase of the next instruction. So, during execution there are both fetch and
execution operations taking place. The operation can be split up as follows:
cycle #0
    - Fetch:
        1. ROM address 0
    - Execute:
        1. Read RAM
        2. Clear ALU inputs
        3. Execute BRANCH/CALL/RETN part #2
        4. K input valid
cycle #1
    - Fetch:
        1. ROM address 1
    - Execute:
        1. Update ALU inputs
cycle #2
    - Fetch:
        1. nothing/wait(?)
    - Execute:
        1. Perform ALU operation
        2. Write RAM
cycle #3
    - Fetch:
        1. Fetch/Update PC/RAM address #1
    - Execute:
        1. Register store part #1
cycle #4
    - Fetch:
        1. Fetch/Update PC/RAM address #2
    - Execute:
        1. Register store part #2
cycle #5
    - Fetch:
        1. Instruction decode
    - Execute:
        1. Execute BRANCH/CALL/RETN part #1


The CPU cores contains a set of fixed instructions and a set of
instructions created using microinstructions. A subset of the
instruction set could be defined from the microinstructions by
TI customers. Currently we only support the standard instruction
set as defined by TI.

The microinstructions are:
15TN  - 15 to -ALU
ATN   - ACC to -ALU
AUTA  - ALU to ACC
AUTY  - ALU to Y
C8    - CARRY8 to STATUS
CIN   - Carry In to ALU
CKM   - CKB to MEM
CKN   - CKB to -ALU
CKP   - CKB to +ALU
CME   - Conditional Memory Enable
DMTP  - DAM to +ALU
MTN   - MEM to -ALU
MTP   - MEM to +ALU
NATN  - ~ACC to -ALU
NDMTP - ~DAM to +ALU
NE    - COMP to STATUS
SSE   - Special Status Enable
SSS   - Special Status Sample
STO   - ACC to MEM
YTP   - Y to +ALU

cycle #0: 15TN, ATN, CIN, CKN, CKP, DMTP, MTN, MTP, NATN, NDMTP, YTP
cycle #2: C8(?), CKM, NE(?), STO
cycle #3,#4: AUTA, AUTY

unknown cycle: CME, SSE, SSS

*/

#include "debugger.h"
#include "tms0980.h"
#include "deprecat.h"

#define LOG					0

#define MICRO_MASK			0x80000000
#define FIXED_INSTRUCTION	0x00000000


/* Standard/fixed intructions */
#define F_ILL				0x00000000
#define F_BR				0x00000001
#define F_CALL				0x00000002
#define F_CLO				0x00000004
#define F_COMC				0x00000008
#define F_COMX				0x00000010
#define F_COMX8				0x00000020
#define F_LDP				0x00000040
#define F_LDX				0x00000080
#define F_OFF				0x00000100
#define F_RBIT				0x00000200
#define F_REAC				0x00000400
#define F_RETN				0x00000800
#define F_RSTR				0x00001000
#define F_SAL				0x00002000
#define F_SBIT				0x00004000
#define F_SBL				0x00008000
#define F_SEAC				0x00010000
#define F_SETR				0x00020000
#define F_TDO				0x00040000


/* Microinstructions */
#define M_15TN				0x00000001
#define M_ATN				0x00000002
#define M_AUTA				0x00000004
#define M_AUTY				0x00000008
#define M_C8				0x00000010
#define M_CIN				0x00000020
#define M_CKM				0x00000040
#define M_CKN				0x00000080
#define M_CKP				0x00000100
#define M_CME				0x00000200
#define M_DMTP				0x00000400
#define M_MTN				0x00000800
#define M_MTP				0x00001000
#define M_NATN				0x00002000
#define M_NDMTP				0x00004000
#define M_NE				0x00008000
#define M_SSE				0x00010000
#define M_SSS				0x00020000
#define M_STO				0x00040000
#define M_STSL				0x00080000
#define M_YTP				0x00100000


/* instructions built from microinstructions */
#define I_AC1AC		( MICRO_MASK | M_CKP | M_ATN | M_CIN | M_C8 | M_AUTA )
#define I_A6AAC		I_ACACC
#define I_A8AAC		I_ACACC
#define I_A10AAC	I_ACACC
#define I_ACACC		( MICRO_MASK | M_CKP | M_ATN | M_C8 | M_AUTA )
#define I_ACNAA		( MICRO_MASK | M_CKP | M_NATN | M_AUTA )
#define I_ALEC		( MICRO_MASK | M_CKP | M_NATN | M_CIN | M_C8 )
#define I_ALEM		( MICRO_MASK | M_MTP | M_NATN | M_CIN | M_C8 )
#define I_AMAAC		( MICRO_MASK | M_MTP | M_ATN | M_C8 | M_AUTA )
#define I_CCLA		( MICRO_MASK | M_AUTA | M_SSS )
#define I_CLA		( MICRO_MASK | M_AUTA )
#define I_CPAIZ		( MICRO_MASK | M_NATN | M_CIN | M_C8 | M_AUTA )
#define I_CTMDYN	( MICRO_MASK | M_YTP | M_15TN | M_C8 | M_AUTY | M_CME )
#define I_DAN		( MICRO_MASK | M_CKP | M_ATN | M_CIN | M_C8 | M_AUTA )
#define I_DMAN		( MICRO_MASK | M_MTP | M_15TN | M_C8 | M_AUTA )
#define I_DMEA		( MICRO_MASK | M_MTP | M_DMTP | M_SSS | M_AUTA )
#define I_DNAA		( MICRO_MASK | M_DMTP | M_NATN | M_SSS | M_AUTA )
#define I_DYN		( MICRO_MASK | M_YTP | M_15TN | M_C8 | M_AUTY )
#define I_IA		( MICRO_MASK | M_ATN | M_CIN | M_AUTA )
#define I_IMAC		( MICRO_MASK | M_MTP | M_CIN | M_C8 | M_AUTA )
#define I_IYC		( MICRO_MASK | M_YTP | M_CIN | M_C8 | M_AUTY )
#define I_KNEZ		( MICRO_MASK | M_CKP | M_NE )
#define I_MNEA		( MICRO_MASK | M_MTP | M_ATN | M_NE )
#define I_MNEZ		( MICRO_MASK | M_MTP | M_NE )
#define I_M_NDMEA	( MICRO_MASK | M_MTN | M_NDTMP | M_SSS | M_AUTA )
#define I_SAMAN		( MICRO_MASK | M_MTP | M_NATN | M_CIN | M_C8 | M_AUTA )
#define I_SETR		( MICRO_MASK | M_YTP | M_15TN | M_AUTY | M_C8 )
#define I_TAM		( MICRO_MASK | M_STO )
#define I_TAMACS	( MICRO_MASK | M_STO | M_ATN | M_CKP | M_AUTA | M_SSE )
#define I_TAMDYN	( MICRO_MASK | M_STO | M_YTP | M_15TN | M_AUTY | M_C8 )
#define I_TAMIY		( MICRO_MASK | M_STO | M_YTP | M_CIN | M_AUTY )
#define I_TAMIYC	( MICRO_MASK | M_STO | M_YTP | M_CIN | M_C8 | M_AUTY )
#define I_TAMZA		( MICRO_MASK | M_STO | M_AUTA )
#define I_TAY		( MICRO_MASK | M_ATN | M_AUTY )
#define I_TBIT		( MICRO_MASK | M_CKP | M_CKN | M_MTP | M_NE )
#define I_TCY		( MICRO_MASK | M_CKP | M_AUTY )
#define I_TCMIY		( MICRO_MASK | M_CKM | M_YTP | M_CIN | M_AUTY )
#define I_TKA		( MICRO_MASK | M_CKP | M_AUTA )
#define I_TKM		( MICRO_MASK | M_CKM )
#define I_TMA		( MICRO_MASK | M_MTP | M_AUTA )
#define I_TMY		( MICRO_MASK | M_MTP | M_AUTY )
#define I_TYA		( MICRO_MASK | M_YTP | M_AUTA )
#define I_XDA		( MICRO_MASK | M_DMTP | M_AUTA | M_STO )
#define I_XMA		( MICRO_MASK | M_MTP | M_STO | M_AUTA )
#define I_YMCY		( MICRO_MASK | M_CIN | M_YTP | M_CKN | M_AUTY )
#define I_YNEA		( MICRO_MASK | M_YTP | M_ATN | M_NE )
#define I_YNEC		( MICRO_MASK | M_YTP | M_CKN | M_NE )


typedef struct _tms0980_state tms0980_state;
struct _tms0980_state
{
	UINT8	prev_pc;		/* previous program counter */
	UINT8	prev_pa;		/* previous page address register */
	UINT8	pc;				/* program counter is a 7 bit register on tms0980, 6 bit register on tms1000/1070/1200/1270/1100/1300 */
	UINT8	pa;				/* page address register is a 4 bit register */
	UINT8	sr;				/* subroutine return register is a 7 bit register */
	UINT8	pb;				/* page buffer register is a 4 bit register */
	UINT8	a;				/* Accumulator is a 4 bit register (?) */
	UINT8	x;				/* X-register is a 2 bit register */
	UINT8	y;				/* Y-register is a 4 bit register */
	UINT8	dam;			/* DAM register is a 4 bit register */
	UINT8	ca;				/* Chapter address bit */
	UINT8	cb;				/* Chapter buffer bit */
	UINT8	cs;				/* Chapter subroutine bit */
	UINT16	r;
	UINT8	o;
	UINT8	cki_bus;		/* CKI bus */
	UINT8	p;				/* adder p-input */
	UINT8	n;				/* adder n-input */
	UINT8	adder_result;	/* adder result */
	UINT8	carry_in;		/* carry in */
	UINT8	status;
	UINT8	status_latch;
	UINT8	special_status;
	UINT8	call_latch;
	UINT8	add_latch;
	UINT8	branch_latch;
	int	subcycle;
	UINT8	ram_address;
	UINT16	ram_data;
	UINT16	rom_address;
	UINT16	opcode;
	UINT32	decode;
	int		icount;
	UINT16	o_mask;			/* mask to determine the number of O outputs */
	UINT16	r_mask;			/* mask to determine the number of R outputs */
	UINT8	pc_size;		/* how bits in the PC register */
	UINT8	byte_size;		/* 8 or 9 bit bytes */
	const UINT32 *decode_table;
	const tms0980_config	*config;
	const address_space *program;
	const address_space *data;
};


static const UINT8 tms0980_c2_value[4] =
{
	0x00, 0x02, 0x01, 0x03
};
static const UINT8 tms0980_c4_value[16] =
{
	0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E, 0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F
};
static const UINT8 tms0980_bit_value[4] = { 1, 4, 2, 8 };
static const UINT8 tms0980_nbit_value[4] = { 0x0E, 0x0B, 0x0D, 0x07 };


static const UINT32 tms0980_decode[512] =
{
	/* 0x000 */
	F_COMX, I_ALEM, I_YNEA, I_XMA, I_DYN, I_IYC, I_CLA, I_DMAN,
	I_TKA, I_MNEA, I_TKM, F_ILL, F_ILL, F_SETR, I_KNEZ, F_ILL,
	I_DMEA, I_DNAA, I_CCLA, I_DMEA, F_ILL, I_AMAAC, F_ILL, F_ILL,
	I_CTMDYN, I_XDA, F_ILL, F_ILL, F_ILL, F_ILL, F_ILL, F_ILL,
	I_TBIT, I_TBIT, I_TBIT, I_TBIT, F_ILL, F_ILL, F_ILL, F_ILL,
	I_TAY, I_TMA, I_TMY, I_TYA, I_TAMDYN, I_TAMIYC, I_TAMZA, I_TAM,
	I_SAMAN, I_CPAIZ, I_IMAC, I_MNEZ, F_ILL, F_ILL, F_ILL, F_ILL,
	I_TCY, I_YNEC, I_TCMIY, I_ACACC, I_ACNAA, I_TAMACS, I_ALEC, I_YMCY,
	/* 0x040 */
	I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY,
	I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY,
	I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC,
	I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC,
	I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY,
	I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY,
	I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC,
	I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC, I_ACACC,
	/* 0x080 */
	F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP,
	F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP,
	F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX,
	F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX,
	F_SBIT, F_SBIT, F_SBIT, F_SBIT, F_RBIT, F_RBIT, F_RBIT, F_RBIT,
	F_ILL, F_ILL, F_ILL, F_ILL, F_ILL, F_ILL, F_ILL, F_ILL,
	F_TDO, F_SAL, F_COMX8, F_SBL, F_REAC, F_SEAC, F_OFF, F_ILL,
	F_ILL, F_ILL, F_ILL, F_ILL, F_ILL, F_ILL, F_ILL, F_RETN,
	/* 0x0c0 */
	I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA,
	I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA, I_ACNAA,
	I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS,
	I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS, I_TAMACS,
	I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC,
	I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC,
	I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY,
	I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY, I_YMCY,
	/* 0x100 */
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	/* 0x140 */
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	/* 0x180 */
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	/* 0x1c0 */
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL
};


static const UINT32 tms1000_default_decode[256] = {
	/* 0x00 */
	F_COMX, I_A8AAC, I_YNEA, I_TAM, I_TAMZA, I_A10AAC, I_A6AAC, I_DAN,
	I_TKA, I_KNEZ, F_TDO, F_CLO, F_RSTR, F_SETR, I_IA, F_RETN,
	F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP,
	F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP,
	/* 0x20 */
	I_TAMIY, I_TMA, I_TMY, I_TYA, I_TAY, I_AMAAC, I_MNEZ, I_SAMAN,
	I_IMAC, I_ALEM, I_DMAN, I_IYC, I_DYN, I_CPAIZ, I_XMA, I_CLA,
	F_SBIT, F_SBIT, F_SBIT, F_SBIT, F_RBIT, F_RBIT, F_RBIT, F_RBIT,
	I_TBIT, I_TBIT, I_TBIT, I_TBIT, F_LDX, F_LDX, F_LDX, F_LDX,
	/* 0x40 */
	I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY,
	I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY,
	I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC,
	I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC,
	/* 0x60 */
	I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY,
	I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY,
	I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC,
	I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC, I_ALEC,
	/* 0x80 */
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	/* 0xC0 */
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
};


static const UINT32 tms1100_default_decode[256] = {
	/* 0x00 */
	I_MNEA, I_ALEM, I_YNEA, I_XMA, I_DYN, I_IYC, I_AMAAC, I_DMAN,
	I_TKA, F_COMX, F_TDO, F_COMC, F_RSTR, F_SETR, I_KNEZ, F_RETN,
	F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP,
	F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP, F_LDP,
	/* 0x20 */
	I_TAY, I_TMA, I_TMY, I_TYA, I_TAMDYN, I_TAMIYC, I_TAMZA, I_TAM,
	F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX, F_LDX,
	F_SBIT, F_SBIT, F_SBIT, F_SBIT, F_RBIT, F_RBIT, F_RBIT, F_RBIT,
	I_TBIT, I_TBIT, I_TBIT, I_TBIT, I_SAMAN, I_CPAIZ, I_IMAC, I_MNEZ,
	/* 0x40 */
	I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY,
	I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY, I_TCY,
	I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC,
	I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC, I_YNEC,
	/* 0x60 */
	I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY,
	I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY, I_TCMIY,
	I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC,
	I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_AC1AC, I_CLA,
	/* 0x80 */
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR, F_BR,
	/* 0xC0 */
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
	F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL, F_CALL,
};


INLINE tms0980_state *get_safe_token(const device_config *device)
{
	assert(device != NULL);
	assert(device->token != NULL);
	assert(device->type == CPU);
	assert(cpu_get_type(device) == CPU_TMS0980 ||
			cpu_get_type(device) == CPU_TMS1000 ||
			cpu_get_type(device) == CPU_TMS1070 ||
			cpu_get_type(device) == CPU_TMS1100 ||
			cpu_get_type(device) == CPU_TMS1200 ||
			cpu_get_type(device) == CPU_TMS1270 ||
			cpu_get_type(device) == CPU_TMS1300 );
	return (tms0980_state *)device->token;
}


static ADDRESS_MAP_START(tms0980_internal_rom, ADDRESS_SPACE_PROGRAM, 16)
	AM_RANGE( 0x0000, 0x0FFF ) AM_ROM
ADDRESS_MAP_END


static ADDRESS_MAP_START(tms0980_internal_ram, ADDRESS_SPACE_DATA, 8)
	AM_RANGE( 0x0000, 0x0FFF ) AM_RAM
ADDRESS_MAP_END


static ADDRESS_MAP_START(program_10bit_8, ADDRESS_SPACE_PROGRAM, 8)
	AM_RANGE( 0x000, 0x3ff ) AM_ROM
ADDRESS_MAP_END


static ADDRESS_MAP_START(program_11bit_8, ADDRESS_SPACE_PROGRAM, 8)
	AM_RANGE( 0x000, 0x7ff ) AM_ROM
ADDRESS_MAP_END


static ADDRESS_MAP_START(data_6bit, ADDRESS_SPACE_DATA, 8)
	AM_RANGE( 0x00, 0x3f ) AM_RAM
ADDRESS_MAP_END


static ADDRESS_MAP_START(data_7bit, ADDRESS_SPACE_DATA, 8)
	AM_RANGE( 0x00, 0x7f ) AM_RAM
ADDRESS_MAP_END


static void cpu_init_tms_common( const device_config *device, const UINT32* decode_table, UINT16 o_mask, UINT16 r_mask, UINT8 pc_size, UINT8 byte_size )
{
	tms0980_state *cpustate = get_safe_token( device );

	cpustate->config = (const tms0980_config *) device->static_config;

	assert( cpustate->config != NULL );

	cpustate->decode_table = decode_table;
	cpustate->o_mask = o_mask;
	cpustate->r_mask = r_mask;
	cpustate->pc_size = pc_size;
	cpustate->byte_size = byte_size;

	cpustate->program = memory_find_address_space( device, ADDRESS_SPACE_PROGRAM );
	cpustate->data = memory_find_address_space( device, ADDRESS_SPACE_DATA );

	state_save_register_device_item( device, 0, cpustate->prev_pc );
	state_save_register_device_item( device, 0, cpustate->prev_pa );
	state_save_register_device_item( device, 0, cpustate->pc );
	state_save_register_device_item( device, 0, cpustate->pa );
	state_save_register_device_item( device, 0, cpustate->sr );
	state_save_register_device_item( device, 0, cpustate->pb );
	state_save_register_device_item( device, 0, cpustate->a );
	state_save_register_device_item( device, 0, cpustate->x );
	state_save_register_device_item( device, 0, cpustate->y );
	state_save_register_device_item( device, 0, cpustate->dam );
	state_save_register_device_item( device, 0, cpustate->ca );
	state_save_register_device_item( device, 0, cpustate->cb );
	state_save_register_device_item( device, 0, cpustate->cs );
	state_save_register_device_item( device, 0, cpustate->r );
	state_save_register_device_item( device, 0, cpustate->o );
	state_save_register_device_item( device, 0, cpustate->cki_bus );
	state_save_register_device_item( device, 0, cpustate->p );
	state_save_register_device_item( device, 0, cpustate->n );
	state_save_register_device_item( device, 0, cpustate->adder_result );
	state_save_register_device_item( device, 0, cpustate->carry_in );
	state_save_register_device_item( device, 0, cpustate->status );
	state_save_register_device_item( device, 0, cpustate->status_latch );
	state_save_register_device_item( device, 0, cpustate->special_status );
	state_save_register_device_item( device, 0, cpustate->call_latch );
	state_save_register_device_item( device, 0, cpustate->add_latch );
	state_save_register_device_item( device, 0, cpustate->branch_latch );
	state_save_register_device_item( device, 0, cpustate->subcycle );
	state_save_register_device_item( device, 0, cpustate->ram_address );
	state_save_register_device_item( device, 0, cpustate->ram_data );
	state_save_register_device_item( device, 0, cpustate->rom_address );
	state_save_register_device_item( device, 0, cpustate->opcode );
	state_save_register_device_item( device, 0, cpustate->decode );
}


static CPU_INIT( tms0980 )
{
	cpu_init_tms_common( device, tms0980_decode, 0x00ff, 0x07ff, 7, 9 );
}


static CPU_INIT( tms1000 )
{
	cpu_init_tms_common( device, tms1000_default_decode, 0x00ff, 0x07ff, 6, 8 );
}


static CPU_INIT( tms1070 )
{
	cpu_init_tms_common( device, tms1000_default_decode, 0x00ff, 0x07ff, 6, 8 );
}


static CPU_INIT( tms1200 )
{
	cpu_init_tms_common( device, tms1000_default_decode, 0x00ff, 0x1fff, 6, 8 );
}


static CPU_INIT( tms1270 )
{
	cpu_init_tms_common( device, tms1000_default_decode, 0x03ff, 0x1fff, 6, 8 );
}


static CPU_INIT( tms1100 )
{
	cpu_init_tms_common( device, tms1100_default_decode, 0x00ff, 0x07ff, 6, 8 );
}


static CPU_INIT( tms1300 )
{
	cpu_init_tms_common( device, tms1100_default_decode, 0x00ff, 0xffff, 6, 8 );
}


static CPU_RESET( tms0980 )
{
	tms0980_state *cpustate = get_safe_token( device );

	cpustate->pa = 0x0F;
	cpustate->pb = 0x0F;
	cpustate->pc = 0;
	cpustate->dam = 0;
	cpustate->ca = 0;
	cpustate->cb = 0;
	cpustate->cs = 0;
	cpustate->subcycle = 0;
	cpustate->status = 1;
	cpustate->status_latch = 0;
	cpustate->call_latch = 0;
	cpustate->add_latch = 0;
	cpustate->branch_latch = 0;
	cpustate->r = 0;
	cpustate->o = 0;
	cpustate->ram_address = 0;
	cpustate->decode = F_ILL;
	cpustate->opcode = 0;
}


/*
The program counter is implemented using PRNG logic and gets incremented as follows:

00, 01, 03, 07, 0F, 1F, 3F, 3E,
3D, 3B, 37, 2F, 1E, 3C, 39, 33
27, 0E, 1D, 3A, 35, 2B, 16, 2C,
18, 30, 21, 02, 05, 0B, 17, 2E,
1C, 38, 31, 23, 06, 0D, 1B, 36,
2D, 1A, 34, 29, 12, 24, 08, 11,
22, 04, 09, 13, 26, 0C, 19, 32,
25, 0A, 15, 2A, 14, 28, 10, 20

There is also a strange address (AD) to location (LOC) mapping performed by the
tms1000 family.

From tms1000 family pdf:
AD          LOC
000 000000  003 000011
001 000001  004 000100
003 000011  00C 001100
007 000111  01C 011100
00F 001111  03C 111100
01F 011111  03F 111111
03F 111111  03E 111110
03E 111110  039 111001
03D 111101  036 110110
03B 111011  02E 101110
037 110111  01E 011110
02F 101111  03D 111101
01E 011110  038 111000
03C 111100  031 110001
039 111001  026 100110
033 110011  00E 001110
027 100111  01D 011101
00E 001110  03B 111011
01D 011101  037 110111
03A 111010  029 101001
035 110101  016 010110
02B 101011  02D 101101
016 010110  018 011000
02C 101100  032 110010
018 011000  020 100000
030 110000  001 000001
021 100001  005 000101
002 000010  00B 001011
005 000101  014 010100
00B 001011  02C 101100
017 010111  01F 011111
02E 101110  03A 111010
01C 011100  030 110000
038 111000  021 100001
031 110001  006 000110
023 100011  00D 001101
006 000110  01B 011011
00D 001101  034 110100
01B 011011  02F 101111
036 110110  019 011001
02D 101101  035 110101
01A 011010  028 101000
034 110100  011 010001
029 101001  025 100101
012 010010  008 001000
024 100100  012 010010
008 001000  023 100011
011 010001  007 000111
022 100010  00A 001010
004 000100  013 010011
009 001001  024 100100
013 010011  00F 001111
026 100110  01A 011010
00C 001100  033 110011
019 011001  027 100111
032 110010  009 001001
025 100101  015 010101
00A 001010  02B 101011
015 010101  017 010111
02A 101010  02A 101010
014 010100  010 010000
028 101000  022 100010
010 010000  000 000000
020 100000  002 000010

The following formula seems to be used to decode a program counter
into a rom address:
location{5:2} = pc{3:0}
location{1:0} =  ( pc{5:4} == 00 && pc{0} == 0 ) => 11
                 ( pc{5:4} == 00 && pc{0} == 1 ) => 00
                 ( pc{5:4} == 01 && pc{0} == 0 ) => 00
                 ( pc{5:4} == 01 && pc{0} == 1 ) => 11
                 ( pc{5:4} == 10 && pc{0} == 0 ) => 10
                 ( pc{5:4} == 10 && pc{0} == 1 ) => 01
                 ( pc{5:4} == 11 && pc{0} == 0 ) => 01
                 ( pc{5:4} == 11 && pc{0} == 1 ) => 10

*/
static const UINT8 tms1000_next_pc[64] = {
	0x01, 0x03, 0x05, 0x07, 0x09, 0x0B, 0x0D, 0x0F, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1B, 0x1D, 0x1F,
	0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3F,
	0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E,
	0x21, 0x23, 0x25, 0x27, 0x29, 0x2B, 0x2D, 0x2F, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3B, 0x3D, 0x3E,
};

/* emulator for the program counter increment on the tms0980/tmc0980 mcu;
 see patent 4064554 figure 19 (on page 13) for an explanation of feedback:

  nand324 = NAND of PC0 thru pc4, i.e. output is true if ((pc&0x1f) != 0x1f)
  nand323 = NAND of pc5, pc6 and nand324
      i.e. output is true, if ((pc&0x1f)==0x1f) || pc5 is 0 || pc 6 is 0
  or321 = OR of pc5 and pc6, i.e. output is true if ((pc&0x60) != 0)
  nand322 = NAND of pc0 thru pc5 plus /pc6,
      i.e. output is true if (pc != 0x3f)
  nand325 = nand pf nand323, or321 and nand322
      This one is complex:
      / or321 means if pc&0x60 is zero, output MUST be true
      \ nand323 means if (pc&0x60=0x60) && (pc&0x1f != 0x1f), output MUST be true
      nand322 means if pc = 0x3f, output MUST be true
      hence, nand325 is if pc = 0x7f, false. if pc = 0x3f, true. if pc&0x60 is zero OR pc&0x60 is 0x60, true. otherwise, false.

      tms0980_nect_pc below implements an indentical function to this in a somewhat more elegant way.
*/
INLINE void tms0980_next_pc( tms0980_state *cpustate )
{
	if ( cpustate->byte_size > 8 )
	{
		UINT8	xorval = ( cpustate->pc & 0x3F ) == 0x3F ? 1 : 0;
		UINT8	new_bit = ( ( cpustate->pc ^ ( cpustate->pc << 1 ) ) & 0x40 ) ? xorval : 1 - xorval;

		cpustate->pc = ( cpustate->pc << 1 ) | new_bit;
	}
	else
	{
		cpustate->pc = tms1000_next_pc[ cpustate->pc & 0x3f ];
	}
}


static const UINT8 tms1000_pc_decode[64] =
{
	0x03, 0x04, 0x0B, 0x0C, 0x13, 0x14, 0x1B, 0x1C,
	0x23, 0x24, 0x2B, 0x2C, 0x33, 0x34, 0x3B, 0x3C,
	0x00, 0x07, 0x08, 0x0F, 0x10, 0x17, 0x18, 0x1F,
	0x20, 0x27, 0x28, 0x2F, 0x30, 0x37, 0x38, 0x3F,
	0x02, 0x05, 0x0A, 0x0D, 0x12, 0x15, 0x1A, 0x1D,
	0x22, 0x25, 0x2A, 0x2D, 0x32, 0x35, 0x3A, 0x3D,
	0x01, 0x06, 0x09, 0x0E, 0x11, 0x16, 0x19, 0x1E,
	0x21, 0x26, 0x29, 0x2E, 0x31, 0x36, 0x39, 0x3E
};


static void tms0980_set_cki_bus( const device_config *device )
{
	tms0980_state *cpustate = get_safe_token( device );

	switch( cpustate->opcode & 0x1F8 )
	{
	case 0x008:
		if ( cpustate->config->read_k )
		{
			cpustate->cki_bus = cpustate->config->read_k( device, 0 );
		}
		else
		{
			cpustate->cki_bus = 0x0F;
		}
		break;
	case 0x020: case 0x028:
		cpustate->cki_bus = 0;
		break;
	case 0x030: case 0x038:
		cpustate->cki_bus = tms0980_nbit_value[ cpustate->opcode & 0x03 ];
		break;
	case 0x000:
	case 0x040: case 0x048:
	case 0x050: case 0x058:
	case 0x060: case 0x068:
	case 0x070: case 0x078:
	case 0x080: case 0x088:
	case 0x090: case 0x098:
	case 0x0c0: case 0x0c8:
	case 0x0d0: case 0x0d8:
	case 0x0e0: case 0x0e8:
	case 0x0f0: case 0x0f8:
		cpustate->cki_bus = tms0980_c4_value[ cpustate->opcode & 0x0F ];
		break;
	default:
		cpustate->cki_bus = 0x0F;
		break;
	}
}


static CPU_EXECUTE( tms0980 )
{
	tms0980_state *cpustate = get_safe_token( device );

	cpustate->icount = cycles;

	do
	{
//      debugger_instruction_hook( device, ( ( cpustate->pa << cpustate->pc_size ) | cpustate->pc ) << 1 );
		cpustate->icount--;
		switch( cpustate->subcycle )
		{
		case 0:
			/* fetch: rom address 0 */
			/* execute: read ram, alu input, execute br/call, k input valid */
			tms0980_set_cki_bus( device );
			cpustate->ram_data = memory_read_byte_8le( cpustate->data, cpustate->ram_address );
			cpustate->status = 1;
			cpustate->p = 0;
			cpustate->n = 0;
			cpustate->carry_in = 0;
			break;
		case 1:
			/* fetch: rom address 1 */
			if ( cpustate->pc_size == 6 )
				cpustate->rom_address = ( cpustate->pa << 6 ) | tms1000_pc_decode[ cpustate->pc ];
			else
				cpustate->rom_address = ( cpustate->pa << 7 ) | cpustate->pc;
			/* execute: k input valid */
			if ( cpustate->decode & MICRO_MASK )
			{
				/* Check N inputs */
				if ( cpustate->decode & ( M_15TN | M_ATN | M_CKN | M_MTN | M_NATN ) )
				{
					cpustate->n = 0;
					if ( cpustate->decode & M_15TN )
					{
						cpustate->n |= 0x0F;
					}
					if ( cpustate->decode & M_ATN )
					{
						cpustate->n |= cpustate->a;
					}
					if ( cpustate->decode & M_CKN )
					{
						cpustate->n |= cpustate->cki_bus;
					}
					if ( cpustate->decode & M_MTN )
					{
						cpustate->n |= cpustate->ram_data;
					}
					if ( cpustate->decode & M_NATN )
					{
						cpustate->n |= ( ( ~cpustate->a ) & 0x0F );
					}
				}


				/* Check P inputs */
				if ( cpustate->decode & ( M_CKP | M_DMTP | M_MTP | M_NDMTP | M_YTP ) )
				{
					cpustate->p = 0;
					if ( cpustate->decode & M_CKP )
					{
						cpustate->p |= cpustate->cki_bus;
					}
					if ( cpustate->decode & M_DMTP )
					{
						cpustate->p |= cpustate->dam;
					}
					if ( cpustate->decode & M_MTP )
					{
						cpustate->p |= cpustate->ram_data;
					}
					if ( cpustate->decode & M_NDMTP )
					{
						cpustate->p |= ( ( ~cpustate->dam ) & 0x0F );
					}
					if ( cpustate->decode & M_YTP )
					{
						cpustate->p |= cpustate->y;
					}
				}

				/* Carry In input */
				if ( cpustate->decode & M_CIN )
				{
					cpustate->carry_in = 1;
				}
			}
			break;
		case 2:
			/* fetch: nothing */
			/* execute: write ram */
			/* perform adder logic */
			cpustate->adder_result = cpustate->p + cpustate->n + cpustate->carry_in;
			if ( cpustate->decode & MICRO_MASK )
			{
				if ( cpustate->decode & M_NE )
				{
					if ( cpustate->n == cpustate->p )
					{
						cpustate->status = 0;
					}
				}
				if ( cpustate->decode & M_C8 )
				{
					cpustate->status = cpustate->adder_result >> 4;
				}
				if ( cpustate->decode & M_STO )
				{
					memory_write_byte_8le( cpustate->data, cpustate->ram_address, cpustate->a );
				}
				if ( cpustate->decode & M_CKM )
				{
					memory_write_byte_8le( cpustate->data, cpustate->ram_address, cpustate->cki_bus );
				}
			}
			else
			{
				if ( cpustate->decode & F_SBIT )
				{
					memory_write_byte_8le( cpustate->data, cpustate->ram_address, cpustate->ram_data | tms0980_bit_value[ cpustate->opcode & 0x03 ] );
				}
				if ( cpustate->decode & F_RBIT )
				{
					memory_write_byte_8le( cpustate->data, cpustate->ram_address, cpustate->ram_data & tms0980_nbit_value[ cpustate->opcode & 0x03 ] );
				}
				if ( cpustate->decode & F_SETR )
				{
					cpustate->r = cpustate->r | ( 1 << cpustate->y );
					if ( cpustate->config->write_r )
					{
						cpustate->config->write_r( device, 0, cpustate->r & cpustate->r_mask, 0xffff );
					}
				}
				if ( cpustate->decode & F_RSTR )
				{
					cpustate->r = cpustate->r & ( ~( 1 << cpustate->y ) );
					if ( cpustate->config->write_r )
					{
						cpustate->config->write_r( device, 0, cpustate->r & cpustate->r_mask, 0xffff );
					}
				}
				if ( cpustate->decode & F_TDO )
				{
					int i = 0;

					/* Calculate O-outputs based on status latch, A, and the output PLA configuration */
					cpustate->o = 0;
					for ( i = 0; i < 20; i++ )
					{
						if ( ( ( cpustate->status_latch << 4 ) | cpustate->a ) == cpustate->config->o_pla[i].value )
						{
							cpustate->o = cpustate->config->o_pla[i].output;
						}
					}

					if ( cpustate->config->write_o )
					{
						cpustate->config->write_o( device, 0, cpustate->o & cpustate->o_mask, 0xffff );
					}
				}
				if ( cpustate->decode & F_CLO )
				{
					cpustate->o = 0;
					if ( cpustate->config->write_o )
					{
						cpustate->config->write_o( device, 0, cpustate->o & cpustate->o_mask, 0xffff );
					}
				}
				if ( cpustate->decode & F_LDX )
				{
					cpustate->x = tms0980_c2_value[ cpustate->opcode & 0x03 ];
				}
				if ( cpustate->decode & F_COMX )
				{
					cpustate->x = cpustate->x ^ 0x03;
				}
				if ( cpustate->decode & F_COMC )
				{
					cpustate->cb = cpustate->cb ^ 0x01;
				}
				if ( cpustate->decode & F_LDP )
				{
					cpustate->pb = tms0980_c4_value[ cpustate->opcode & 0x0F ];
				}
				if ( cpustate->decode & F_REAC )
				{
					cpustate->special_status = 0;
				}
				if ( cpustate->decode & F_SEAC )
				{
					cpustate->special_status = 1;
				}
				if ( cpustate->decode == F_SAL )
				{
					cpustate->add_latch = 1;
				}
				if ( cpustate->decode == F_SBL )
				{
					cpustate->branch_latch = 1;
				}
			}
			break;
		case 3:
			/* fetch: fetch, update pc, ram address */
			/* execute: register store */
			break;
		case 4:
			/* execute: register store */
			if ( cpustate->decode & MICRO_MASK )
			{
				if ( cpustate->decode & M_AUTA )
				{
					cpustate->a = cpustate->adder_result & 0x0F;
				}
				if ( cpustate->decode & M_AUTY )
				{
					cpustate->y = cpustate->adder_result & 0x0F;
				}
				if ( cpustate->decode & M_STSL )
				{
					cpustate->status_latch = cpustate->status;
				}
			}
			/* fetch: fetch, update pc, ram address */
			if ( cpustate->byte_size > 8 )
			{
				debugger_instruction_hook( device, cpustate->rom_address << 1 );
				cpustate->opcode = memory_read_word_16be( cpustate->program, cpustate->rom_address << 1 ) & 0x1FF;
			}
			else
			{
				debugger_instruction_hook( device, cpustate->rom_address );
				cpustate->opcode = memory_read_word_8le( cpustate->program, cpustate->rom_address ) & 0xFF;
			}
			tms0980_next_pc( cpustate );
			if (LOG)
				logerror( "tms0980: read opcode %04x from %04x. Set pc to %04x\n", cpustate->opcode, cpustate->rom_address, cpustate->pc );

			/* ram address */
			cpustate->ram_address = ( cpustate->x << 4 ) | cpustate->y;
			break;
		case 5:
			/* fetch: instruction decode */
			cpustate->decode = cpustate->decode_table[ cpustate->opcode ];
			/* execute: execute br/call */
			if ( cpustate->status )
			{
				if ( cpustate->decode == F_BR )
				{
					if ( cpustate->call_latch == 0 )
					{
						cpustate->pa = cpustate->pb;
					}
					cpustate->pc = cpustate->opcode & ( ( 1 << cpustate->pc_size ) - 1 );
				}
				if ( cpustate->decode == F_CALL )
				{
					UINT8 t = cpustate->pa;
					if ( cpustate->call_latch == 0 )
					{
						cpustate->sr = cpustate->pc;
						cpustate->call_latch = 1;
						cpustate->pa = cpustate->pb;
					}
					cpustate->pb = t;
					cpustate->pc = cpustate->opcode & ( ( 1 << cpustate->pc_size ) - 1 );
				}
			}
			if ( cpustate->decode == F_RETN )
			{
				if ( cpustate->call_latch == 1 )
				{
					cpustate->pc = cpustate->sr;
					cpustate->call_latch = 0;
				}
				cpustate->add_latch = 0;
				cpustate->pa = cpustate->pb;
			} else {
				cpustate->branch_latch = 0;
			}
			break;
		}
		cpustate->subcycle = ( cpustate->subcycle + 1 ) % 6;
	} while( cpustate->icount > 0 );

	return cycles - cpustate->icount;
}


static CPU_SET_INFO( tms0980 )
{
	tms0980_state *cpustate = get_safe_token( device );

	switch( state )
	{
		case CPUINFO_INT_PC:										cpustate->pc = ( info->i >> 1 ) & 0x7f; cpustate->pa = info->i >> 8; break;
		case CPUINFO_INT_REGISTER + TMS0980_PC:						cpustate->pc = info->i; break;
		case CPUINFO_INT_REGISTER + TMS0980_SR:						cpustate->sr = info->i; break;
		case CPUINFO_INT_REGISTER + TMS0980_PA:						cpustate->pa = info->i; break;
		case CPUINFO_INT_REGISTER + TMS0980_PB:						cpustate->pb = info->i; break;
		case CPUINFO_INT_REGISTER + TMS0980_A:						cpustate->a = info->i; break;
		case CPUINFO_INT_REGISTER + TMS0980_X:						cpustate->x = info->i; break;
		case CPUINFO_INT_REGISTER + TMS0980_Y:						cpustate->y = info->i; break;
		case CPUINFO_INT_REGISTER + TMS0980_STATUS:					cpustate->status = info->i; break;
	}
}


static CPU_GET_INFO( tms_generic )
{
	tms0980_state *cpustate = (device != NULL && device->token != NULL) ? get_safe_token(device) : NULL;

	switch(state)
	{
		case CPUINFO_INT_CONTEXT_SIZE:									info->i = sizeof(tms0980_state); break;
		case CPUINFO_INT_INPUT_LINES:									info->i = 1; break;
		case DEVINFO_INT_ENDIANNESS:									info->i = ENDIANNESS_BIG; break;
		case CPUINFO_INT_CLOCK_MULTIPLIER:								info->i = 1; break;
		case CPUINFO_INT_CLOCK_DIVIDER:									info->i = 1; break;
		case CPUINFO_INT_MIN_CYCLES:									info->i = 1; break;
		case CPUINFO_INT_MAX_CYCLES:									info->i = 6; break;

		case DEVINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_PROGRAM:			info->i = 0; break;
		case DEVINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_DATA:			info->i = 8 /* 4 */; break;
		case DEVINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_DATA:			info->i = 0; break;

		case CPUINFO_INT_PREVIOUSPC:									info->i = ( ( cpustate->prev_pa << 7 ) | cpustate->prev_pc ) << 1; break;
		case CPUINFO_INT_PC:											info->i = ( ( cpustate->pa << 7 ) | cpustate->pc ) << 1; break;
		case CPUINFO_INT_SP:											info->i = 0xFFFF; break;
		case CPUINFO_INT_REGISTER + TMS0980_PC:							info->i = cpustate->pc; break;
		case CPUINFO_INT_REGISTER + TMS0980_SR:							info->i = cpustate->sr; break;
		case CPUINFO_INT_REGISTER + TMS0980_PA:							info->i = cpustate->pa; break;
		case CPUINFO_INT_REGISTER + TMS0980_PB:							info->i = cpustate->pb; break;
		case CPUINFO_INT_REGISTER + TMS0980_A:							info->i = cpustate->a; break;
		case CPUINFO_INT_REGISTER + TMS0980_X:							info->i = cpustate->x; break;
		case CPUINFO_INT_REGISTER + TMS0980_Y:							info->i = cpustate->y; break;
		case CPUINFO_INT_REGISTER + TMS0980_STATUS:						info->i = cpustate->status; break;

		case CPUINFO_FCT_SET_INFO:										info->setinfo = CPU_SET_INFO_NAME( tms0980 ); break;
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms0980 ); break;
		case CPUINFO_FCT_RESET:											info->reset = CPU_RESET_NAME( tms0980 ); break;
		case CPUINFO_FCT_EXECUTE:										info->execute = CPU_EXECUTE_NAME( tms0980 ); break;
		case CPUINFO_PTR_INSTRUCTION_COUNTER:							info->icount = &cpustate->icount; break;

		case DEVINFO_STR_FAMILY:										strcpy( info->s, "Texas Instruments TMS0980/TMS1000" ); break;
		case DEVINFO_STR_VERSION:										strcpy( info->s, "0.2" ); break;
		case DEVINFO_STR_SOURCE_FILE:									strcpy( info->s, __FILE__ ); break;
		case DEVINFO_STR_CREDITS:										strcpy( info->s, "Copyright the MESS and MAME teams" ); break;

		case CPUINFO_STR_FLAGS:											strcpy( info->s, "N/A" ); break;

		case CPUINFO_STR_REGISTER + TMS0980_PC:							sprintf( info->s, "PC:%02X", cpustate->pc ); break;
		case CPUINFO_STR_REGISTER + TMS0980_SR:							sprintf( info->s, "SR:%01X", cpustate->sr ); break;
		case CPUINFO_STR_REGISTER + TMS0980_PA:							sprintf( info->s, "PA:%01X", cpustate->pa ); break;
		case CPUINFO_STR_REGISTER + TMS0980_PB:							sprintf( info->s, "PB:%01X", cpustate->pb ); break;
		case CPUINFO_STR_REGISTER + TMS0980_A:							sprintf( info->s, "A:%01X", cpustate->a ); break;
		case CPUINFO_STR_REGISTER + TMS0980_X:							sprintf( info->s, "X:%01X", cpustate->x ); break;
		case CPUINFO_STR_REGISTER + TMS0980_Y:							sprintf( info->s, "Y:%01X", cpustate->y ); break;
		case CPUINFO_STR_REGISTER + TMS0980_STATUS:						sprintf( info->s, "STATUS:%01X", cpustate->status ); break;

	}
}


CPU_GET_INFO( tms0980 )
{
	tms0980_state *cpustate = (device != NULL && device->token != NULL) ? get_safe_token(device) : NULL;

	switch(state)
	{
		case CPUINFO_INT_MIN_INSTRUCTION_BYTES:							info->i = 2; break;
		case CPUINFO_INT_MAX_INSTRUCTION_BYTES:							info->i = 2; break;
		case DEVINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_PROGRAM:			info->i = 16 /* 9 */; break;
		case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_PROGRAM:			info->i = 12; break;
		case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_DATA:			info->i = 7; break;
		case CPUINFO_INT_PREVIOUSPC:									info->i = ( ( cpustate->prev_pa << 7 ) | cpustate->prev_pc ) << 1; break;
		case CPUINFO_INT_PC:											info->i = ( ( cpustate->pa << 7 ) | cpustate->pc ) << 1; break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP_PROGRAM:					info->internal_map16 = ADDRESS_MAP_NAME( tms0980_internal_rom ); break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP_DATA:						info->internal_map8 = ADDRESS_MAP_NAME( tms0980_internal_ram ); break;
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms0980 ); break;
		case CPUINFO_FCT_DISASSEMBLE:									info->disassemble = CPU_DISASSEMBLE_NAME( tms0980 ); break;
		case DEVINFO_STR_NAME:											strcpy( info->s, "TMS0980" ); break;
		default:														CPU_GET_INFO_CALL( tms_generic );
	}
}


CPU_GET_INFO( tms1000 )
{
	tms0980_state *cpustate = (device != NULL && device->token != NULL) ? get_safe_token(device) : NULL;

	switch(state)
	{
		case CPUINFO_INT_MIN_INSTRUCTION_BYTES:							info->i = 1; break;
		case CPUINFO_INT_MAX_INSTRUCTION_BYTES:							info->i = 1; break;
		case DEVINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_PROGRAM:			info->i = 8; break;
		case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_PROGRAM:			info->i = 10; break;
		case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_DATA:			info->i = 6; break;
		case CPUINFO_INT_PREVIOUSPC:									info->i = ( cpustate->prev_pa << 6 ) | tms1000_pc_decode[ cpustate->prev_pc ]; break;
		case CPUINFO_INT_PC:											info->i = ( cpustate->pa << 6 ) | tms1000_pc_decode[ cpustate->pc ]; break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP_PROGRAM:					info->internal_map8 = ADDRESS_MAP_NAME( program_10bit_8 ); break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP_DATA:						info->internal_map8 = ADDRESS_MAP_NAME( data_6bit ); break;
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms1000 ); break;
		case CPUINFO_FCT_DISASSEMBLE:									info->disassemble = CPU_DISASSEMBLE_NAME( tms1000 ); break;
		case DEVINFO_STR_NAME:											strcpy( info->s, "TMS1000" ); break;
		default:														CPU_GET_INFO_CALL( tms_generic );
	}
}


CPU_GET_INFO( tms1070 )
{
	switch(state)
	{
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms1070 ); break;
		case DEVINFO_STR_NAME:											strcpy( info->s, "TMS1070" ); break;
		default:														CPU_GET_INFO_CALL( tms1000 );
	}
}


CPU_GET_INFO( tms1200 )
{
	switch(state)
	{
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms1200 ); break;
		case DEVINFO_STR_NAME:											strcpy( info->s, "TMS1200" ); break;
		default:														CPU_GET_INFO_CALL( tms1000 );
	}
}


CPU_GET_INFO( tms1270 )
{
	switch(state)
	{
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms1270 ); break;
		case DEVINFO_STR_NAME:											strcpy( info->s, "TMS1270" ); break;
		default:														CPU_GET_INFO_CALL( tms1000 );
	}
}



CPU_GET_INFO( tms1100 )
{
	tms0980_state *cpustate = (device != NULL && device->token != NULL) ? get_safe_token(device) : NULL;

	switch(state)
	{
		case DEVINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_PROGRAM:			info->i = 8; break;
		case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_PROGRAM:			info->i = 11; break;
		case DEVINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_DATA:			info->i = 7; break;
		case CPUINFO_INT_PREVIOUSPC:									info->i = ( cpustate->prev_pa << 6 ) | tms1000_pc_decode[ cpustate->prev_pc ]; break;
		case CPUINFO_INT_PC:											info->i = ( cpustate->pa << 6 ) | tms1000_pc_decode[ cpustate->pc ]; break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP_PROGRAM:					info->internal_map8 = ADDRESS_MAP_NAME( program_11bit_8 ); break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP_DATA:						info->internal_map8 = ADDRESS_MAP_NAME( data_7bit ); break;
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms1100 ); break;
		case CPUINFO_FCT_DISASSEMBLE:									info->disassemble = CPU_DISASSEMBLE_NAME( tms1100 ); break;
		case DEVINFO_STR_NAME:											strcpy( info->s, "TMS1100" ); break;
		default:														CPU_GET_INFO_CALL( tms_generic );
	}
}


CPU_GET_INFO( tms1300 )
{
	switch(state)
	{
		case CPUINFO_FCT_INIT:											info->init = CPU_INIT_NAME( tms1300 ); break;
		case DEVINFO_STR_NAME:											strcpy( info->s, "TMS1300" ); break;
		default:														CPU_GET_INFO_CALL( tms1100 );
	}
}