summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/cpu/m6502/ops02.h
blob: 65487ba67aeb316feb6271eb81adff4d47109a8c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/*****************************************************************************
 *
 *   ops02.h
 *   Addressing mode and opcode macros for 6502,65c02,65sc02,6510,n2a03 CPUs
 *
 *   Copyright Juergen Buchmueller, all rights reserved.
 *   65sc02 core Copyright Peter Trauner, all rights reserved.
 *
 *   - This source code is released as freeware for non-commercial purposes.
 *   - You are free to use and redistribute this code in modified or
 *     unmodified form, provided you list me in the credits.
 *   - If you modify this source code, you must add a notice to each modified
 *     source file that it has been changed.  If you're a nice person, you
 *     will clearly mark each change too.  :)
 *   - If you wish to use this for commercial purposes, please contact me at
 *     pullmoll@t-online.de
 *   - The author of this copywritten work reserves the right to change the
 *     terms of its usage and license at any time, including retroactively
 *   - This entire notice must remain in the source code.
 *
 *****************************************************************************/

/* 6502 flags */
#define F_C 0x01
#define F_Z 0x02
#define F_I 0x04
#define F_D 0x08
#define F_B 0x10
#define F_T 0x20
#define F_V 0x40
#define F_N 0x80

/* some shortcuts for improved readability */
#define A	m6502.a
#define X	m6502.x
#define Y	m6502.y
#define P	m6502.p
#define S	m6502.sp.b.l
#define SPD m6502.sp.d

#define NZ	m6502.nz

#define SET_NZ(n)				\
	if ((n) == 0) P = (P & ~F_N) | F_Z; else P = (P & ~(F_N | F_Z)) | ((n) & F_N)

#define SET_Z(n)				\
	if ((n) == 0) P |= F_Z; else P &= ~F_Z

#define EAL m6502.ea.b.l
#define EAH m6502.ea.b.h
#define EAW m6502.ea.w.l
#define EAD m6502.ea.d

#define ZPL m6502.zp.b.l
#define ZPH m6502.zp.b.h
#define ZPW m6502.zp.w.l
#define ZPD m6502.zp.d

#define PCL m6502.pc.b.l
#define PCH m6502.pc.b.h
#define PCW m6502.pc.w.l
#define PCD m6502.pc.d

#define PPC m6502.ppc.d

#define RDMEM_ID	m6502.rdmem_id
#define WRMEM_ID	m6502.wrmem_id

#define CHANGE_PC change_pc(PCD)

/***************************************************************
 *  RDOP    read an opcode
 ***************************************************************/
#define RDOP() cpu_readop(PCW++); m6502_ICount -= 1

/***************************************************************
 *  RDOPARG read an opcode argument
 ***************************************************************/
#define RDOPARG() cpu_readop_arg(PCW++); m6502_ICount -= 1

/***************************************************************
 *  RDMEM   read memory
 ***************************************************************/
#define RDMEM(addr) program_read_byte_8(addr); m6502_ICount -= 1

/***************************************************************
 *  WRMEM   write memory
 ***************************************************************/
#define WRMEM(addr,data) program_write_byte_8(addr,data); m6502_ICount -= 1

/***************************************************************
 *  BRA  branch relative
 *  extra cycle if page boundary is crossed
 ***************************************************************/
#define BRA(cond)												\
	{																\
		INT8 tmp2 = RDOPARG();										\
		if (cond)													\
		{															\
			RDMEM(PCW);												\
			EAW = PCW + (signed char)tmp2;							\
			if ( EAH != PCH ) {										\
				RDMEM( (PCH << 8 ) | EAL) ;							\
			}														\
			PCD = EAD;												\
			CHANGE_PC;												\
		}															\
	}

/***************************************************************
 *
 * Helper macros to build the effective address
 *
 ***************************************************************/

/***************************************************************
 *  EA = zero page address
 ***************************************************************/
#define EA_ZPG													\
	ZPL = RDOPARG();											\
	EAD = ZPD

/***************************************************************
 *  EA = zero page address + X
 ***************************************************************/
#define EA_ZPX													\
	ZPL = RDOPARG();											\
	RDMEM(ZPD);													\
	ZPL = X + ZPL;												\
	EAD = ZPD

/***************************************************************
 *  EA = zero page address + Y
 ***************************************************************/
#define EA_ZPY													\
	ZPL = RDOPARG();											\
	RDMEM(ZPD);													\
	ZPL = Y + ZPL;												\
	EAD = ZPD

/***************************************************************
 *  EA = absolute address
 ***************************************************************/
#define EA_ABS													\
	EAL = RDOPARG();											\
	EAH = RDOPARG()

/***************************************************************
 *  EA = absolute address + X
 * one additional read if page boundary is crossed
 ***************************************************************/
#define EA_ABX_P												\
	EA_ABS; 													\
	if ( EAL + X > 0xff ) {										\
		RDMEM( ( EAH << 8 ) | ( ( EAL + X ) & 0xff ) );			\
	}															\
	EAW += X;

/***************************************************************
 *  EA = absolute address + X
 ***************************************************************/
#define EA_ABX_NP												\
	EA_ABS;														\
	RDMEM( ( EAH << 8 ) | ( ( EAL + X ) & 0xff ) );				\
	EAW += X

/***************************************************************
 *  EA = absolute address + Y
 * one additional read if page boundary is crossed
 ***************************************************************/
#define EA_ABY_P												\
	EA_ABS; 													\
	if ( EAL + Y > 0xff ) {										\
		RDMEM( ( EAH << 8 ) | ( ( EAL + Y ) & 0xff ) );			\
	}															\
	EAW += Y;

/***************************************************************
 *  EA = absolute address + Y
 ***************************************************************/
#define EA_ABY_NP												\
	EA_ABS;														\
	RDMEM( ( EAH << 8 ) | ( ( EAL + Y ) & 0xff ) );				\
	EAW += Y

/***************************************************************
 *  EA = zero page + X indirect (pre indexed)
 ***************************************************************/
#define EA_IDX													\
	ZPL = RDOPARG();											\
	RDMEM(ZPD);													\
	ZPL = ZPL + X;												\
	EAL = RDMEM(ZPD);											\
	ZPL++;														\
	EAH = RDMEM(ZPD)

/***************************************************************
 *  EA = zero page indirect + Y (post indexed)
 *  subtract 1 cycle if page boundary is crossed
 ***************************************************************/
#define EA_IDY_P												\
	ZPL = RDOPARG();											\
	EAL = RDMEM(ZPD);											\
	ZPL++;														\
	EAH = RDMEM(ZPD);											\
	if (EAL + Y > 0xff) {										\
		RDMEM( ( EAH << 8 ) | ( ( EAL + Y ) & 0xff ) );			\
	}															\
	EAW += Y;

/***************************************************************
 *  EA = zero page indirect + Y
 ***************************************************************/
#define EA_IDY_NP												\
	ZPL = RDOPARG();											\
	EAL = RDMEM(ZPD);											\
	ZPL++;														\
	EAH = RDMEM(ZPD);											\
	RDMEM( ( EAH << 8 ) | ( ( EAL + Y ) & 0xff ) );				\
	EAW += Y

/***************************************************************
 *  EA = zero page indirect (65c02 pre indexed w/o X)
 ***************************************************************/
#define EA_ZPI													\
        ZPL = RDOPARG();										\
        EAL = RDMEM(ZPD);										\
        ZPL++;													\
        EAH = RDMEM(ZPD)

/***************************************************************
 *  EA = indirect (only used by JMP)
 ***************************************************************/
#define EA_IND													\
	EA_ABS; 													\
	tmp = RDMEM(EAD);											\
	EAL++;	/* booby trap: stay in same page! ;-) */			\
	EAH = RDMEM(EAD);											\
	EAL = tmp


/* read a value into tmp */
/* Base number of cycles taken for each mode (including reading of opcode):
   RD_IMM       2
   RD_DUM       2
   RD_ACC       0
   RD_ZPG/WR_ZPG    3
   RD_ZPX/WR_ZPX    4
   RD_ZPY/WR_ZPY    4
   RD_ABS/WR_ABS    4
   RD_ABX_P     4/5
   RD_ABX_NP/WR_ABX_NP  5
   RD_ABY_P     4/5
   RD_ABY_NP/WR_ABY_NP  5
   RD_IDX/WR_IDX    6
   RD_IDY_P     5/6
   RD_IDY_NP/WR_IDY_NP  6
   RD_ZPI/WR_ZPI    5
 */
#define RD_IMM		tmp = RDOPARG()
#define RD_DUM		RDMEM(PCW)
#define RD_ACC		tmp = A
#define RD_ZPG		EA_ZPG; tmp = RDMEM(EAD)
#define RD_ZPX		EA_ZPX; tmp = RDMEM(EAD)
#define RD_ZPY		EA_ZPY; tmp = RDMEM(EAD)
#define RD_ABS		EA_ABS; tmp = RDMEM(EAD)
#define RD_ABX_P	EA_ABX_P; tmp = RDMEM(EAD)
#define RD_ABX_NP	EA_ABX_NP; tmp = RDMEM(EAD)
#define RD_ABY_P	EA_ABY_P; tmp = RDMEM(EAD)
#define RD_ABY_NP	EA_ABY_NP; tmp = RDMEM(EAD)
#define RD_IDX		EA_IDX; tmp = RDMEM_ID(EAD); m6502_ICount -= 1
#define RD_IDY_P	EA_IDY_P; tmp = RDMEM_ID(EAD); m6502_ICount -= 1
#define RD_IDY_NP	EA_IDY_NP; tmp = RDMEM_ID(EAD); m6502_ICount -= 1
#define RD_ZPI		EA_ZPI; tmp = RDMEM(EAD)

/* write a value from tmp */
#define WR_ZPG		EA_ZPG; WRMEM(EAD, tmp)
#define WR_ZPX		EA_ZPX; WRMEM(EAD, tmp)
#define WR_ZPY		EA_ZPY; WRMEM(EAD, tmp)
#define WR_ABS		EA_ABS; WRMEM(EAD, tmp)
#define WR_ABX_NP	EA_ABX_NP; WRMEM(EAD, tmp)
#define WR_ABY_NP	EA_ABY_NP; WRMEM(EAD, tmp)
#define WR_IDX		EA_IDX; WRMEM_ID(EAD, tmp); m6502_ICount -= 1
#define WR_IDY_NP	EA_IDY_NP; WRMEM_ID(EAD, tmp); m6502_ICount -= 1
#define WR_ZPI		EA_ZPI; WRMEM(EAD, tmp)

/* dummy read from the last EA */
#define RD_EA	RDMEM(EAD)

/* write back a value from tmp to the last EA */
#define WB_ACC	A = (UINT8)tmp;
#define WB_EA	WRMEM(EAD, tmp)

/***************************************************************
 ***************************************************************
 *          Macros to emulate the plain 6502 opcodes
 ***************************************************************
 ***************************************************************/

/***************************************************************
 * push a register onto the stack
 ***************************************************************/
#define PUSH(Rg) WRMEM(SPD, Rg); S--

/***************************************************************
 * pull a register from the stack
 ***************************************************************/
#define PULL(Rg) S++; Rg = RDMEM(SPD)

/* 6502 ********************************************************
 *  ADC Add with carry
 ***************************************************************/
#define ADC 													\
	if (P & F_D) {												\
	int c = (P & F_C);											\
	int lo = (A & 0x0f) + (tmp & 0x0f) + c; 					\
	int hi = (A & 0xf0) + (tmp & 0xf0); 						\
		P &= ~(F_V | F_C|F_N|F_Z);								\
		if (!((lo+hi)&0xff)) P|=F_Z;							\
		if (lo > 0x09) {										\
			hi += 0x10; 										\
			lo += 0x06; 										\
		}														\
		if (hi&0x80) P|=F_N;									\
		if (~(A^tmp) & (A^hi) & F_N)							\
			P |= F_V;											\
		if (hi > 0x90)											\
			hi += 0x60; 										\
		if (hi & 0xff00)										\
			P |= F_C;											\
		A = (lo & 0x0f) + (hi & 0xf0);							\
	} else {													\
		int c = (P & F_C);										\
		int sum = A + tmp + c;									\
		P &= ~(F_V | F_C);										\
		if (~(A^tmp) & (A^sum) & F_N)							\
			P |= F_V;											\
		if (sum & 0xff00)										\
			P |= F_C;											\
		A = (UINT8) sum;										\
		SET_NZ(A);												\
	}

/* 6502 ********************************************************
 *  AND Logical and
 ***************************************************************/
#define AND 													\
	A = (UINT8)(A & tmp);										\
	SET_NZ(A)

/* 6502 ********************************************************
 *  ASL Arithmetic shift left
 ***************************************************************/
#define ASL 													\
	P = (P & ~F_C) | ((tmp >> 7) & F_C);						\
	tmp = (UINT8)(tmp << 1);									\
	SET_NZ(tmp)

/* 6502 ********************************************************
 *  BCC Branch if carry clear
 ***************************************************************/
#define BCC BRA(!(P & F_C))

/* 6502 ********************************************************
 *  BCS Branch if carry set
 ***************************************************************/
#define BCS BRA(P & F_C)

/* 6502 ********************************************************
 *  BEQ Branch if equal
 ***************************************************************/
#define BEQ BRA(P & F_Z)

/* 6502 ********************************************************
 *  BIT Bit test
 ***************************************************************/
#undef BIT
#define BIT 													\
	P &= ~(F_N|F_V|F_Z);										\
	P |= tmp & (F_N|F_V);										\
	if ((tmp & A) == 0) 										\
		P |= F_Z

/* 6502 ********************************************************
 *  BMI Branch if minus
 ***************************************************************/
#define BMI BRA(P & F_N)

/* 6502 ********************************************************
 *  BNE Branch if not equal
 ***************************************************************/
#define BNE BRA(!(P & F_Z))

/* 6502 ********************************************************
 *  BPL Branch if plus
 ***************************************************************/
#define BPL BRA(!(P & F_N))

/* 6502 ********************************************************
 *  BRK Break
 *  increment PC, push PC hi, PC lo, flags (with B bit set),
 *  set I flag, jump via IRQ vector
 ***************************************************************/
#define BRK 													\
	RDOPARG();													\
	PUSH(PCH);													\
	PUSH(PCL);													\
	PUSH(P | F_B);												\
	P = (P | F_I);												\
	PCL = RDMEM(M6502_IRQ_VEC); 								\
	PCH = RDMEM(M6502_IRQ_VEC+1);								\
	CHANGE_PC

/* 6502 ********************************************************
 * BVC  Branch if overflow clear
 ***************************************************************/
#define BVC BRA(!(P & F_V))

/* 6502 ********************************************************
 * BVS  Branch if overflow set
 ***************************************************************/
#define BVS BRA(P & F_V)

/* 6502 ********************************************************
 * CLC  Clear carry flag
 ***************************************************************/
#define CLC 													\
	P &= ~F_C

/* 6502 ********************************************************
 * CLD  Clear decimal flag
 ***************************************************************/
#define CLD 													\
	P &= ~F_D

/* 6502 ********************************************************
 * CLI  Clear interrupt flag
 ***************************************************************/
#define CLI 													\
	if ((m6502.irq_state != CLEAR_LINE) && (P & F_I)) { 		\
		m6502.after_cli = 1;									\
	}															\
	P &= ~F_I

/* 6502 ********************************************************
 * CLV  Clear overflow flag
 ***************************************************************/
#define CLV 													\
	P &= ~F_V

/* 6502 ********************************************************
 *  CMP Compare accumulator
 ***************************************************************/
#define CMP 													\
	P &= ~F_C;													\
	if (A >= tmp)												\
		P |= F_C;												\
	SET_NZ((UINT8)(A - tmp))

/* 6502 ********************************************************
 *  CPX Compare index X
 ***************************************************************/
#define CPX 													\
	P &= ~F_C;													\
	if (X >= tmp)												\
		P |= F_C;												\
	SET_NZ((UINT8)(X - tmp))

/* 6502 ********************************************************
 *  CPY Compare index Y
 ***************************************************************/
#define CPY 													\
	P &= ~F_C;													\
	if (Y >= tmp)												\
		P |= F_C;												\
	SET_NZ((UINT8)(Y - tmp))

/* 6502 ********************************************************
 *  DEC Decrement memory
 ***************************************************************/
#define DEC 													\
	tmp = (UINT8)(tmp-1); 										\
	SET_NZ(tmp)

/* 6502 ********************************************************
 *  DEX Decrement index X
 ***************************************************************/
#define DEX 													\
	X = (UINT8)(X-1); 											\
	SET_NZ(X)

/* 6502 ********************************************************
 *  DEY Decrement index Y
 ***************************************************************/
#define DEY 													\
	Y = (UINT8)(Y-1); 											\
	SET_NZ(Y)

/* 6502 ********************************************************
 *  EOR Logical exclusive or
 ***************************************************************/
#define EOR 													\
	A = (UINT8)(A ^ tmp);										\
	SET_NZ(A)

/* 6502 ********************************************************
 *  ILL Illegal opcode
 ***************************************************************/
#define ILL 													\
	logerror("M6502 illegal opcode %04x: %02x\n",(PCW-1)&0xffff, cpu_readop((PCW-1)&0xffff))

/* 6502 ********************************************************
 *  INC Increment memory
 ***************************************************************/
#define INC 													\
	tmp = (UINT8)(tmp+1); 										\
	SET_NZ(tmp)

/* 6502 ********************************************************
 *  INX Increment index X
 ***************************************************************/
#define INX 													\
	X = (UINT8)(X+1); 											\
	SET_NZ(X)

/* 6502 ********************************************************
 *  INY Increment index Y
 ***************************************************************/
#define INY 													\
	Y = (UINT8)(Y+1); 											\
	SET_NZ(Y)

/* 6502 ********************************************************
 *  JMP Jump to address
 *  set PC to the effective address
 ***************************************************************/
#define JMP 													\
	if( EAD == PPC && !m6502.pending_irq && !m6502.after_cli )	\
		if( m6502_ICount > 0 ) m6502_ICount = 0;				\
	PCD = EAD;													\
	CHANGE_PC

/* 6502 ********************************************************
 *  JSR Jump to subroutine
 *  decrement PC (sic!) push PC hi, push PC lo and set
 *  PC to the effective address
 ***************************************************************/
#define JSR 													\
	EAL = RDOPARG();											\
	RDMEM(SPD);													\
	PUSH(PCH);													\
	PUSH(PCL);													\
	EAH = RDOPARG();											\
	PCD = EAD;													\
	CHANGE_PC

/* 6502 ********************************************************
 *  LDA Load accumulator
 ***************************************************************/
#define LDA 													\
	A = (UINT8)tmp; 											\
	SET_NZ(A)

/* 6502 ********************************************************
 *  LDX Load index X
 ***************************************************************/
#define LDX 													\
	X = (UINT8)tmp; 											\
	SET_NZ(X)

/* 6502 ********************************************************
 *  LDY Load index Y
 ***************************************************************/
#define LDY 													\
	Y = (UINT8)tmp; 											\
	SET_NZ(Y)

/* 6502 ********************************************************
 *  LSR Logic shift right
 *  0 -> [7][6][5][4][3][2][1][0] -> C
 ***************************************************************/
#define LSR 													\
	P = (P & ~F_C) | (tmp & F_C);								\
	tmp = (UINT8)tmp >> 1;										\
	SET_NZ(tmp)

/* 6502 ********************************************************
 *  NOP No operation
 ***************************************************************/
#define NOP

/* 6502 ********************************************************
 *  ORA Logical inclusive or
 ***************************************************************/
#define ORA 													\
	A = (UINT8)(A | tmp);										\
	SET_NZ(A)

/* 6502 ********************************************************
 *  PHA Push accumulator
 ***************************************************************/
#define PHA 													\
	PUSH(A)

/* 6502 ********************************************************
 *  PHP Push processor status (flags)
 ***************************************************************/
#define PHP 													\
	PUSH(P)

/* 6502 ********************************************************
 *  PLA Pull accumulator
 ***************************************************************/
#define PLA 													\
	RDMEM(SPD);													\
	PULL(A);													\
	SET_NZ(A)


/* 6502 ********************************************************
 *  PLP Pull processor status (flags)
 ***************************************************************/
#define PLP 													\
	RDMEM(SPD);													\
	if ( P & F_I ) {											\
		PULL(P);												\
		if ((m6502.irq_state != CLEAR_LINE) && !(P & F_I)) {	\
			LOG(("M6502#%d PLP sets after_cli\n",cpu_getactivecpu()));	\
			m6502.after_cli = 1;								\
		}														\
	} else {													\
		PULL(P);												\
	}															\
	P |= (F_T|F_B);

/* 6502 ********************************************************
 * ROL  Rotate left
 *  new C <- [7][6][5][4][3][2][1][0] <- C
 ***************************************************************/
#define ROL 													\
	tmp = (tmp << 1) | (P & F_C);								\
	P = (P & ~F_C) | ((tmp >> 8) & F_C);						\
	tmp = (UINT8)tmp;											\
	SET_NZ(tmp)

/* 6502 ********************************************************
 * ROR  Rotate right
 *  C -> [7][6][5][4][3][2][1][0] -> new C
 ***************************************************************/
#define ROR 													\
	tmp |= (P & F_C) << 8;										\
	P = (P & ~F_C) | (tmp & F_C);								\
	tmp = (UINT8)(tmp >> 1);									\
	SET_NZ(tmp)

/* 6502 ********************************************************
 * RTI  Return from interrupt
 * pull flags, pull PC lo, pull PC hi and increment PC
 *  PCW++;
 ***************************************************************/
#define RTI 													\
	RDOPARG();													\
	RDMEM(SPD);													\
	PULL(P);													\
	PULL(PCL);													\
	PULL(PCH);													\
	P |= F_T | F_B; 											\
	if( (m6502.irq_state != CLEAR_LINE) && !(P & F_I) )			\
	{															\
		LOG(("M6502#%d RTI sets after_cli\n",cpu_getactivecpu())); 	\
		m6502.after_cli = 1;									\
	}															\
	CHANGE_PC

/* 6502 ********************************************************
 *  RTS Return from subroutine
 *  pull PC lo, PC hi and increment PC
 ***************************************************************/
#define RTS 													\
	RDOPARG();													\
	RDMEM(SPD);													\
	PULL(PCL);													\
	PULL(PCH);													\
	RDMEM(PCW); PCW++;											\
	CHANGE_PC

/* 6502 ********************************************************
 *  SBC Subtract with carry
 ***************************************************************/
#define SBC 													\
	if (P & F_D)												\
	{															\
		int c = (P & F_C) ^ F_C;								\
		int sum = A - tmp - c;									\
		int lo = (A & 0x0f) - (tmp & 0x0f) - c; 				\
		int hi = (A & 0xf0) - (tmp & 0xf0); 					\
		if (lo & 0x10)											\
		{														\
			lo -= 6;											\
			hi--;												\
		}														\
		P &= ~(F_V | F_C|F_Z|F_N);								\
		if( (A^tmp) & (A^sum) & F_N )							\
			P |= F_V;											\
		if( hi & 0x0100 )										\
			hi -= 0x60; 										\
		if( (sum & 0xff00) == 0 )								\
			P |= F_C;											\
		if( !((A-tmp-c) & 0xff) )								\
			P |= F_Z;											\
		if( (A-tmp-c) & 0x80 )									\
			P |= F_N;											\
		A = (lo & 0x0f) | (hi & 0xf0);							\
	}															\
	else														\
	{															\
		int c = (P & F_C) ^ F_C;								\
		int sum = A - tmp - c;									\
		P &= ~(F_V | F_C);										\
		if( (A^tmp) & (A^sum) & F_N )							\
			P |= F_V;											\
		if( (sum & 0xff00) == 0 )								\
			P |= F_C;											\
		A = (UINT8) sum;										\
		SET_NZ(A);												\
	}

/* 6502 ********************************************************
 *  SEC Set carry flag
 ***************************************************************/
#define SEC 													\
	P |= F_C

/* 6502 ********************************************************
 *  SED Set decimal flag
 ***************************************************************/
#define SED 													\
	P |= F_D

/* 6502 ********************************************************
 *  SEI Set interrupt flag
 ***************************************************************/
#define SEI 													\
	P |= F_I

/* 6502 ********************************************************
 * STA  Store accumulator
 ***************************************************************/
#define STA 													\
	tmp = A

/* 6502 ********************************************************
 * STX  Store index X
 ***************************************************************/
#define STX 													\
	tmp = X

/* 6502 ********************************************************
 * STY  Store index Y
 ***************************************************************/
#define STY 													\
	tmp = Y

/* 6502 ********************************************************
 * TAX  Transfer accumulator to index X
 ***************************************************************/
#define TAX 													\
	X = A;														\
	SET_NZ(X)

/* 6502 ********************************************************
 * TAY  Transfer accumulator to index Y
 ***************************************************************/
#define TAY 													\
	Y = A;														\
	SET_NZ(Y)

/* 6502 ********************************************************
 * TSX  Transfer stack LSB to index X
 ***************************************************************/
#define TSX 													\
	X = S;														\
	SET_NZ(X)

/* 6502 ********************************************************
 * TXA  Transfer index X to accumulator
 ***************************************************************/
#define TXA 													\
	A = X;														\
	SET_NZ(A)

/* 6502 ********************************************************
 * TXS  Transfer index X to stack LSB
 * no flags changed (sic!)
 ***************************************************************/
#define TXS 													\
	S = X

/* 6502 ********************************************************
 * TYA  Transfer index Y to accumulator
 ***************************************************************/
#define TYA 													\
	A = Y;														\
	SET_NZ(A)