summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/cpu/m68000/m68kfpu.c
blob: d464bd0f242e03dd95af781209e292c03ef6ac45 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
#include <math.h>

#define FPCC_N			0x08000000
#define FPCC_Z			0x04000000
#define FPCC_I			0x02000000
#define FPCC_NAN		0x01000000

#define DOUBLE_INFINITY					U64(0x7ff0000000000000)
#define DOUBLE_EXPONENT					U64(0x7ff0000000000000)
#define DOUBLE_MANTISSA					U64(0x000fffffffffffff)

extern flag floatx80_is_nan( floatx80 a );

INLINE double fx80_to_double(floatx80 fx)
{
	UINT64 d;
	double *foo;

	foo = (double *)&d;

	d = floatx80_to_float64(fx);

	return *foo;
}

INLINE floatx80 double_to_fx80(double in)
{
	UINT64 *d;

	d = (UINT64 *)&in;

	return float64_to_floatx80(*d);
}

INLINE void SET_CONDITION_CODES(m68ki_cpu_core *m68k, floatx80 reg)
{
	UINT64 *regi;

	regi = (UINT64 *)&reg;

	REG_FPSR &= ~(FPCC_N|FPCC_Z|FPCC_I|FPCC_NAN);

	// sign flag
	if (reg.high & 0x8000)
	{
		REG_FPSR |= FPCC_N;
	}

	// zero flag
	if (((reg.high & 0x7fff) == 0) && ((reg.low<<1) == 0))
	{
		REG_FPSR |= FPCC_Z;
	}

	// infinity flag
	if (((reg.high & 0x7fff) == 0x7fff) && ((reg.low<<1) == 0))
	{
		REG_FPSR |= FPCC_I;
	}

	// NaN flag
	if (floatx80_is_nan(reg))
	{
		REG_FPSR |= FPCC_NAN;
	}
}

INLINE int TEST_CONDITION(m68ki_cpu_core *m68k, int condition)
{
	int n = (REG_FPSR & FPCC_N) != 0;
	int z = (REG_FPSR & FPCC_Z) != 0;
	int nan = (REG_FPSR & FPCC_NAN) != 0;
	int r = 0;
	switch (condition)
	{
		case 0x10:
		case 0x00:		return 0;					// False

		case 0x11:
		case 0x01:		return (z);					// Equal

		case 0x12:
		case 0x02:		return (!(nan || z || n));			// Greater Than

		case 0x13:
		case 0x03:		return (z || !(nan || n));			// Greater or Equal

		case 0x14:
		case 0x04:		return (n && !(nan || z));			// Less Than

		case 0x15:
		case 0x05:		return (z || (n && !nan));			// Less Than or Equal

		case 0x1a:
		case 0x0a:		return (nan || !(n || z));			// Not Less Than or Equal

		case 0x1b:
		case 0x0b:		return (nan || z || !n);			// Not Less Than

		case 0x1c:
		case 0x0c:		return (nan || (n && !z));			// Not Greater or Equal Than

		case 0x1d:
		case 0x0d:		return (nan || z || n);				// Not Greater Than

		case 0x1e:
		case 0x0e:		return (!z);					// Not Equal

		case 0x1f:
		case 0x0f:		return 1;					// True

		default:		fatalerror("M68kFPU: test_condition: unhandled condition %02X\n", condition);
	}

	return r;
}

static UINT8 READ_EA_8(m68ki_cpu_core *m68k, int ea)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 0:		// Dn
		{
			return REG_D[reg];
		}
		case 2: 	// (An)
		{
			UINT32 ea = REG_A[reg];
			return m68ki_read_8(m68k, ea);
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_8(m68k);
			return m68ki_read_8(m68k, ea);
		}
		case 6:		// (An) + (Xn) + d8
		{
			UINT32 ea = EA_AY_IX_8(m68k);
			return m68ki_read_8(m68k, ea);
		}
		case 7:
		{
			switch (reg)
			{
				case 0:		// (xxx).W
				{
					UINT32 ea = (UINT32)OPER_I_16(m68k);
					return m68ki_read_8(m68k, ea);
				}
				case 1:		// (xxx).L
				{
					UINT32 d1 = OPER_I_16(m68k);
					UINT32 d2 = OPER_I_16(m68k);
					UINT32 ea = (d1 << 16) | d2;
					return m68ki_read_8(m68k, ea);
				}
				case 4:		// #<data>
				{
					return  OPER_I_8(m68k);
				}
				default:	fatalerror("M68kFPU: READ_EA_8: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
			}
			break;
		}
		default:	fatalerror("M68kFPU: READ_EA_8: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
	}

	return 0;
}

static UINT16 READ_EA_16(m68ki_cpu_core *m68k, int ea)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 0:		// Dn
		{
			return (UINT16)(REG_D[reg]);
		}
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			return m68ki_read_16(m68k, ea);
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_16(m68k);
			return m68ki_read_16(m68k, ea);
		}
		case 6:		// (An) + (Xn) + d8
		{
			UINT32 ea = EA_AY_IX_16(m68k);
			return m68ki_read_16(m68k, ea);
		}
		case 7:
		{
			switch (reg)
			{
				case 0:		// (xxx).W
				{
					UINT32 ea = (UINT32)OPER_I_16(m68k);
					return m68ki_read_16(m68k, ea);
				}
				case 1:		// (xxx).L
				{
					UINT32 d1 = OPER_I_16(m68k);
					UINT32 d2 = OPER_I_16(m68k);
					UINT32 ea = (d1 << 16) | d2;
					return m68ki_read_16(m68k, ea);
				}
				case 4:		// #<data>
				{
					return OPER_I_16(m68k);
				}

				default:	fatalerror("M68kFPU: READ_EA_16: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
			}
			break;
		}
		default:	fatalerror("M68kFPU: READ_EA_16: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
	}

	return 0;
}

static UINT32 READ_EA_32(m68ki_cpu_core *m68k, int ea)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 0:		// Dn
		{
			return REG_D[reg];
		}
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			return m68ki_read_32(m68k, ea);
		}
		case 3:		// (An)+
		{
			UINT32 ea = EA_AY_PI_32(m68k);
			return m68ki_read_32(m68k, ea);
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_32(m68k);
			return m68ki_read_32(m68k, ea);
		}
		case 6:		// (An) + (Xn) + d8
		{
			UINT32 ea = EA_AY_IX_32(m68k);
			return m68ki_read_32(m68k, ea);
		}
		case 7:
		{
			switch (reg)
			{
				case 0:		// (xxx).W
				{
					UINT32 ea = (UINT32)OPER_I_16(m68k);
					return m68ki_read_32(m68k, ea);
				}
				case 1:		// (xxx).L
				{
					UINT32 d1 = OPER_I_16(m68k);
					UINT32 d2 = OPER_I_16(m68k);
					UINT32 ea = (d1 << 16) | d2;
					return m68ki_read_32(m68k, ea);
				}
				case 2:		// (d16, PC)
				{
					UINT32 ea = EA_PCDI_32(m68k);
					return m68ki_read_32(m68k, ea);
				}
				case 4:		// #<data>
				{
					return  OPER_I_32(m68k);
				}
				default:	fatalerror("M68kFPU: READ_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
			}
			break;
		}
		default:	fatalerror("M68kFPU: READ_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
	}
	return 0;
}

static UINT64 READ_EA_64(m68ki_cpu_core *m68k, int ea)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);
	UINT32 h1, h2;

	switch (mode)
	{
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			h1 = m68ki_read_32(m68k, ea+0);
			h2 = m68ki_read_32(m68k, ea+4);
			return  (UINT64)(h1) << 32 | (UINT64)(h2);
		}
		case 3:		// (An)+
		{
			UINT32 ea = REG_A[reg];
			REG_A[reg] += 8;
			h1 = m68ki_read_32(m68k, ea+0);
			h2 = m68ki_read_32(m68k, ea+4);
			return  (UINT64)(h1) << 32 | (UINT64)(h2);
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_32(m68k);
			h1 = m68ki_read_32(m68k, ea+0);
			h2 = m68ki_read_32(m68k, ea+4);
			return  (UINT64)(h1) << 32 | (UINT64)(h2);
		}
		case 7:
		{
			switch (reg)
			{
				case 4:		// #<data>
				{
					h1 = OPER_I_32(m68k);
					h2 = OPER_I_32(m68k);
					return  (UINT64)(h1) << 32 | (UINT64)(h2);
				}
				case 2:		// (d16, PC)
				{
					UINT32 ea = EA_PCDI_32(m68k);
					h1 = m68ki_read_32(m68k, ea+0);
					h2 = m68ki_read_32(m68k, ea+4);
					return  (UINT64)(h1) << 32 | (UINT64)(h2);
				}
				default:	fatalerror("M68kFPU: READ_EA_64: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
			}
			break;
		}
		default:	fatalerror("M68kFPU: READ_EA_64: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
	}

	return 0;
}

static void WRITE_EA_8(m68ki_cpu_core *m68k, int ea, UINT8 data)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 0:		// Dn
		{
			REG_D[reg] = data;
			break;
		}
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			m68ki_write_8(m68k, ea, data);
			break;
		}
		case 3:		// (An)+
		{
			UINT32 ea = EA_AY_PI_8(m68k);
			m68ki_write_8(m68k, ea, data);
			break;
		}
		case 4:		// -(An)
		{
			UINT32 ea = EA_AY_PD_8(m68k);
			m68ki_write_8(m68k, ea, data);
			break;
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_8(m68k);
			m68ki_write_8(m68k, ea, data);
			break;
		}
		case 6:		// (An) + (Xn) + d8
		{
			UINT32 ea = EA_AY_IX_8(m68k);
			m68ki_write_8(m68k, ea, data);
			break;
		}
		case 7:
		{
			switch (reg)
			{
				case 1:		// (xxx).B
				{
					UINT32 d1 = OPER_I_16(m68k);
					UINT32 d2 = OPER_I_16(m68k);
					UINT32 ea = (d1 << 16) | d2;
					m68ki_write_8(m68k, ea, data);
					break;
				}
				case 2:		// (d16, PC)
				{
					UINT32 ea = EA_PCDI_16(m68k);
					m68ki_write_8(m68k, ea, data);
					break;
				}
				default:	fatalerror("M68kFPU: WRITE_EA_8: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
			}
			break;
		}
		default:	fatalerror("M68kFPU: WRITE_EA_8: unhandled mode %d, reg %d, data %08X at %08X\n", mode, reg, data, REG_PC);
	}
}

static void WRITE_EA_16(m68ki_cpu_core *m68k, int ea, UINT16 data)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 0:		// Dn
		{
			REG_D[reg] = data;
			break;
		}
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			m68ki_write_16(m68k, ea, data);
			break;
		}
		case 3:		// (An)+
		{
			UINT32 ea = EA_AY_PI_16(m68k);
			m68ki_write_16(m68k, ea, data);
			break;
		}
		case 4:		// -(An)
		{
			UINT32 ea = EA_AY_PD_16(m68k);
			m68ki_write_16(m68k, ea, data);
			break;
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_16(m68k);
			m68ki_write_16(m68k, ea, data);
			break;
		}
		case 6:		// (An) + (Xn) + d8
		{
			UINT32 ea = EA_AY_IX_16(m68k);
			m68ki_write_16(m68k, ea, data);
			break;
		}
		case 7:
		{
			switch (reg)
			{
				case 1:		// (xxx).W
				{
					UINT32 d1 = OPER_I_16(m68k);
					UINT32 d2 = OPER_I_16(m68k);
					UINT32 ea = (d1 << 16) | d2;
					m68ki_write_16(m68k, ea, data);
					break;
				}
				case 2:		// (d16, PC)
				{
					UINT32 ea = EA_PCDI_16(m68k);
					m68ki_write_16(m68k, ea, data);
					break;
				}
				default:	fatalerror("M68kFPU: WRITE_EA_16: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
			}
			break;
		}
		default:	fatalerror("M68kFPU: WRITE_EA_16: unhandled mode %d, reg %d, data %08X at %08X\n", mode, reg, data, REG_PC);
	}
}

static void WRITE_EA_32(m68ki_cpu_core *m68k, int ea, UINT32 data)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 0:		// Dn
		{
			REG_D[reg] = data;
			break;
		}
		case 1:		// An
		{
			REG_A[reg] = data;
			break;
		}
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			m68ki_write_32(m68k, ea, data);
			break;
		}
		case 3:		// (An)+
		{
			UINT32 ea = EA_AY_PI_32(m68k);
			m68ki_write_32(m68k, ea, data);
			break;
		}
		case 4:		// -(An)
		{
			UINT32 ea = EA_AY_PD_32(m68k);
			m68ki_write_32(m68k, ea, data);
			break;
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_32(m68k);
			m68ki_write_32(m68k, ea, data);
			break;
		}
		case 6:		// (An) + (Xn) + d8
		{
			UINT32 ea = EA_AY_IX_32(m68k);
			m68ki_write_32(m68k, ea, data);
			break;
		}
		case 7:
		{
			switch (reg)
			{
				case 1:		// (xxx).L
				{
					UINT32 d1 = OPER_I_16(m68k);
					UINT32 d2 = OPER_I_16(m68k);
					UINT32 ea = (d1 << 16) | d2;
					m68ki_write_32(m68k, ea, data);
					break;
				}
				case 2:		// (d16, PC)
				{
					UINT32 ea = EA_PCDI_32(m68k);
					m68ki_write_32(m68k, ea, data);
					break;
				}
				default:	fatalerror("M68kFPU: WRITE_EA_32: unhandled mode %d, reg %d at %08X\n", mode, reg, REG_PC);
			}
			break;
		}
		default:	fatalerror("M68kFPU: WRITE_EA_32: unhandled mode %d, reg %d, data %08X at %08X\n", mode, reg, data, REG_PC);
	}
}

static void WRITE_EA_64(m68ki_cpu_core *m68k, int ea, UINT64 data)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			m68ki_write_32(m68k, ea, (UINT32)(data >> 32));
			m68ki_write_32(m68k, ea+4, (UINT32)(data));
			break;
		}
		case 4:		// -(An)
		{
			UINT32 ea;
			REG_A[reg] -= 8;
			ea = REG_A[reg];
			m68ki_write_32(m68k, ea+0, (UINT32)(data >> 32));
			m68ki_write_32(m68k, ea+4, (UINT32)(data));
			break;
		}
		case 5:		// (d16, An)
		{
			UINT32 ea = EA_AY_DI_32(m68k);
			m68ki_write_32(m68k, ea+0, (UINT32)(data >> 32));
			m68ki_write_32(m68k, ea+4, (UINT32)(data));
			break;
		}
		default:	fatalerror("M68kFPU: WRITE_EA_64: unhandled mode %d, reg %d, data %08X%08X at %08X\n", mode, reg, (UINT32)(data >> 32), (UINT32)(data), REG_PC);
	}
}

INLINE floatx80 load_extended_float80(m68ki_cpu_core *m68k, UINT32 ea)
{
	UINT32 d1,d2;
	UINT16 d3;
	floatx80 fp;

	d3 = m68ki_read_16(m68k, ea);
	d1 = m68ki_read_32(m68k, ea+4);
	d2 = m68ki_read_32(m68k, ea+8);
	fp.high = d3;
	fp.low = ((UINT64)d1<<32) | (d2 & 0xffffffff);

	return fp;
}

static floatx80 READ_EA_FPE(m68ki_cpu_core *m68k, int ea)
{
	floatx80 fpr;
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 2:		// (An)
		{
			UINT32 ea = REG_A[reg];
			fpr = load_extended_float80(m68k, ea);
			break;
		}

		case 3:		// (An)+
		{
			UINT32 ea = REG_A[reg];
			REG_A[reg] += 12;
			fpr = load_extended_float80(m68k, ea);
			break;
		}

		case 7:	// extended modes
		{
			switch (reg)
			{
				case 3:	// (d16,PC,Dx.w)
					{
						UINT32 ea = EA_PCIX_32(m68k);
						fpr = load_extended_float80(m68k, ea);
					}
					break;

				default:	
					fatalerror("M68kFPU: READ_EA_FPE0: unhandled mode %d, reg %d, at %08X\n", mode, reg, REG_PC);
					break;
			}
		}
		break;

		default:	fatalerror("M68kFPU: READ_EA_FPE1: unhandled mode %d, reg %d, at %08X\n", mode, reg, REG_PC); break;
	}

	return fpr;
}

INLINE void store_extended_float80(m68ki_cpu_core *m68k, UINT32 ea, floatx80 fpr)
{
	m68ki_write_16(m68k, ea+0, fpr.high);
	m68ki_write_16(m68k, ea+2, 0);
	m68ki_write_32(m68k, ea+4, (fpr.low>>32)&0xffffffff);
	m68ki_write_32(m68k, ea+8, fpr.low&0xffffffff);
}

static void WRITE_EA_FPE(m68ki_cpu_core *m68k, int ea, floatx80 fpr)
{
	int mode = (ea >> 3) & 0x7;
	int reg = (ea & 0x7);

	switch (mode)
	{
		case 2:		// (An)
		{
			UINT32 ea;
			ea = REG_A[reg];
			store_extended_float80(m68k, ea, fpr);
			break;
		}

		case 3:		// (An)+
		{
			UINT32 ea;
			ea = REG_A[reg];
			store_extended_float80(m68k, ea, fpr);
			REG_A[reg] += 12;
			break;
		}

		case 4:		// -(An)
		{
			UINT32 ea;
			REG_A[reg] -= 12;
			ea = REG_A[reg];
			store_extended_float80(m68k, ea, fpr);
			break;
		}

		case 7:
		{
			switch (reg)
			{
				default:	fatalerror("M68kFPU: WRITE_EA_FPE: unhandled mode %d, reg %d, at %08X\n", mode, reg, REG_PC);
			}
		}
		default:	fatalerror("M68kFPU: WRITE_EA_FPE: unhandled mode %d, reg %d, at %08X\n", mode, reg, REG_PC);
	}
}


static void fpgen_rm_reg(m68ki_cpu_core *m68k, UINT16 w2)
{
	int ea = m68k->ir & 0x3f;
	int rm = (w2 >> 14) & 0x1;
	int src = (w2 >> 10) & 0x7;
	int dst = (w2 >>  7) & 0x7;
	int opmode = w2 & 0x7f;
	floatx80 source;

	// fmovecr #$f, fp0	f200 5c0f
	
	if (rm)
	{
		switch (src)
		{
			case 0:		// Long-Word Integer
			{
				INT32 d = READ_EA_32(m68k, ea);
				source = int32_to_floatx80(d);
				break;
			}
			case 1:		// Single-precision Real
			{
				UINT32 d = READ_EA_32(m68k, ea);
				source = float32_to_floatx80(d);
				break;
			}
			case 2:		// Extended-precision Real
			{
				source = READ_EA_FPE(m68k, ea);
				break;
			}
			case 3:		// Packed-decimal Real
			{
				fatalerror("fpgen_rm_reg: packed-decimal real load unimplemented at %08X\n", REG_PC-4);
				break;
			}
			case 4:		// Word Integer
			{
				INT16 d = READ_EA_16(m68k, ea);
				source = int32_to_floatx80((INT32)d);
				break;
			}
			case 5:		// Double-precision Real
			{
				UINT64 d = READ_EA_64(m68k, ea);

				source = float64_to_floatx80(d);
				break;
			}
			case 6:		// Byte Integer
			{
				INT8 d = READ_EA_8(m68k, ea);
				source = int32_to_floatx80((INT32)d);
				break;
			}
			case 7:		// FMOVECR load from constant ROM
			{
				switch (w2 & 0x7f)
				{
					case 0x0:	// Pi
						source.high = 0x4000;
						source.low = U64(0xc90fdaa22168c235);
						break;

					case 0xb:	// log10(2)
						source.high = 0x3ffd;
						source.low = U64(0x9a209a84fbcff798);
						break;

					case 0xc:	// e
						source.high = 0x4000;
						source.low = U64(0xadf85458a2bb4a9b);
						break;

					case 0xd:	// log2(e)
						source.high = 0x3fff;
						source.low = U64(0xb8aa3b295c17f0bc);
						break;

					case 0xe:	// log10(e)
						source.high = 0x3ffd;
						source.low = U64(0xde5bd8a937287195);
						break;

					case 0xf:	// 0.0
						source = int32_to_floatx80((INT32)0);
						break;

					case 0x30:	// ln(2)
						source.high = 0x3ffe;
						source.low = U64(0xb17217f7d1cf79ac);
						break;

					case 0x31:	// ln(10)
						source.high = 0x4000;
						source.low = U64(0x935d8dddaaa8ac17);
						break;

					case 0x32:	// 1 (or 100?  manuals are unclear, but 1 would make more sense)
						source = int32_to_floatx80((INT32)1);
						break;

					case 0x33:	// 10^1
						source = int32_to_floatx80((INT32)10);
						break;

					case 0x34:	// 10^2
						source = int32_to_floatx80((INT32)10*10);
						break;

					default:
						fatalerror("fmove_rm_reg: unknown constant ROM offset %x at %08x\n", w2&0x7f, REG_PC-4);
						break;
				}

				// handle it right here, the usual opmode bits aren't valid in the FMOVECR case
				REG_FP[dst] = source;
				m68k->remaining_cycles -= 4;
				return;
			}
			default:	fatalerror("fmove_rm_reg: invalid source specifier %x at %08X\n", src, REG_PC-4);
		}
	}
	else
	{
		source = REG_FP[src];
	}

	

	switch (opmode)
	{
		case 0x00:		// FMOVE
		{
			REG_FP[dst] = source;
			m68k->remaining_cycles -= 4;
			break;
		}
		case 0x01:		// FINT
		{
			INT32 temp;
			temp = floatx80_to_int32(source);
			REG_FP[dst] = int32_to_floatx80(temp);
			break;
		}
		case 0x03:		// FINTRZ
		{
			INT32 temp;
			temp = floatx80_to_int32_round_to_zero(source);
			REG_FP[dst] = int32_to_floatx80(temp);
			break;
		}
		case 0x04:		// FSQRT
		{
			REG_FP[dst] = floatx80_sqrt(source);
			SET_CONDITION_CODES(m68k, REG_FP[dst]);
			m68k->remaining_cycles -= 109;
			break;
		}
		case 0x18:		// FABS
		{
			REG_FP[dst] = source;
			REG_FP[dst].high &= 0x7fff;
			SET_CONDITION_CODES(m68k, REG_FP[dst]);
			m68k->remaining_cycles -= 3;
			break;
		}
		case 0x1a:		// FNEG
		{				    
			REG_FP[dst] = source;
			REG_FP[dst].high ^= 0x8000;
			SET_CONDITION_CODES(m68k, REG_FP[dst]);
			m68k->remaining_cycles -= 3;
			break;
		}
		case 0x20:		// FDIV
		{
			REG_FP[dst] = floatx80_div(REG_FP[dst], source);
			m68k->remaining_cycles -= 43;
			break;
		}
		case 0x22:		// FADD
		{
			REG_FP[dst] = floatx80_add(REG_FP[dst], source);
			SET_CONDITION_CODES(m68k, REG_FP[dst]);
			m68k->remaining_cycles -= 9;
			break;
		}
		case 0x23:		// FMUL
		{
			REG_FP[dst] = floatx80_mul(REG_FP[dst], source);
			SET_CONDITION_CODES(m68k, REG_FP[dst]);
			m68k->remaining_cycles -= 11;
			break;
		}
		case 0x28:		// FSUB
		{
			REG_FP[dst] = floatx80_sub(REG_FP[dst], source);
			SET_CONDITION_CODES(m68k, REG_FP[dst]);
			m68k->remaining_cycles -= 9;
			break;
		}
		case 0x38:		// FCMP
		{
			floatx80 res;
			res = floatx80_sub(REG_FP[dst], source);
			SET_CONDITION_CODES(m68k, res);
			m68k->remaining_cycles -= 7;
			break;
		}
		case 0x3a:		// FTST
		{
			floatx80 res;
			res = source;
			SET_CONDITION_CODES(m68k, res);
			m68k->remaining_cycles -= 7;
			break;
		}

		default:	fatalerror("fpgen_rm_reg: unimplemented opmode %02X at %08X\n", opmode, REG_PC-4);
	}
}

static void fmove_reg_mem(m68ki_cpu_core *m68k, UINT16 w2)
{
	int ea = m68k->ir & 0x3f;
	int src = (w2 >>  7) & 0x7;
	int dst = (w2 >> 10) & 0x7;
	//int kfactor = w2 & 0x7f;

	switch (dst)
	{
		case 0:		// Long-Word Integer
		{
			INT32 d = (INT32)floatx80_to_int32(REG_FP[src]);
			WRITE_EA_32(m68k, ea, d);
			break;
		}
		case 1:		// Single-precision Real
		{
			UINT32 d = floatx80_to_float32(REG_FP[src]); 
			WRITE_EA_32(m68k, ea, d);
			break;
		}
		case 2:		// Extended-precision Real
		{
		 	WRITE_EA_FPE(m68k, ea, REG_FP[src]);	
			break;
		}
		case 3:		// Packed-decimal Real with Static K-factor
		{
			fatalerror("fmove_reg_mem: packed-decimal real store unimplemented at %08X\n", REG_PC-4);
			break;
		}
		case 4:		// Word Integer
		{
			WRITE_EA_16(m68k, ea, (INT16)floatx80_to_int32(REG_FP[src]));
			break;
		}
		case 5:		// Double-precision Real
		{
			UINT64 d;

			d = floatx80_to_float64(REG_FP[src]);

			WRITE_EA_64(m68k, ea, d);
			break;
		}
		case 6:		// Byte Integer
		{
			WRITE_EA_8(m68k, ea, (INT8)floatx80_to_int32(REG_FP[src]));
			break;
		}
		case 7:		// Packed-decimal Real with Dynamic K-factor
		{
			fatalerror("fmove_reg_mem: packed-decimal real store unimplemented at %08X\n", REG_PC-4);
			break;
		}
	}

	m68k->remaining_cycles -= 12;
}

static void fmove_fpcr(m68ki_cpu_core *m68k, UINT16 w2)
{
	int ea = m68k->ir & 0x3f;
	int dir = (w2 >> 13) & 0x1;
	int reg = (w2 >> 10) & 0x7;

	if (dir)	// From system control reg to <ea>
	{
		switch (reg)
		{
			case 1:		WRITE_EA_32(m68k, ea, REG_FPIAR); break;
			case 2:		WRITE_EA_32(m68k, ea, REG_FPSR); break;
			case 4:		WRITE_EA_32(m68k, ea, REG_FPCR); break;
			default:	fatalerror("fmove_fpcr: unknown reg %d, dir %d\n", reg, dir);
		}
	}
	else		// From <ea> to system control reg
	{
		switch (reg)
		{
			case 1:		REG_FPIAR = READ_EA_32(m68k, ea); break;
			case 2:		REG_FPSR = READ_EA_32(m68k, ea); break;
			case 4:		REG_FPCR = READ_EA_32(m68k, ea); break;
			default:	fatalerror("fmove_fpcr: unknown reg %d, dir %d\n", reg, dir);
		}
	}

	m68k->remaining_cycles -= 10;
}

static void fmovem(m68ki_cpu_core *m68k, UINT16 w2)
{
	int i;
	int ea = m68k->ir & 0x3f;
	int dir = (w2 >> 13) & 0x1;
	int mode = (w2 >> 11) & 0x3;
	int reglist = w2 & 0xff;

	if (dir)	// From FP regs to mem
	{
		switch (mode)
		{
			case 0:		// Static register list, predecrement addressing mode
			{
				for (i=0; i < 8; i++)
				{
					if (reglist & (1 << i))
					{
						WRITE_EA_FPE(m68k, ea, REG_FP[i]);
						m68k->remaining_cycles -= 2;
					}
				}
				break;
			}

			default:	fatalerror("040fpu0: FMOVEM: mode %d unimplemented at %08X\n", mode, REG_PC-4);
		}
	}
	else		// From mem to FP regs
	{
		switch (mode)
		{
			case 2:		// Static register list, postincrement addressing mode
			{
				for (i=0; i < 8; i++)
				{
					if (reglist & (1 << i))
					{
						REG_FP[7-i] = READ_EA_FPE(m68k, ea);
						m68k->remaining_cycles -= 2;
					}
				}
				break;
			}

			default:	fatalerror("040fpu0: FMOVEM: mode %d unimplemented at %08X\n", mode, REG_PC-4);
		}
	}
}

static void fbcc16(m68ki_cpu_core *m68k)
{
	INT32 offset;
	int condition = m68k->ir & 0x3f;

	offset = (INT16)(OPER_I_16(m68k));

	// TODO: condition and jump!!!
	if (TEST_CONDITION(m68k, condition))
	{
		m68ki_trace_t0();			   /* auto-disable (see m68kcpu.h) */
		m68ki_branch_16(m68k, offset-2);
	}

	m68k->remaining_cycles -= 7;
}

static void fbcc32(m68ki_cpu_core *m68k)
{
	INT32 offset;
	int condition = m68k->ir & 0x3f;

	offset = OPER_I_32(m68k);

	// TODO: condition and jump!!!
	if (TEST_CONDITION(m68k, condition))
	{
		m68ki_trace_t0();			   /* auto-disable (see m68kcpu.h) */
		m68ki_branch_32(m68k, offset-4);
	}

	m68k->remaining_cycles -= 7;
}


void m68040_fpu_op0(m68ki_cpu_core *m68k)
{
	switch ((m68k->ir >> 6) & 0x3)
	{
		case 0:
		{
			UINT16 w2 = OPER_I_16(m68k);
			switch ((w2 >> 13) & 0x7)
			{
				case 0x0:	// FPU ALU FP, FP
				case 0x2:	// FPU ALU ea, FP
				{
					fpgen_rm_reg(m68k, w2);
					break;
				}

				case 0x3:	// FMOVE FP, ea
				{
					fmove_reg_mem(m68k, w2);
					break;
				}

				case 0x4:	// FMOVE ea, FPCR
				case 0x5:	// FMOVE FPCR, ea
				{
					fmove_fpcr(m68k, w2);
					break;
				}

				case 0x6:	// FMOVEM ea, list
				case 0x7:	// FMOVEM list, ea
				{
					fmovem(m68k, w2);
					break;
				}

				default:	fatalerror("M68kFPU: unimplemented subop %d at %08X\n", (w2 >> 13) & 0x7, REG_PC-4);
			}
			break;
		}

		case 2:		// FBcc disp16
		{
			fbcc16(m68k);
			break;
		}
		case 3:		// FBcc disp32
		{
			fbcc32(m68k);
			break;
		}

		default:	fatalerror("M68kFPU: unimplemented main op %d\n", (m68k->ir >> 6)	& 0x3);
	}
}

void m68040_fpu_op1(m68ki_cpu_core *m68k)
{
	int ea = m68k->ir & 0x3f;

	switch ((m68k->ir >> 6) & 0x3)
	{
		case 0:		// FSAVE <ea>
		{
			WRITE_EA_32(m68k, ea, 0x00000000);
			// TODO: correct state frame
			break;
		}

		case 1:		// FRESTORE <ea>
		{
			READ_EA_32(m68k, ea);
			// TODO: correct state frame
			break;
		}

		default:	fatalerror("m68040_fpu_op1: unimplemented op %d at %08X\n", (m68k->ir >> 6) & 0x3, REG_PC-2);
	}
}