summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/cpu/mn10200/mn10200.h
blob: fefeb4e29b90909ccbd32d6d9c9c23bc5305ca63 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
    Panasonic MN10200 emulator

    Written by Olivier Galibert
    MAME conversion by R. Belmont

*/

#pragma once

#ifndef MN10200_H
#define MN10200_H

enum
{
	MN10200_PC = 0,
	MN10200_PSW,
	MN10200_MDR,
	MN10200_D0,
	MN10200_D1,
	MN10200_D2,
	MN10200_D3,
	MN10200_A0,
	MN10200_A1,
	MN10200_A2,
	MN10200_A3,
	MN10200_NMICR,
	MN10200_IAGR
};

enum
{
	MN10200_PORT0 = 0,
	MN10200_PORT1,
	MN10200_PORT2,
	MN10200_PORT3,
	MN10200_PORT4
};

enum
{
	MN10200_IRQ0 = 0,
	MN10200_IRQ1,
	MN10200_IRQ2,
	MN10200_IRQ3,

	MN10200_MAX_EXT_IRQ
};


extern const device_type MN1020012A;


#define MN10200_NUM_PRESCALERS (2)
#define MN10200_NUM_TIMERS_8BIT (10)
#define MN10200_NUM_IRQ_GROUPS (31)


class mn10200_device : public cpu_device
{
public:
	// construction/destruction
	mn10200_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock);

	DECLARE_READ8_MEMBER(io_control_r);
	DECLARE_WRITE8_MEMBER(io_control_w);

protected:
	// device-level overrides
	virtual void device_start();
	virtual void device_reset();

	// device_execute_interface overrides
	virtual UINT64 execute_clocks_to_cycles(UINT64 clocks) const { return (clocks + 2 - 1) / 2; } // internal /2 divider
	virtual UINT64 execute_cycles_to_clocks(UINT64 cycles) const { return (cycles * 2); } // internal /2 divider
	virtual UINT32 execute_min_cycles() const { return 1; }
	virtual UINT32 execute_max_cycles() const { return 13; }
	virtual UINT32 execute_input_lines() const { return 4; }
	virtual void execute_run();
	virtual void execute_set_input(int inputnum, int state);

	// device_memory_interface overrides
	virtual const address_space_config *memory_space_config(address_spacenum spacenum = AS_0) const
	{
		return (spacenum == AS_PROGRAM) ? &m_program_config : ( (spacenum == AS_IO) ? &m_io_config : NULL );
	}

	// device_state_interface overrides
	void state_string_export(const device_state_entry &entry, astring &string);

	// device_disasm_interface overrides
	virtual UINT32 disasm_min_opcode_bytes() const { return 1; }
	virtual UINT32 disasm_max_opcode_bytes() const { return 7; }
	virtual offs_t disasm_disassemble(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, UINT32 options);

private:
	address_space_config m_program_config;
	address_space_config m_io_config;

	address_space *m_program;
	address_space *m_io;

	int m_cycles;

	// The UINT32s are really UINT24
	UINT32 m_pc;
	UINT32 m_d[4];
	UINT32 m_a[4];
	UINT16 m_psw;
	UINT16 m_mdr;

	// interrupts
	UINT8 m_icrl[MN10200_NUM_IRQ_GROUPS];
	UINT8 m_icrh[MN10200_NUM_IRQ_GROUPS];

	UINT8 m_nmicr;
	UINT8 m_iagr;
	UINT8 m_extmdl;
	UINT8 m_extmdh;
	bool m_possible_irq;

	// timers
	attotime m_sysclock_base;
	emu_timer *m_timer_timers[MN10200_NUM_TIMERS_8BIT];

	struct
	{
		UINT8 mode;
		UINT8 base;
		UINT8 cur;
	} m_simple_timer[MN10200_NUM_TIMERS_8BIT];

	struct
	{
		UINT8 mode;
		UINT8 base;
		UINT8 cur;
	} m_prescaler[MN10200_NUM_PRESCALERS];

	// dma
	struct
	{
		UINT32 adr;
		UINT32 count;
		UINT16 iadr;
		UINT8 ctrll;
		UINT8 ctrlh;
		UINT8 irq;
	} m_dma[8];

	// serial
	struct
	{
		UINT8 ctrll;
		UINT8 ctrlh;
		UINT8 buf;
	} m_serial[2];

	// ports
	UINT8 m_pplul;
	UINT8 m_ppluh;
	UINT8 m_p3md;
	UINT8 m_p4;

	struct
	{
		UINT8 out;
		UINT8 dir;
	} m_port[4];

	// internal read/write
	inline UINT8 read_arg8(UINT32 address) { return m_program->read_byte(address); }
	inline UINT16 read_arg16(UINT32 address) { return m_program->read_byte(address) | m_program->read_byte(address + 1) << 8; }
	inline UINT32 read_arg24(UINT32 address) { return m_program->read_byte(address) | m_program->read_byte(address + 1) << 8 | m_program->read_byte(address + 2) << 16; }

	inline UINT8 read_mem8(UINT32 address) { return m_program->read_byte(address); }
	inline UINT16 read_mem16(UINT32 address) { return m_program->read_word(address & ~1); }
	inline UINT32 read_mem24(UINT32 address) { return m_program->read_word(address & ~1) | m_program->read_byte((address & ~1) + 2) << 16; }

	inline void write_mem8(UINT32 address, UINT8 data) { m_program->write_byte(address, data); }
	inline void write_mem16(UINT32 address, UINT16 data) { m_program->write_word(address & ~1, data); }
	inline void write_mem24(UINT32 address, UINT32 data) { m_program->write_word(address & ~1, data); m_program->write_byte((address & ~1) + 2, data >> 16); }

	inline void change_pc(UINT32 pc) { m_pc = pc & 0xffffff; }

	void take_irq(int level, int group);
	void check_irq();
	void check_ext_irq();
	void refresh_timer(int tmr);
	void refresh_all_timers();
	int timer_tick_simple(int tmr);
	TIMER_CALLBACK_MEMBER( simple_timer_cb );
	void illegal(UINT8 prefix, UINT8 op);
	UINT32 do_add(UINT32 a, UINT32 b, UINT32 c);
	UINT32 do_sub(UINT32 a, UINT32 b, UINT32 c);
	void test_nz16(UINT16 v);
	void do_jsr(UINT32 to, UINT32 ret);
	void do_branch(bool state);
};


#endif