summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/cpu/psx/gte.c
blob: ca770994d67f1ec46477eaab83f00beb49a3b8fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
// license:MAME
// copyright-holders:smf
/*
 * PlayStation Geometry Transformation Engine emulator
 *
 * Copyright 2003-2013 smf
 *
 */

#include "emu.h"
#include "gte.h"

#if 0
void ATTR_PRINTF(2,3) GTELOG( UINT32 pc, const char *a, ...)
{
	va_list va;
	char s_text[ 1024 ];
	va_start( va, a );
	vsprintf( s_text, a, va );
	va_end( va );
	logerror( "%08x: GTE: %s\n", pc, s_text );
}
#else
INLINE void ATTR_PRINTF(2,3) GTELOG( UINT32 pc, const char *a, ...) {}
#endif


#define VX0  ( m_cp2dr[ 0 ].sw.l )
#define VY0  ( m_cp2dr[ 0 ].sw.h )
#define VZ0  ( m_cp2dr[ 1 ].sw.l )
#define VX1  ( m_cp2dr[ 2 ].w.l )
#define VY1  ( m_cp2dr[ 2 ].w.h )
#define VZ1  ( m_cp2dr[ 3 ].w.l )
#define VX2  ( m_cp2dr[ 4 ].w.l )
#define VY2  ( m_cp2dr[ 4 ].w.h )
#define VZ2  ( m_cp2dr[ 5 ].w.l )
#define R    ( m_cp2dr[ 6 ].b.l )
#define G    ( m_cp2dr[ 6 ].b.h )
#define B    ( m_cp2dr[ 6 ].b.h2 )
#define CODE ( m_cp2dr[ 6 ].b.h3 )
#define OTZ  ( m_cp2dr[ 7 ].w.l )
#define IR0  ( m_cp2dr[ 8 ].sw.l )
#define IR1  ( m_cp2dr[ 9 ].sw.l )
#define IR2  ( m_cp2dr[ 10 ].sw.l )
#define IR3  ( m_cp2dr[ 11 ].sw.l )
#define SXY0 ( m_cp2dr[ 12 ].d )
#define SX0  ( m_cp2dr[ 12 ].sw.l )
#define SY0  ( m_cp2dr[ 12 ].sw.h )
#define SXY1 ( m_cp2dr[ 13 ].d )
#define SX1  ( m_cp2dr[ 13 ].sw.l )
#define SY1  ( m_cp2dr[ 13 ].sw.h )
#define SXY2 ( m_cp2dr[ 14 ].d )
#define SX2  ( m_cp2dr[ 14 ].sw.l )
#define SY2  ( m_cp2dr[ 14 ].sw.h )
#define SXYP ( m_cp2dr[ 15 ].d )
#define SXP  ( m_cp2dr[ 15 ].sw.l )
#define SYP  ( m_cp2dr[ 15 ].sw.h )
#define SZ0  ( m_cp2dr[ 16 ].w.l )
#define SZ1  ( m_cp2dr[ 17 ].w.l )
#define SZ2  ( m_cp2dr[ 18 ].w.l )
#define SZ3  ( m_cp2dr[ 19 ].w.l )
#define RGB0 ( m_cp2dr[ 20 ].d )
#define R0   ( m_cp2dr[ 20 ].b.l )
#define G0   ( m_cp2dr[ 20 ].b.h )
#define B0   ( m_cp2dr[ 20 ].b.h2 )
#define CD0  ( m_cp2dr[ 20 ].b.h3 )
#define RGB1 ( m_cp2dr[ 21 ].d )
#define R1   ( m_cp2dr[ 21 ].b.l )
#define G1   ( m_cp2dr[ 21 ].b.h )
#define B1   ( m_cp2dr[ 21 ].b.h2 )
#define CD1  ( m_cp2dr[ 21 ].b.h3 )
#define RGB2 ( m_cp2dr[ 22 ].d )
#define R2   ( m_cp2dr[ 22 ].b.l )
#define G2   ( m_cp2dr[ 22 ].b.h )
#define B2   ( m_cp2dr[ 22 ].b.h2 )
#define CD2  ( m_cp2dr[ 22 ].b.h3 )
#define RES1 ( m_cp2dr[ 23 ].d )
#define MAC0 ( m_cp2dr[ 24 ].sd )
#define MAC1 ( m_cp2dr[ 25 ].sd )
#define MAC2 ( m_cp2dr[ 26 ].sd )
#define MAC3 ( m_cp2dr[ 27 ].sd )
#define IRGB ( m_cp2dr[ 28 ].d )
#define ORGB ( m_cp2dr[ 29 ].d )
#define LZCS ( m_cp2dr[ 30 ].d )
#define LZCR ( m_cp2dr[ 31 ].d )

#define R11 ( m_cp2cr[ 0 ].sw.l )
#define R12 ( m_cp2cr[ 0 ].sw.h )
#define R13 ( m_cp2cr[ 1 ].sw.l )
#define R21 ( m_cp2cr[ 1 ].sw.h )
#define R22 ( m_cp2cr[ 2 ].sw.l )
#define R23 ( m_cp2cr[ 2 ].sw.h )
#define R31 ( m_cp2cr[ 3 ].sw.l )
#define R32 ( m_cp2cr[ 3 ].sw.h )
#define R33 ( m_cp2cr[ 4 ].sw.l )
#define TRX ( m_cp2cr[ 5 ].sd )
#define TRY ( m_cp2cr[ 6 ].sd )
#define TRZ ( m_cp2cr[ 7 ].sd )
#define L11 ( m_cp2cr[ 8 ].sw.l )
#define L12 ( m_cp2cr[ 8 ].sw.h )
#define L13 ( m_cp2cr[ 9 ].sw.l )
#define L21 ( m_cp2cr[ 9 ].sw.h )
#define L22 ( m_cp2cr[ 10 ].sw.l )
#define L23 ( m_cp2cr[ 10 ].sw.h )
#define L31 ( m_cp2cr[ 11 ].sw.l )
#define L32 ( m_cp2cr[ 11 ].sw.h )
#define L33 ( m_cp2cr[ 12 ].sw.l )
#define RBK ( m_cp2cr[ 13 ].sd )
#define GBK ( m_cp2cr[ 14 ].sd )
#define BBK ( m_cp2cr[ 15 ].sd )
#define LR1 ( m_cp2cr[ 16 ].sw.l )
#define LR2 ( m_cp2cr[ 16 ].sw.h )
#define LR3 ( m_cp2cr[ 17 ].sw.l )
#define LG1 ( m_cp2cr[ 17 ].sw.h )
#define LG2 ( m_cp2cr[ 18 ].sw.l )
#define LG3 ( m_cp2cr[ 18 ].sw.h )
#define LB1 ( m_cp2cr[ 19 ].sw.l )
#define LB2 ( m_cp2cr[ 19 ].sw.h )
#define LB3 ( m_cp2cr[ 20 ].sw.l )
#define RFC ( m_cp2cr[ 21 ].sd )
#define GFC ( m_cp2cr[ 22 ].sd )
#define BFC ( m_cp2cr[ 23 ].sd )
#define OFX ( m_cp2cr[ 24 ].sd )
#define OFY ( m_cp2cr[ 25 ].sd )
#define H   ( m_cp2cr[ 26 ].sw.l )
#define DQA ( m_cp2cr[ 27 ].sw.l )
#define DQB ( m_cp2cr[ 28 ].sd )
#define ZSF3 ( m_cp2cr[ 29 ].sw.l )
#define ZSF4 ( m_cp2cr[ 30 ].sw.l )
#define FLAG ( m_cp2cr[ 31 ].d )

#define VX( n ) ( n < 3 ? m_cp2dr[ n << 1 ].sw.l : IR1 )
#define VY( n ) ( n < 3 ? m_cp2dr[ n << 1 ].sw.h : IR2 )
#define VZ( n ) ( n < 3 ? m_cp2dr[ ( n << 1 ) + 1 ].sw.l : IR3 )
#define MX11( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) ].sw.l : -R << 4 )
#define MX12( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) ].sw.h : R << 4 )
#define MX13( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 1 ].sw.l : IR0 )
#define MX21( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 1 ].sw.h : R13 )
#define MX22( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 2 ].sw.l : R13 )
#define MX23( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 2 ].sw.h : R13 )
#define MX31( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 3 ].sw.l : R22 )
#define MX32( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 3 ].sw.h : R22 )
#define MX33( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 4 ].sw.l : R22 )
#define CV1( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 5 ].sd : 0 )
#define CV2( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 6 ].sd : 0 )
#define CV3( n ) ( n < 3 ? m_cp2cr[ ( n << 3 ) + 7 ].sd : 0 )

static UINT32 gte_leadingzerocount( UINT32 lzcs )
{
	UINT32 lzcr = 0;

	if( ( lzcs & 0x80000000 ) == 0 )
	{
		lzcs = ~lzcs;
	}

	while( ( lzcs & 0x80000000 ) != 0 )
	{
		lzcr++;
		lzcs <<= 1;
	}

	return lzcr;
}

INT32 gte::LIM( INT32 value, INT32 max, INT32 min, UINT32 flag )
{
	if( value > max )
	{
		FLAG |= flag;
		return max;
	}
	else if( value < min )
	{
		FLAG |= flag;
		return min;
	}
	return value;
}

UINT32 gte::getcp2dr( UINT32 pc, int reg )
{
	switch( reg )
	{
	case 1:
	case 3:
	case 5:
	case 8:
	case 9:
	case 10:
	case 11:
		m_cp2dr[ reg ].d = (INT32)m_cp2dr[ reg ].sw.l;
		break;

	case 7:
	case 16:
	case 17:
	case 18:
	case 19:
		m_cp2dr[ reg ].d = (UINT32)m_cp2dr[ reg ].w.l;
		break;

	case 15:
		m_cp2dr[ reg ].d = SXY2;
		break;

	case 28:
	case 29:
		m_cp2dr[ reg ].d = LIM( IR1 >> 7, 0x1f, 0, 0 ) | ( LIM( IR2 >> 7, 0x1f, 0, 0 ) << 5 ) | ( LIM( IR3 >> 7, 0x1f, 0, 0 ) << 10 );
		break;
	}

	GTELOG( pc, "get CP2DR%u=%08x", reg, m_cp2dr[ reg ].d );
	return m_cp2dr[ reg ].d;
}

void gte::setcp2dr( UINT32 pc, int reg, UINT32 value )
{
	GTELOG( pc, "set CP2DR%u=%08x", reg, value );

	switch( reg )
	{
	case 15:
		SXY0 = SXY1;
		SXY1 = SXY2;
		SXY2 = value;
		break;

	case 28:
		IR1 = ( value & 0x1f ) << 7;
		IR2 = ( value & 0x3e0 ) << 2;
		IR3 = ( value & 0x7c00 ) >> 3;
		break;

	case 30:
		LZCR = gte_leadingzerocount( value );
		break;

	case 31:
		return;
	}

	m_cp2dr[ reg ].d = value;
}

UINT32 gte::getcp2cr( UINT32 pc, int reg )
{
	GTELOG( pc, "get CP2CR%u=%08x", reg, m_cp2cr[ reg ].d );

	return m_cp2cr[ reg ].d;
}

void gte::setcp2cr( UINT32 pc, int reg, UINT32 value )
{
	GTELOG( pc, "set CP2CR%u=%08x", reg, value );

	switch( reg )
	{
	case 4:
	case 12:
	case 20:
	case 26:
	case 27:
	case 29:
	case 30:
		value = (INT32)(INT16) value;
		break;

	case 31:
		value = value & 0x7ffff000;
		if( ( value & 0x7f87e000 ) != 0 )
		{
			value |= 0x80000000;
		}
		break;
	}

	m_cp2cr[ reg ].d = value;
}

INLINE INT64 gte_shift( INT64 a, int sf )
{
	if( sf > 0 )
	{
		return a >> 12;
	}
	else if( sf < 0 )
	{
		return a << 12;
	}

	return a;
}

INT32 gte::BOUNDS( int44 value, int max_flag, int min_flag )
{
	if( value.positive_overflow() )
	{
		FLAG |= max_flag;
	}

	if( value.negative_overflow() )
	{
		FLAG |= min_flag;
	}

	return gte_shift( value.value(), m_sf );
}

INLINE UINT32 gte_divide( UINT16 numerator, UINT16 denominator )
{
	if( numerator < ( denominator * 2 ) )
	{
		static UINT8 table[] =
		{
			0xff, 0xfd, 0xfb, 0xf9, 0xf7, 0xf5, 0xf3, 0xf1, 0xef, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe3,
			0xe1, 0xdf, 0xdd, 0xdc, 0xda, 0xd8, 0xd6, 0xd5, 0xd3, 0xd1, 0xd0, 0xce, 0xcd, 0xcb, 0xc9, 0xc8,
			0xc6, 0xc5, 0xc3, 0xc1, 0xc0, 0xbe, 0xbd, 0xbb, 0xba, 0xb8, 0xb7, 0xb5, 0xb4, 0xb2, 0xb1, 0xb0,
			0xae, 0xad, 0xab, 0xaa, 0xa9, 0xa7, 0xa6, 0xa4, 0xa3, 0xa2, 0xa0, 0x9f, 0x9e, 0x9c, 0x9b, 0x9a,
			0x99, 0x97, 0x96, 0x95, 0x94, 0x92, 0x91, 0x90, 0x8f, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x87, 0x86,
			0x85, 0x84, 0x83, 0x82, 0x81, 0x7f, 0x7e, 0x7d, 0x7c, 0x7b, 0x7a, 0x79, 0x78, 0x77, 0x75, 0x74,
			0x73, 0x72, 0x71, 0x70, 0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64,
			0x63, 0x62, 0x61, 0x60, 0x5f, 0x5e, 0x5d, 0x5d, 0x5c, 0x5b, 0x5a, 0x59, 0x58, 0x57, 0x56, 0x55,
			0x54, 0x53, 0x53, 0x52, 0x51, 0x50, 0x4f, 0x4e, 0x4d, 0x4d, 0x4c, 0x4b, 0x4a, 0x49, 0x48, 0x48,
			0x47, 0x46, 0x45, 0x44, 0x43, 0x43, 0x42, 0x41, 0x40, 0x3f, 0x3f, 0x3e, 0x3d, 0x3c, 0x3c, 0x3b,
			0x3a, 0x39, 0x39, 0x38, 0x37, 0x36, 0x36, 0x35, 0x34, 0x33, 0x33, 0x32, 0x31, 0x31, 0x30, 0x2f,
			0x2e, 0x2e, 0x2d, 0x2c, 0x2c, 0x2b, 0x2a, 0x2a, 0x29, 0x28, 0x28, 0x27, 0x26, 0x26, 0x25, 0x24,
			0x24, 0x23, 0x22, 0x22, 0x21, 0x20, 0x20, 0x1f, 0x1e, 0x1e, 0x1d, 0x1d, 0x1c, 0x1b, 0x1b, 0x1a,
			0x19, 0x19, 0x18, 0x18, 0x17, 0x16, 0x16, 0x15, 0x15, 0x14, 0x14, 0x13, 0x12, 0x12, 0x11, 0x11,
			0x10, 0x0f, 0x0f, 0x0e, 0x0e, 0x0d, 0x0d, 0x0c, 0x0c, 0x0b, 0x0a, 0x0a, 0x09, 0x09, 0x08, 0x08,
			0x07, 0x07, 0x06, 0x06, 0x05, 0x05, 0x04, 0x04, 0x03, 0x03, 0x02, 0x02, 0x01, 0x01, 0x00, 0x00,
			0x00
		};

		int shift = gte_leadingzerocount( denominator ) - 16;

		int r1 = ( denominator << shift ) & 0x7fff;
		int r2 = table[ ( ( r1 + 0x40 ) >> 7 ) ] + 0x101;
		int r3 = ( ( 0x80 - ( r2 * ( r1 + 0x8000 ) ) ) >> 8 ) & 0x1ffff;
		UINT32 reciprocal = ( ( r2 * r3 ) + 0x80 ) >> 8;

		return (UINT32)( ( ( (UINT64) reciprocal * ( numerator << shift ) ) + 0x8000 ) >> 16 );
	}

	return 0xffffffff;
}

/* Setting bits 12 & 19-22 in FLAG does not set bit 31 */

INT32 gte::A1( int44 a ) { m_mac1 = a.value(); return BOUNDS( a, ( 1 << 31 ) | ( 1 << 30 ), ( 1 << 31 ) | ( 1 << 27 ) ); }
INT32 gte::A2( int44 a ) { m_mac2 = a.value(); return BOUNDS( a, ( 1 << 31 ) | ( 1 << 29 ), ( 1 << 31 ) | ( 1 << 26 ) ); }
INT32 gte::A3( int44 a ) { m_mac3 = a.value(); return BOUNDS( a, ( 1 << 31 ) | ( 1 << 28 ), ( 1 << 31 ) | ( 1 << 25 ) ); }
INT32 gte::Lm_B1( INT32 a, int lm ) { return LIM( a, 0x7fff, -0x8000 * !lm, ( 1 << 31 ) | ( 1 << 24 ) ); }
INT32 gte::Lm_B2( INT32 a, int lm ) { return LIM( a, 0x7fff, -0x8000 * !lm, ( 1 << 31 ) | ( 1 << 23 ) ); }
INT32 gte::Lm_B3( INT32 a, int lm ) { return LIM( a, 0x7fff, -0x8000 * !lm, ( 1 << 22 ) ); }

INT32 gte::Lm_B3_sf( INT64 value, int sf, int lm )
{
	INT32 value_sf = gte_shift( value, sf );
	INT32 value_12 = gte_shift( value, 1 );
	int max = 0x7fff;
	int min = 0;
	if( lm == 0 )
	{
		min = -0x8000;
	}

	if( value_12 < -0x8000 || value_12 > 0x7fff )
	{
		FLAG |= ( 1 << 22 );
	}

	if( value_sf > max )
	{
		return max;
	}
	else if( value_sf < min )
	{
		return min;
	}

	return value_sf;
}

INT32 gte::Lm_C1( INT32 a ) { return LIM( a, 0x00ff, 0x0000, ( 1 << 21 ) ); }
INT32 gte::Lm_C2( INT32 a ) { return LIM( a, 0x00ff, 0x0000, ( 1 << 20 ) ); }
INT32 gte::Lm_C3( INT32 a ) { return LIM( a, 0x00ff, 0x0000, ( 1 << 19 ) ); }
INT32 gte::Lm_D( INT64 a, int sf ) { return LIM( gte_shift( a, sf ), 0xffff, 0x0000, ( 1 << 31 ) | ( 1 << 18 ) ); }

UINT32 gte::Lm_E( UINT32 result )
{
	if( result == 0xffffffff )
	{
		FLAG |= ( 1 << 31 ) | ( 1 << 17 );
		return 0x1ffff;
	}

	if( result > 0x1ffff )
	{
		return 0x1ffff;
	}

	return result;
}

INT64 gte::F( INT64 a )
{
	m_mac0 = a;

	if( a > 0x7fffffff )
	{
		FLAG |= ( 1 << 31 ) | ( 1 << 16 );
	}

	if( a < (INT32) -0x80000000 )
	{
		FLAG |= ( 1 << 31 ) | ( 1 << 15 );
	}

	return a;
}

INT32 gte::Lm_G1( INT64 a )
{
	if( a > 0x3ff )
	{
		FLAG |= ( 1 << 31 ) | ( 1 << 14 );
		return 0x3ff;
	}

	if( a < -0x400 )
	{
		FLAG |= ( 1 << 31 ) | ( 1 << 14 );
		return -0x400;
	}

	return a;
}

INT32 gte::Lm_G2( INT64 a )
{
	if( a > 0x3ff )
	{
		FLAG |= ( 1 << 31 ) | ( 1 << 13 );
		return 0x3ff;
	}

	if( a < -0x400 )
	{
		FLAG |= ( 1 << 31 ) | ( 1 << 13 );
		return -0x400;
	}

	return a;
}

INT32 gte::Lm_H( INT64 value, int sf )
{
	INT64 value_sf = gte_shift( value, sf );
	INT32 value_12 = gte_shift( value, 1 );
	int max = 0x1000;
	int min = 0x0000;

	if( value_sf < min || value_sf > max )
	{
		FLAG |= ( 1 << 12 );
	}

	if( value_12 > max )
	{
		return max;
	}

	if( value_12 < min )
	{
		return min;
	}

	return value_12;
}

int gte::docop2( UINT32 pc, int gteop )
{
	int v;
	int lm;
	int cv;
	int mx;
	INT32 h_over_sz3 = 0;

	lm = GTE_LM( gteop );
	m_sf = GTE_SF( gteop );

	FLAG = 0;

	switch( GTE_FUNCT( gteop ) )
	{
	case 0x00: // drop through to RTPS
	case 0x01:
		GTELOG( pc, "%08x RTPS", gteop );

		MAC1 = A1( int44( (INT64) TRX << 12 ) + ( R11 * VX0 ) + ( R12 * VY0 ) + ( R13 * VZ0 ) );
		MAC2 = A2( int44( (INT64) TRY << 12 ) + ( R21 * VX0 ) + ( R22 * VY0 ) + ( R23 * VZ0 ) );
		MAC3 = A3( int44( (INT64) TRZ << 12 ) + ( R31 * VX0 ) + ( R32 * VY0 ) + ( R33 * VZ0 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3_sf( m_mac3, m_sf, lm );
		SZ0 = SZ1;
		SZ1 = SZ2;
		SZ2 = SZ3;
		SZ3 = Lm_D( m_mac3, 1 );
		h_over_sz3 = Lm_E( gte_divide( H, SZ3 ) );
		SXY0 = SXY1;
		SXY1 = SXY2;
		SX2 = Lm_G1( F( (INT64) OFX + ( (INT64) IR1 * h_over_sz3 ) ) >> 16 );
		SY2 = Lm_G2( F( (INT64) OFY + ( (INT64) IR2 * h_over_sz3 ) ) >> 16 );
		MAC0 = F( (INT64) DQB + ( (INT64) DQA * h_over_sz3 ) );
		IR0 = Lm_H( m_mac0, 1 );
		return 1;

	case 0x06:
		GTELOG( pc, "%08x NCLIP", gteop );

		MAC0 = F( (INT64) ( SX0 * SY1 ) + ( SX1 * SY2 ) + ( SX2 * SY0 ) - ( SX0 * SY2 ) - ( SX1 * SY0 ) - ( SX2 * SY1 ) );
		return 1;

	case 0x0c:
		GTELOG( pc, "%08x OP", gteop );

		MAC1 = A1( (INT64) ( R22 * IR3 ) - ( R33 * IR2 ) );
		MAC2 = A2( (INT64) ( R33 * IR1 ) - ( R11 * IR3 ) );
		MAC3 = A3( (INT64) ( R11 * IR2 ) - ( R22 * IR1 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		return 1;

	case 0x10:
		GTELOG( pc, "%08x DPCS", gteop );

		MAC1 = A1( ( R << 16 ) + ( IR0 * Lm_B1( A1( ( (INT64) RFC << 12 ) - ( R << 16 ) ), 0 ) ) );
		MAC2 = A2( ( G << 16 ) + ( IR0 * Lm_B2( A2( ( (INT64) GFC << 12 ) - ( G << 16 ) ), 0 ) ) );
		MAC3 = A3( ( B << 16 ) + ( IR0 * Lm_B3( A3( ( (INT64) BFC << 12 ) - ( B << 16 ) ), 0 ) ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x11:
		GTELOG( pc, "%08x INTPL", gteop );

		MAC1 = A1( ( IR1 << 12 ) + ( IR0 * Lm_B1( A1( ( (INT64) RFC << 12 ) - ( IR1 << 12 ) ), 0 ) ) );
		MAC2 = A2( ( IR2 << 12 ) + ( IR0 * Lm_B2( A2( ( (INT64) GFC << 12 ) - ( IR2 << 12 ) ), 0 ) ) );
		MAC3 = A3( ( IR3 << 12 ) + ( IR0 * Lm_B3( A3( ( (INT64) BFC << 12 ) - ( IR3 << 12 ) ), 0 ) ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x12:
		GTELOG( pc, "%08x MVMVA", gteop );

		mx = GTE_MX( gteop );
		v = GTE_V( gteop );
		cv = GTE_CV( gteop );

		switch( cv )
		{
		case 2:
			MAC1 = A1( (INT64) ( MX12( mx ) * VY( v ) ) + ( MX13( mx ) * VZ( v ) ) );
			MAC2 = A2( (INT64) ( MX22( mx ) * VY( v ) ) + ( MX23( mx ) * VZ( v ) ) );
			MAC3 = A3( (INT64) ( MX32( mx ) * VY( v ) ) + ( MX33( mx ) * VZ( v ) ) );
			Lm_B1( A1( ( (INT64) CV1( cv ) << 12 ) + ( MX11( mx ) * VX( v ) ) ), 0 );
			Lm_B2( A2( ( (INT64) CV2( cv ) << 12 ) + ( MX21( mx ) * VX( v ) ) ), 0 );
			Lm_B3( A3( ( (INT64) CV3( cv ) << 12 ) + ( MX31( mx ) * VX( v ) ) ), 0 );
			break;

		default:
			MAC1 = A1( int44( (INT64) CV1( cv ) << 12 ) + ( MX11( mx ) * VX( v ) ) + ( MX12( mx ) * VY( v ) ) + ( MX13( mx ) * VZ( v ) ) );
			MAC2 = A2( int44( (INT64) CV2( cv ) << 12 ) + ( MX21( mx ) * VX( v ) ) + ( MX22( mx ) * VY( v ) ) + ( MX23( mx ) * VZ( v ) ) );
			MAC3 = A3( int44( (INT64) CV3( cv ) << 12 ) + ( MX31( mx ) * VX( v ) ) + ( MX32( mx ) * VY( v ) ) + ( MX33( mx ) * VZ( v ) ) );
			break;
		}

		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		return 1;

	case 0x13:
		GTELOG( pc, "%08x NCDS", gteop );

		MAC1 = A1( (INT64) ( L11 * VX0 ) + ( L12 * VY0 ) + ( L13 * VZ0 ) );
		MAC2 = A2( (INT64) ( L21 * VX0 ) + ( L22 * VY0 ) + ( L23 * VZ0 ) );
		MAC3 = A3( (INT64) ( L31 * VX0 ) + ( L32 * VY0 ) + ( L33 * VZ0 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		MAC1 = A1( int44( (INT64) RBK << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
		MAC2 = A2( int44( (INT64) GBK << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
		MAC3 = A3( int44( (INT64) BBK << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		MAC1 = A1( ( ( R << 4 ) * IR1 ) + ( IR0 * Lm_B1( A1( ( (INT64) RFC << 12 ) - ( ( R << 4 ) * IR1 ) ), 0 ) ) );
		MAC2 = A2( ( ( G << 4 ) * IR2 ) + ( IR0 * Lm_B2( A2( ( (INT64) GFC << 12 ) - ( ( G << 4 ) * IR2 ) ), 0 ) ) );
		MAC3 = A3( ( ( B << 4 ) * IR3 ) + ( IR0 * Lm_B3( A3( ( (INT64) BFC << 12 ) - ( ( B << 4 ) * IR3 ) ), 0 ) ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x14:
		GTELOG( pc, "%08x CDP", gteop );

		MAC1 = A1( int44( (INT64) RBK << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
		MAC2 = A2( int44( (INT64) GBK << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
		MAC3 = A3( int44( (INT64) BBK << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		MAC1 = A1( ( ( R << 4 ) * IR1 ) + ( IR0 * Lm_B1( A1( ( (INT64) RFC << 12 ) - ( ( R << 4 ) * IR1 ) ), 0 ) ) );
		MAC2 = A2( ( ( G << 4 ) * IR2 ) + ( IR0 * Lm_B2( A2( ( (INT64) GFC << 12 ) - ( ( G << 4 ) * IR2 ) ), 0 ) ) );
		MAC3 = A3( ( ( B << 4 ) * IR3 ) + ( IR0 * Lm_B3( A3( ( (INT64) BFC << 12 ) - ( ( B << 4 ) * IR3 ) ), 0 ) ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x16:
		GTELOG( pc, "%08x NCDT", gteop );

		for( v = 0; v < 3; v++ )
		{
			MAC1 = A1( (INT64) ( L11 * VX( v ) ) + ( L12 * VY( v ) ) + ( L13 * VZ( v ) ) );
			MAC2 = A2( (INT64) ( L21 * VX( v ) ) + ( L22 * VY( v ) ) + ( L23 * VZ( v ) ) );
			MAC3 = A3( (INT64) ( L31 * VX( v ) ) + ( L32 * VY( v ) ) + ( L33 * VZ( v ) ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			MAC1 = A1( int44( (INT64) RBK << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
			MAC2 = A2( int44( (INT64) GBK << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
			MAC3 = A3( int44( (INT64) BBK << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			MAC1 = A1( ( ( R << 4 ) * IR1 ) + ( IR0 * Lm_B1( A1( ( (INT64) RFC << 12 ) - ( ( R << 4 ) * IR1 ) ), 0 ) ) );
			MAC2 = A2( ( ( G << 4 ) * IR2 ) + ( IR0 * Lm_B2( A2( ( (INT64) GFC << 12 ) - ( ( G << 4 ) * IR2 ) ), 0 ) ) );
			MAC3 = A3( ( ( B << 4 ) * IR3 ) + ( IR0 * Lm_B3( A3( ( (INT64) BFC << 12 ) - ( ( B << 4 ) * IR3 ) ), 0 ) ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			RGB0 = RGB1;
			RGB1 = RGB2;
			CD2 = CODE;
			R2 = Lm_C1( MAC1 >> 4 );
			G2 = Lm_C2( MAC2 >> 4 );
			B2 = Lm_C3( MAC3 >> 4 );
		}
		return 1;

	case 0x1b:
		GTELOG( pc, "%08x NCCS", gteop );

		MAC1 = A1( (INT64) ( L11 * VX0 ) + ( L12 * VY0 ) + ( L13 * VZ0 ) );
		MAC2 = A2( (INT64) ( L21 * VX0 ) + ( L22 * VY0 ) + ( L23 * VZ0 ) );
		MAC3 = A3( (INT64) ( L31 * VX0 ) + ( L32 * VY0 ) + ( L33 * VZ0 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		MAC1 = A1( int44( (INT64) RBK << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
		MAC2 = A2( int44( (INT64) GBK << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
		MAC3 = A3( int44( (INT64) BBK << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		MAC1 = A1( ( R << 4 ) * IR1 );
		MAC2 = A2( ( G << 4 ) * IR2 );
		MAC3 = A3( ( B << 4 ) * IR3 );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x1c:
		GTELOG( pc, "%08x CC", gteop );

		MAC1 = A1( int44( ( (INT64) RBK ) << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
		MAC2 = A2( int44( ( (INT64) GBK ) << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
		MAC3 = A3( int44( ( (INT64) BBK ) << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		MAC1 = A1( ( R << 4 ) * IR1 );
		MAC2 = A2( ( G << 4 ) * IR2 );
		MAC3 = A3( ( B << 4 ) * IR3 );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x1e:
		GTELOG( pc, "%08x NCS", gteop );

		MAC1 = A1( (INT64) ( L11 * VX0 ) + ( L12 * VY0 ) + ( L13 * VZ0 ) );
		MAC2 = A2( (INT64) ( L21 * VX0 ) + ( L22 * VY0 ) + ( L23 * VZ0 ) );
		MAC3 = A3( (INT64) ( L31 * VX0 ) + ( L32 * VY0 ) + ( L33 * VZ0 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		MAC1 = A1( int44( (INT64) RBK << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
		MAC2 = A2( int44( (INT64) GBK << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
		MAC3 = A3( int44( (INT64) BBK << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x20:
		GTELOG( pc, "%08x NCT", gteop );

		for( v = 0; v < 3; v++ )
		{
			MAC1 = A1( (INT64) ( L11 * VX( v ) ) + ( L12 * VY( v ) ) + ( L13 * VZ( v ) ) );
			MAC2 = A2( (INT64) ( L21 * VX( v ) ) + ( L22 * VY( v ) ) + ( L23 * VZ( v ) ) );
			MAC3 = A3( (INT64) ( L31 * VX( v ) ) + ( L32 * VY( v ) ) + ( L33 * VZ( v ) ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			MAC1 = A1( int44( (INT64) RBK << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
			MAC2 = A2( int44( (INT64) GBK << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
			MAC3 = A3( int44( (INT64) BBK << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			RGB0 = RGB1;
			RGB1 = RGB2;
			CD2 = CODE;
			R2 = Lm_C1( MAC1 >> 4 );
			G2 = Lm_C2( MAC2 >> 4 );
			B2 = Lm_C3( MAC3 >> 4 );
		}
		return 1;

	case 0x28:
		GTELOG( pc, "%08x SQR", gteop );

		MAC1 = A1( IR1 * IR1 );
		MAC2 = A2( IR2 * IR2 );
		MAC3 = A3( IR3 * IR3 );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		return 1;

	case 0x1a: // end of NCDT
	case 0x29:
		GTELOG( pc, "%08x DPCL", gteop );

		MAC1 = A1( ( ( R << 4 ) * IR1 ) + ( IR0 * Lm_B1( A1( ( (INT64) RFC << 12 ) - ( ( R << 4 ) * IR1 ) ), 0 ) ) );
		MAC2 = A2( ( ( G << 4 ) * IR2 ) + ( IR0 * Lm_B2( A2( ( (INT64) GFC << 12 ) - ( ( G << 4 ) * IR2 ) ), 0 ) ) );
		MAC3 = A3( ( ( B << 4 ) * IR3 ) + ( IR0 * Lm_B3( A3( ( (INT64) BFC << 12 ) - ( ( B << 4 ) * IR3 ) ), 0 ) ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x2a:
		GTELOG( pc, "%08x DPCT", gteop );

		for( v = 0; v < 3; v++ )
		{
			MAC1 = A1( ( R0 << 16 ) + ( IR0 * Lm_B1( A1( ( (INT64) RFC << 12 ) - ( R0 << 16 ) ), 0 ) ) );
			MAC2 = A2( ( G0 << 16 ) + ( IR0 * Lm_B2( A2( ( (INT64) GFC << 12 ) - ( G0 << 16 ) ), 0 ) ) );
			MAC3 = A3( ( B0 << 16 ) + ( IR0 * Lm_B3( A3( ( (INT64) BFC << 12 ) - ( B0 << 16 ) ), 0 ) ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			RGB0 = RGB1;
			RGB1 = RGB2;
			CD2 = CODE;
			R2 = Lm_C1( MAC1 >> 4 );
			G2 = Lm_C2( MAC2 >> 4 );
			B2 = Lm_C3( MAC3 >> 4 );
		}
		return 1;

	case 0x2d:
		GTELOG( pc, "%08x AVSZ3", gteop );

		MAC0 = F( (INT64) ( ZSF3 * SZ1 ) + ( ZSF3 * SZ2 ) + ( ZSF3 * SZ3 ) );
		OTZ = Lm_D( m_mac0, 1 );
		return 1;

	case 0x2e:
		GTELOG( pc, "%08x AVSZ4", gteop );

		MAC0 = F( (INT64) ( ZSF4 * SZ0 ) + ( ZSF4 * SZ1 ) + ( ZSF4 * SZ2 ) + ( ZSF4 * SZ3 ) );
		OTZ = Lm_D( m_mac0, 1 );
		return 1;

	case 0x30:
		GTELOG( pc, "%08x RTPT", gteop );

		for( v = 0; v < 3; v++ )
		{
			MAC1 = A1( int44( (INT64) TRX << 12 ) + ( R11 * VX( v ) ) + ( R12 * VY( v ) ) + ( R13 * VZ( v ) ) );
			MAC2 = A2( int44( (INT64) TRY << 12 ) + ( R21 * VX( v ) ) + ( R22 * VY( v ) ) + ( R23 * VZ( v ) ) );
			MAC3 = A3( int44( (INT64) TRZ << 12 ) + ( R31 * VX( v ) ) + ( R32 * VY( v ) ) + ( R33 * VZ( v ) ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3_sf( m_mac3, m_sf, lm );
			SZ0 = SZ1;
			SZ1 = SZ2;
			SZ2 = SZ3;
			SZ3 = Lm_D( m_mac3, 1 );
			h_over_sz3 = Lm_E( gte_divide( H, SZ3 ) );
			SXY0 = SXY1;
			SXY1 = SXY2;
			SX2 = Lm_G1( F( (INT64) OFX + ( (INT64) IR1 * h_over_sz3 ) ) >> 16 );
			SY2 = Lm_G2( F( (INT64) OFY + ( (INT64) IR2 * h_over_sz3 ) ) >> 16 );
		}

		MAC0 = F( (INT64) DQB + ( (INT64) DQA * h_over_sz3 ) );
		IR0 = Lm_H( m_mac0, 1 );
		return 1;

	case 0x3d:
		GTELOG( pc, "%08x GPF", gteop );

		MAC1 = A1( IR0 * IR1 );
		MAC2 = A2( IR0 * IR2 );
		MAC3 = A3( IR0 * IR3 );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x3e:
		GTELOG( pc, "%08x GPL", gteop );

		MAC1 = A1( gte_shift( MAC1, -m_sf ) + ( IR0 * IR1 ) );
		MAC2 = A2( gte_shift( MAC2, -m_sf ) + ( IR0 * IR2 ) );
		MAC3 = A3( gte_shift( MAC3, -m_sf ) + ( IR0 * IR3 ) );
		IR1 = Lm_B1( MAC1, lm );
		IR2 = Lm_B2( MAC2, lm );
		IR3 = Lm_B3( MAC3, lm );
		RGB0 = RGB1;
		RGB1 = RGB2;
		CD2 = CODE;
		R2 = Lm_C1( MAC1 >> 4 );
		G2 = Lm_C2( MAC2 >> 4 );
		B2 = Lm_C3( MAC3 >> 4 );
		return 1;

	case 0x3f:
		GTELOG( pc, "%08x NCCT", gteop );

		for( v = 0; v < 3; v++ )
		{
			MAC1 = A1( (INT64) ( L11 * VX( v ) ) + ( L12 * VY( v ) ) + ( L13 * VZ( v ) ) );
			MAC2 = A2( (INT64) ( L21 * VX( v ) ) + ( L22 * VY( v ) ) + ( L23 * VZ( v ) ) );
			MAC3 = A3( (INT64) ( L31 * VX( v ) ) + ( L32 * VY( v ) ) + ( L33 * VZ( v ) ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			MAC1 = A1( int44( (INT64) RBK << 12 ) + ( LR1 * IR1 ) + ( LR2 * IR2 ) + ( LR3 * IR3 ) );
			MAC2 = A2( int44( (INT64) GBK << 12 ) + ( LG1 * IR1 ) + ( LG2 * IR2 ) + ( LG3 * IR3 ) );
			MAC3 = A3( int44( (INT64) BBK << 12 ) + ( LB1 * IR1 ) + ( LB2 * IR2 ) + ( LB3 * IR3 ) );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			MAC1 = A1( ( R << 4 ) * IR1 );
			MAC2 = A2( ( G << 4 ) * IR2 );
			MAC3 = A3( ( B << 4 ) * IR3 );
			IR1 = Lm_B1( MAC1, lm );
			IR2 = Lm_B2( MAC2, lm );
			IR3 = Lm_B3( MAC3, lm );
			RGB0 = RGB1;
			RGB1 = RGB2;
			CD2 = CODE;
			R2 = Lm_C1( MAC1 >> 4 );
			G2 = Lm_C2( MAC2 >> 4 );
			B2 = Lm_C3( MAC3 >> 4 );
		}
		return 1;
	}

	popmessage( "unknown GTE op %08x", gteop );
	logerror( "%08x: unknown GTE op %08x\n", pc, gteop );

	return 0;
}