summaryrefslogtreecommitdiffstatshomepage
path: root/src/emu/cpu/i8051/i8051.c
blob: d7a5e9300b4e3918c0ad134f4cb32e283e94f7a3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
/*****************************************************************************
 *
 *   i8051.c
 *   Portable MCS-51 Family Emulator
 *
 *   Chips in the family:
 *   8051 Product Line (8031,8051,8751)
 *   8052 Product Line (8032,8052,8752)
 *   8054 Product Line (8054)
 *   8058 Product Line (8058)
 *
 *   Copyright (c) 2003 Steve Ellenoff, all rights reserved.
 *
 *   - This source code is released as freeware for non-commercial purposes.
 *   - You are free to use and redistribute this code in modified or
 *     unmodified form, provided you list me in the credits.
 *   - If you modify this source code, you must add a notice to each modified
 *     source file that it has been changed.  If you're a nice person, you
 *     will clearly mark each change too.  :)
 *   - If you wish to use this for commercial purposes, please contact me at
 *     sellenoff@hotmail.com
 *   - The author of this copywritten work reserves the right to change the
 *     terms of its usage and license at any time, including retroactively
 *   - This entire notice must remain in the source code.
 *
 *  This work is based on:
 *  #1) 'Intel(tm) MC51 Microcontroller Family Users Manual' and
 *  #2) 8051 simulator by Travis Marlatte
 *  #3) Portable UPI-41/8041/8741/8042/8742 emulator V0.1 by Juergen Buchmueller (MAME CORE)
 *
 *****************************************************************************/

/******************************************************************************
 *  Notes:
 *        *Important*: Internal ROM needs to be treated the same as external rom by the programmer
 *                     creating the driver (ie, use standard cpu rom region)
 *
 *        The term cycles is used here to really refer to clock oscilations, because 1 machine cycle
 *        actually takes 12 oscilations.
 *
 *        Read/Write/Modify Instruction -
 *          Data is read from the Port Latch (not the Port Pin!), possibly modified, and
 *          written back to (the pin? and) the latch!
 *
 *          The following all perform this on a port address..
 *          (anl, orl, xrl, jbc, cpl, inc, dec, djnz, mov px.y,c, clr px.y, setb px.y)
 *
 *        Serial UART emulation is not really accurate, but faked enough to work as far as i can tell
 *
 *        August 27,2003: Currently support for only 8031/8051/8751 chips (ie 128 RAM)
 *        October 14,2003: Added initial support for the 8752 (ie 256 RAM)
 *        October 22,2003: Full support for the 8752 (ie 256 RAM)
 *        July 28,2004: Fixed MOVX command and added External Ram Paging Support
 *        July 31,2004: Added Serial Mode 0 Support & Fixed Interrupt Flags for Serial Port
 *
 *        Todo: Full Timer support (all modes)
 *
 *        NOW Implemented: RAM paging using hardware configured addressing...
 *        (July 28,2004)   the "MOVX a,@R0/R1" and "MOVX @R0/R1,a" commands can use any of the other ports
 *                 to output a page offset into external ram, but it is totally based on the hardware setup.
 *
 *        Timing needs to be implemented via MAME timers perhaps?
 *
 *****************************************************************************/

#include "debugger.h"
#include "i8051.h"

#define VERBOSE 0

#define LOG(x)	do { if (VERBOSE) logerror x; } while (0)


//Prototypes
INLINE void push_pc(void);
INLINE void pop_pc(void);
INLINE void set_parity(void);
INLINE void do_add_flags(UINT8 a, UINT8 data, UINT8 c);
INLINE void do_sub_flags(UINT8 a, UINT8 data, UINT8 c);
INLINE UINT8 check_interrupts(void);
INLINE void update_timer(int cyc);
INLINE void	update_serial(int cyc);
INLINE void serial_transmit(UINT8 data);
static READ8_HANDLER(internal_ram_read);
static WRITE8_HANDLER(internal_ram_write);
static READ8_HANDLER(internal_ram_iread);
static READ32_HANDLER(external_ram_iaddr);
static WRITE8_HANDLER(internal_ram_iwrite);
static READ8_HANDLER(sfr_read);
static WRITE8_HANDLER(sfr_write);
static WRITE8_HANDLER( bit_address_w );
static READ8_HANDLER( bit_address_r );

#if (HAS_I8052 || HAS_I8752)
static READ8_HANDLER(i8052_internal_ram_iread);
static WRITE8_HANDLER(i8052_internal_ram_iwrite);
#endif
//

typedef struct {
	UINT8	timerbaud;		//Flag set if timer overflow is controlling baud
	UINT8	sending;		//Flag set when uart is sending
	UINT8	data_out;		//Data to send out
	UINT8	bits_to_send;	//How many bits left to send when transmitting out the serial port
	UINT8	bitcycles;		//# of bitcycles passed since last bit was sent
} I8051_UART;

typedef struct {

	//Internal stuff
	UINT16	ppc;			//previous pc
	UINT16	pc;				//current pc
	UINT16	subtype;		//specific version of the cpu, ie 8031, or 8051 for example
	UINT8	cur_irq;		//Holds value of any current IRQ being serviced
	UINT8	irq_priority;	//Holds value of the current IRQ Priority Level
	UINT8	rwm;			//Signals that the current instruction is a read/write/modify instruction
	UINT8   prev_used_cycles;	//Track previous # of used cycles
	UINT8   last_int0;			//Store state of int0
	UINT8   last_int1;			//Store state of int1
	UINT8   int_vec;			//Pending Interrupt Vector
	UINT8   priority_request;	//Priority level of incoming new irq
	//SFR Registers         (Note: Appear in order as they do in memory)
	UINT8	po;				//Port 0
	UINT8	sp;				//Stack Pointer
	UINT8	dpl;			//Data Pointer (DPTR) (Hi bit)
	UINT8	dph;			//Data Pointer (DPTR) (Lo bit)
	UINT8	pcon;			//Power Mode Control
	UINT8	tcon;			//Timer/Counter Control
	UINT8	tmod;			//Timer/Counter Mode Control
	UINT8	tl0;			//Timer 0 Lo
	UINT8	tl1;			//Timer 1 Lo
	UINT8	th0;			//Timer 0 Hi
	UINT8	th1;			//Timer 1 Hi
	UINT8	p1;				//Port 1
	UINT8	scon;			//Serial Control
	UINT8	sbuf;			//Serial Data Buffer
	UINT8	p2;				//Port 2
	UINT8	ie;				//Interrupt Enable
	UINT8	p3;				//Port 3
	UINT8	ip;				//Interrupt Priority
	//8052 Only registers
	#if (HAS_I8052 || HAS_I8752)
		UINT8	t2con;		//Timer/Counter 2 Control
		UINT8	rcap2l;		//Timer/Counter 2 Capture Register Lo
		UINT8	rcap2h;		//Timer/Counter 2 Capture Register Hi
		UINT8	tl2;		//Timer 2 Lo
		UINT8	th2;		//Timer 2 Hi
	#endif
	UINT8	psw;			//Program Status Word
	UINT8	acc;			//Accumulator
	UINT8	b;				//Register B

	//Internal Ram
	UINT8	IntRam[0xff+1];	//Max 256 Bytes of Internal RAM (8031/51 have 128, 8032/52 have 256)

	//Interrupt Callback
	int 	(*irq_callback)(int irqline);

	//Serial Port TX/RX Call backs
	void    (*serial_tx_callback)(int data);	//Call back funciton when sending data out of serial port
	int		(*serial_rx_callback)(void);		//Call back function to retrieve data when receiving serial port data

	//Internal Indirect Read/Write Handlers
	READ8_HANDLER((*iram_iread));
	WRITE8_HANDLER((*iram_iwrite));

	//External Ram Address Callback for generating the hardware specific access to external ram
	READ32_HANDLER((*eram_iaddr_callback));

}	I8051;

static int i8051_icount;

static I8051 i8051;
static I8051_UART uart;

//Hold callback functions so they can be set by caller (before the cpu reset)
static void (*hold_serial_tx_callback)(int data);
static int (*hold_serial_rx_callback)(void);
static READ32_HANDLER((*hold_eram_iaddr_callback));

/*Short cuts*/

/***************************************************************
 * Read Opcode/Opcode Arguments from Program Code
 ***************************************************************/
#define ROP(pc)			cpu_readop(pc)
#define ROP_ARG(pc)		cpu_readop_arg(pc)
/*****************************************************************************
 * Read a byte from External Code Memory (Usually Program Rom(s) Space)
 *****************************************************************************
 This area is mapped from 0-FFFF internally (64K) */
#define CODEMEM_R(a)	(UINT8)program_read_byte_8(a)
/*****************************************************************************
 * Read/Write a byte from/to External Data Memory (Usually RAM or other I/O)
 *****************************************************************************
 This area is *ALSO* mapped from 0-FFFF internally (64K)
                        ** HOWEVER **
 We *FORCE* the address space into the range 10000-1FFFF to allow both
 Code Memory and Data Memory to be pyshically separate while mapped @ the same
 addresses, w/o any contention.
 As far as the 8051 program code which is executing knows data memory still lives
 in the 0-FFFF range.*/
#define DATAMEM_R(a)	(UINT8)data_read_byte_8(a)
#define DATAMEM_W(a,v)	data_write_byte_8(a,v)

/***************************************************************
 * Read/Write a byte from/to the Internal RAM
 ***************************************************************/
#define IRAM_R(a)		internal_ram_read(a)
#define IRAM_W(a,v)		internal_ram_write(a,v)
/***************************************************************
 * Read/Write a byte from/to the Internal RAM indirectly (called from indirect addressing)
 ***************************************************************/
#define IRAM_IR(a)		internal_ram_iread(a)
#define IRAM_IW(a,v)		internal_ram_iwrite(a,v)
/***************************************************************
 * Form an Address to Read/Write to External RAM indirectly (called from indirect addressing)
 ***************************************************************/
#define ERAM_ADDR(a,m)		external_ram_iaddr(a,m)
/***************************************************************
 * Read/Write a byte from/to the SFR Registers
 ***************************************************************/
#define SFR_R(a)		sfr_read(a)
#define SFR_W(a,v)		sfr_write(a,v)
/***************************************************************
 * Read/Write a bit from Bit Addressable Memory
 ***************************************************************/
#define BIT_R(a)		bit_address_r(a)
#define BIT_W(a,v)		bit_address_w(a,v)
/***************************************************************
 * Input/Output a byte from given I/O port
 ***************************************************************/
#define IN(port)		((UINT8)io_read_byte(port))
#define OUT(port,value) 	io_write_byte(port,value)
/***************************************************************
 * Access the 4 banks of R registers (R0...R7)
 ***************************************************************/
#define R_R(n)			i8051.IntRam[(GET_RS*8)+(n)]
/***************************************************************
 * Easy macro for working with 16 bit DPTR
 ***************************************************************/
#define R_DPTR			((R_DPH<<8) | R_DPL)
#define DPTR_W(n)		SFR_W(DPH, ((n)>>8)&0xff);\
						SFR_W(DPL, ((n)&0xff));
/***************************************************************
 * Easy macros for Setting Flags
 ***************************************************************/
/*PSW Flags*/
#define SET_CY(n)		R_PSW = (R_PSW & 0x7f) | (n<<7);	//Carry Flag
#define SET_AC(n)		R_PSW = (R_PSW & 0xbf) | (n<<6);	//Aux.Carry Flag
#define SET_FO(n)		R_PSW = (R_PSW & 0xdf) | (n<<5);	//User Flag
#define SET_RS(n)		R_PSW = (R_PSW & 0xe7) | (n<<3);	//R Bank Select
#define SET_OV(n)		R_PSW = (R_PSW & 0xfb) | (n<<2);	//Overflow Flag
#define SET_P(n)		R_PSW = (R_PSW & 0xfe) | (n<<0);	//Parity Flag
/*IE Flags*/
#define SET_EA(n)		R_IE = (R_IE & 0x7f) | (n<<7);		//Global Interrupt Enable/Disable
#if (HAS_I8052 || HAS_I8752)
   #define SET_ET2(n)		R_IE = (R_IE & 0xdf) | (n<<5);	//Timer 2 Interrupt Enable/Disable
#endif
#define SET_ES(n)		R_IE = (R_IE & 0xef) | (n<<4);		//Serial Interrupt Enable/Disable
#define SET_ET1(n)		R_IE = (R_IE & 0xf7) | (n<<3);		//Timer 1 Interrupt Enable/Disable
#define SET_EX1(n)		R_IE = (R_IE & 0xfb) | (n<<2);		//External Int 1 Interrupt Enable/Disable
#define SET_ET0(n)		R_IE = (R_IE & 0xfd) | (n<<1);		//Timer 0 Interrupt Enable/Disable
#define SET_EX0(n)		R_IE = (R_IE & 0xfe) | (n<<0);		//External Int 0 Interrupt Enable/Disable
/*IP Flags*/
#if (HAS_I8052 || HAS_I8752)
   #define SET_PT2(n)		R_IP = (R_IP & 0xdf) | (n<<5);	//Set Timer 2 Priority Level
#endif
#define SET_PS0(n)		R_IP = (R_IP & 0xef) | (n<<4);		//Set Serial Priority Level
#define SET_PT1(n)		R_IP = (R_IP & 0xf7) | (n<<3);		//Set Timer 1 Priority Level
#define SET_PX1(n)		R_IP = (R_IP & 0xfb) | (n<<2);		//Set External Int 1 Priority Level
#define SET_PT0(n)		R_IP = (R_IP & 0xfd) | (n<<1);		//Set Timer 0 Priority Level
#define SET_PX0(n)		R_IP = (R_IP & 0xfe) | (n<<0);		//Set External Int 0 Priority Level
/*TCON Flags*/
#define SET_TF1(n)		R_TCON = (R_TCON & 0x7f) | (n<<7);	//Indicated Timer 1 Overflow Int Triggered
#define SET_TR1(n)		R_TCON = (R_TCON & 0xbf) | (n<<6);  //IndicateS Timer 1 is running
#define SET_TF0(n)		R_TCON = (R_TCON & 0xdf) | (n<<5);	//Indicated Timer 0 Overflow Int Triggered
#define SET_TR0(n)		R_TCON = (R_TCON & 0xef) | (n<<4);  //IndicateS Timer 0 is running
#define SET_IE1(n)		R_TCON = (R_TCON & 0xf7) | (n<<3);  //Indicated External Int 1 Triggered
#define SET_IT1(n)		R_TCON = (R_TCON & 0xfb) | (n<<2);  //Indicates how External Int 1 is Triggered
#define SET_IE0(n)		R_TCON = (R_TCON & 0xfd) | (n<<1);  //Indicated External Int 0 Triggered
#define SET_IT0(n)		R_TCON = (R_TCON & 0xfe) | (n<<0);  //Indicates how External Int 0 is Triggered
/*SCON Flags*/
#define SET_SM0(n)		R_SCON = (R_SCON & 0x7f) | (n<<7);	//Sets Serial Port Mode
#define SET_SM1(n)		R_SCON = (R_SCON & 0xbf) | (n<<6);  //Sets Serial Port Mode
#define SET_SM2(n)		R_SCON = (R_SCON & 0xdf) | (n<<5);	//Sets Serial Port Mode (Multiprocesser mode)
#define SET_REN(n)		R_SCON = (R_SCON & 0xef) | (n<<4);  //Sets Serial Port Receive Enable
#define SET_TB8(n)		R_SCON = (R_SCON & 0xf7) | (n<<3);  //Transmit 8th Bit
#define SET_RB8(n)		R_SCON = (R_SCON & 0xfb) | (n<<2);  //Receive 8th Bit
#define SET_TI(n)		R_SCON = (R_SCON & 0xfd) | (n<<1);  //Indicates Transmit Interrupt Occurred
#define SET_RI(n)		R_SCON = (R_SCON & 0xfe) | (n<<0);  //Indicates Receive Interrupt Occurred
/*TMOD Flags*/
#define SET_GATE1(n)	R_TMOD = (R_TMOD & 0x7f) | (n<<7);	//Timer 1 Gate Mode
#define SET_CT1(n)		R_TMOD = (R_TMOD & 0xbf) | (n<<6);  //Timer 1 Counter Mode
#define SET_M1_1(n)		R_TMOD = (R_TMOD & 0xdf) | (n<<5);	//Timer 1 Timer Mode Bit 1
#define SET_M1_0(n)		R_TMOD = (R_TMOD & 0xef) | (n<<4);  //Timer 1 Timer Mode Bit 0
#define SET_GATE0(n)	R_TMOD = (R_TMOD & 0xf7) | (n<<3);  //Timer 0 Gate Mode
#define SET_CT0(n)		R_TMOD = (R_TMOD & 0xfb) | (n<<2);  //Timer 0 Counter Mode
#define SET_M0_1(n)		R_TMOD = (R_TMOD & 0xfd) | (n<<1);  //Timer 0 Timer Mode Bit 1
#define SET_M0_0(n)		R_TMOD = (R_TMOD & 0xfe) | (n<<0);  //Timer 0 Timer Mode Bit 0

#if (HAS_I8052 || HAS_I8752)
  /*T2CON Flags*/
  #define SET_TF2(n)		R_T2CON = (R_T2CON & 0x7f) | (n<<7);	//Indicated Timer 2 Overflow Int Triggered
  #define SET_EXF2(n)		R_T2CON = (R_T2CON & 0xbf) | (n<<6);	//Indicates Timer 2 External Flag
  #define SET_RCLK(n)		R_T2CON = (R_T2CON & 0xdf) | (n<<5);	//Receive Clock
  #define SET_TCLK(n)		R_T2CON = (R_T2CON & 0xef) | (n<<4);	//Transmit Clock
  #define SET_EXEN2(n)		R_T2CON = (R_T2CON & 0xf7) | (n<<3);	//Timer 2 External Interrupt Enable
  #define SET_TR2(n)		R_T2CON = (R_T2CON & 0xfb) | (n<<2);	//Indicates Timer 2 is running
  #define SET_CT2(n)		R_T2CON = (R_T2CON & 0xfd) | (n<<1);	//Sets Timer 2 Counter/Timer Mode
  #define SET_CP(n)			R_T2CON = (R_T2CON & 0xfe) | (n<<0);	//Sets Timer 2 Capture/Reload Mode
#endif

/***************************************************************
 * Easy macros for Getting Flags
 ***************************************************************/
/*PSW Flags*/
#define GET_CY			((R_PSW & 0x80)>>7)
#define GET_AC			((R_PSW & 0x40)>>6)
#define GET_FO			((R_PSW & 0x20)>>5)
#define GET_RS			((R_PSW & 0x18)>>3)
#define GET_OV			((R_PSW & 0x04)>>2)
#define GET_P			((R_PSW & 0x01)>>0)
/*IE Flags*/
#define GET_EA			((R_IE & 0x80)>>7)
#define GET_ET2			((R_IE & 0x20)>>5)
#define GET_ES			((R_IE & 0x10)>>4)
#define GET_ET1			((R_IE & 0x08)>>3)
#define GET_EX1			((R_IE & 0x04)>>2)
#define GET_ET0			((R_IE & 0x02)>>1)
#define GET_EX0			((R_IE & 0x01)>>0)
/*IP Flags*/
#if (HAS_I8052 || HAS_I8752)
  #define GET_PT2			((R_IP & 0x20)>>5)
#endif
#define GET_PS			((R_IP & 0x10)>>4)
#define GET_PT1			((R_IP & 0x08)>>3)
#define GET_PX1			((R_IP & 0x04)>>2)
#define GET_PT0			((R_IP & 0x02)>>1)
#define GET_PX0			((R_IP & 0x01)>>0)
/*TCON Flags*/
#define GET_TF1			((R_TCON & 0x80)>>7)
#define GET_TR1			((R_TCON & 0x40)>>6)
#define GET_TF0			((R_TCON & 0x20)>>5)
#define GET_TR0			((R_TCON & 0x10)>>4)
#define GET_IE1			((R_TCON & 0x08)>>3)
#define GET_IT1			((R_TCON & 0x04)>>2)
#define GET_IE0			((R_TCON & 0x02)>>1)
#define GET_IT0			((R_TCON & 0x01)>>0)
/*SCON Flags*/
#define GET_SM0			((R_SCON & 0x80)>>7)
#define GET_SM1			((R_SCON & 0x40)>>6)
#define GET_SM2			((R_SCON & 0x20)>>5)
#define GET_REN			((R_SCON & 0x10)>>4)
#define GET_TB8			((R_SCON & 0x08)>>3)
#define GET_RB8			((R_SCON & 0x04)>>2)
#define GET_TI			((R_SCON & 0x02)>>1)
#define GET_RI			((R_SCON & 0x01)>>0)
/*TMOD Flags*/
#define GET_GATE1		((R_TMOD & 0x80)>>7)
#define GET_CT1			((R_TMOD & 0x40)>>6)
#define GET_M1_1		((R_TMOD & 0x20)>>5)
#define GET_M1_0		((R_TMOD & 0x10)>>4)
#define GET_GATE0		((R_TMOD & 0x08)>>3)
#define GET_CT0			((R_TMOD & 0x04)>>2)
#define GET_M0_1		((R_TMOD & 0x02)>>1)
#define GET_M0_0		((R_TMOD & 0x01)>>0)

#if (HAS_I8052 || HAS_I8752)
  /*T2CON Flags*/
  #define GET_TF2			((R_T2CON & 0x80)>>7)
  #define GET_EXF2			((R_T2CON & 0x40)>>6)
  #define GET_RCLK			((R_T2CON & 0x20)>>5)
  #define GET_TCLK			((R_T2CON & 0x10)>>4)
  #define GET_EXEN2			((R_T2CON & 0x08)>>3)
  #define GET_TR2			((R_T2CON & 0x04)>>2)
  #define GET_CT2			((R_T2CON & 0x02)>>1)
  #define GET_CP			((R_T2CON & 0x01)>>0)
#endif

/*Add and Subtract Flag settings*/
#define DO_ADD_FLAGS(a,d,c)	do_add_flags(a,d,c);
#define DO_SUB_FLAGS(a,d,c)	do_sub_flags(a,d,c);

#define SET_PARITY	set_parity();
#define PUSH_PC		push_pc();
#define POP_PC		pop_pc();

/* PC vectors */
#define V_RESET 0x000	/* power on address */
#define V_IE0	0x003	/* External Interrupt 0 */
#define V_TF0	0x00b	/* Timer 0 Overflow */
#define V_IE1	0x013	/* External Interrupt 1 */
#define V_TF1	0x01b	/* Timer 1 Overflow */
#define V_RITI	0x023	/* Serial Receive/Transmit */

#if (HAS_I8052 || HAS_I8752)
#define V_TF2	0x02b	/* Timer 2 Overflow */
#endif

/* Any pending IRQ */
#define SERIALPORT_IRQ    ((R_SCON & 0x03) && GET_ES)

#if (HAS_I8052 || HAS_I8752)
#define NO_PENDING_IRQ  !(R_TCON & 0xaa) && !(SERIALPORT_IRQ) && !(GET_ET2 && (GET_TF2 || GET_EXF2))
#else
#define NO_PENDING_IRQ  !(R_TCON & 0xaa) && !(SERIALPORT_IRQ)
#endif

/* Clear Current IRQ  */
#define CLEAR_CURRENT_IRQ i8051.cur_irq = 0xff;\
						  i8051.irq_priority = 0;

/* shorter names for the I8051 structure elements */

//Internal stuff
#define PPC 	i8051.ppc
#define PC		i8051.pc
#define TYPE	i8051.subtype
#define RWM		i8051.rwm

//SFR Registers
#define R_P0	i8051.po
#define R_SP	i8051.sp
#define R_DPL	i8051.dpl
#define R_DPH	i8051.dph
#define R_PCON	i8051.pcon
#define R_TCON	i8051.tcon
#define R_TMOD	i8051.tmod
#define R_TL0	i8051.tl0
#define R_TL1	i8051.tl1
#define R_TH0	i8051.th0
#define R_TH1	i8051.th1
#define R_P1	i8051.p1
#define R_SCON	i8051.scon
#define R_SBUF	i8051.sbuf
#define R_P2	i8051.p2
#define R_IE	i8051.ie
#define R_P3	i8051.p3
#define R_IP	i8051.ip
//8052 Only registers
#if (HAS_I8052 || HAS_I8752)
  #define R_T2CON	i8051.t2con
  #define R_RCAP2L	i8051.rcap2l
  #define R_RCAP2H	i8051.rcap2h
  #define R_TL2		i8051.tl2
  #define R_TH2		i8051.th2
#endif
#define R_PSW	i8051.psw
#define R_ACC	i8051.acc
#define R_B		i8051.b

/* # of oscilations each opcode requires*/
static const UINT8 i8051_cycles[] = {
	12,24,24,12,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,24,12,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,24,12,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,24,12,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,12,24,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,12,24,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,12,24,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,24,24,12,24,12,12,12,12,12,12,12,12,12,12,
	24,24,24,24,48,24,24,24,24,24,24,24,24,24,24,24,
	24,24,24,24,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,12,24,48,12,24,24,24,24,24,24,24,24,24,24,
	24,24,12,12,24,24,24,24,24,24,24,24,24,24,24,24,
	24,24,12,12,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,12,12,12,24,12,12,24,24,24,24,24,24,24,24,
	24,24,24,24,12,12,12,12,12,12,12,12,12,12,12,12,
	24,24,24,24,12,12,12,12,12,12,12,12,12,12,12,12
};

/* Include Opcode functions */
#include "i8051ops.c"

void i8051_init(int index, int clock, const void *config, int (*irqcallback)(int))
{
	i8051_set_irq_callback(irqcallback);

	//Internal stuff
	state_save_register_item("i8051", index, i8051.ppc);
	state_save_register_item("i8051", index, i8051.pc);
	state_save_register_item("i8051", index, i8051.subtype);
	state_save_register_item("i8051", index, i8051.rwm );
	state_save_register_item("i8051", index, i8051.cur_irq );
	state_save_register_item("i8051", index, i8051.irq_priority );
	state_save_register_item("i8051", index, i8051.prev_used_cycles );
	state_save_register_item("i8051", index, i8051.last_int0 );
	state_save_register_item("i8051", index, i8051.last_int1 );
	state_save_register_item("i8051", index, i8051.int_vec );
	state_save_register_item("i8051", index, i8051.priority_request );
	//SFR Registers
	state_save_register_item("i8051", index, i8051.po);
	state_save_register_item("i8051", index, i8051.sp);
	state_save_register_item("i8051", index, i8051.dpl);
	state_save_register_item("i8051", index, i8051.dph);
	state_save_register_item("i8051", index, i8051.pcon);
	state_save_register_item("i8051", index, i8051.tcon);
	state_save_register_item("i8051", index, i8051.tmod);
	state_save_register_item("i8051", index, i8051.tl0);
	state_save_register_item("i8051", index, i8051.tl1);
	state_save_register_item("i8051", index, i8051.th0);
	state_save_register_item("i8051", index, i8051.th1);
	state_save_register_item("i8051", index, i8051.p1);
	state_save_register_item("i8051", index, i8051.scon);
	state_save_register_item("i8051", index, i8051.sbuf);
	state_save_register_item("i8051", index, i8051.p2);
	state_save_register_item("i8051", index, i8051.ie);
	state_save_register_item("i8051", index, i8051.p3);
	state_save_register_item("i8051", index, i8051.ip);
	//8052 Only registers
	#if (HAS_I8052 || HAS_I8752)
		state_save_register_item("i8051", index, i8051.t2con);
		state_save_register_item("i8051", index, i8051.rcap2l);
		state_save_register_item("i8051", index, i8051.rcap2h);
		state_save_register_item("i8051", index, i8051.tl2);
		state_save_register_item("i8051", index, i8051.th2);
	#endif
	state_save_register_item("i8051", index, i8051.psw);
	state_save_register_item("i8051", index, i8051.acc);
	state_save_register_item("i8051", index, i8051.b);
	state_save_register_item_array("i8051", index, i8051.IntRam);
}

/* Reset registers to the initial values */
void i8051_reset(void)
{
	int (*save_irqcallback)(int);

	save_irqcallback = i8051.irq_callback;
	memset(&i8051, 0, sizeof(I8051));
	i8051.irq_callback = save_irqcallback;

	memset(&uart, 0, sizeof(I8051_UART));
	i8051.subtype = 8051;

	//Set up 8051 specific internal read/write (indirect) handlers..
	i8051.iram_iread = internal_ram_read;		//Indirect ram read/write handled the same as direct for 8051!
	i8051.iram_iwrite = internal_ram_write;		//Indirect ram read/write handled the same as direct for 8051!

	//Set up serial call back handlers
	i8051.serial_tx_callback = hold_serial_tx_callback;
	hold_serial_tx_callback = NULL;
	i8051.serial_rx_callback = hold_serial_rx_callback;
	hold_serial_rx_callback = NULL;

	//Setup External ram callback handlers
	i8051.eram_iaddr_callback = hold_eram_iaddr_callback;
	hold_eram_iaddr_callback = NULL;

	//Clear Ram (w/0xff)
	memset(&i8051.IntRam,0xff,sizeof(i8051.IntRam));

	/* these are all defined reset states */
	PC = 0;
	SFR_W(SP, 0x7);
	SFR_W(PSW, 0);
	SFR_W(DPH, 0);
	SFR_W(DPL, 0);
	SFR_W(ACC, 0);
	SFR_W(B, 0);
	SFR_W(IP, 0);
	SFR_W(IE, 0);
	SFR_W(SCON, 0);
	SFR_W(TCON, 0);
	SFR_W(TMOD, 0);
	SFR_W(TH1, 0);
	SFR_W(TH0, 0);
	SFR_W(TL1, 0);
	SFR_W(TL0, 0);
	/* set the port configurations to all 1's */
	SFR_W(P3, 0xff);
	SFR_W(P2, 0xff);
	SFR_W(P1, 0xff);
	SFR_W(P0, 0xff);

	/* Flag as NO IRQ in Progress */
	CLEAR_CURRENT_IRQ
}

/* Shut down CPU core */
void i8051_exit(void)
{
	/* nothing to do */
}

/* Execute cycles - returns number of cycles actually run */
int i8051_execute(int cycles)
{
	i8051_icount = cycles;

	do
	{
		//Read next opcode
		UINT8 op = cpu_readop(PC);

		//Store previous PC
		PPC = PC;

		//Call Debugger
		CALL_MAME_DEBUG;

		//remove after testing
		if(PC != PPC)	op = cpu_readop(PC);

		//Update Timer (if any timers are running)
		if(R_TCON & 0x50)
			update_timer(i8051.prev_used_cycles);

		//Update Serial (if serial port sending data)
		if(uart.sending)
			update_serial(i8051.prev_used_cycles);

		//Update PC
		PC += 1;
		//Decrement total count by # of cycles used for this opcode
		i8051_icount -= (i8051_cycles[op]);

		switch( op )
		{
			//NOP
			case 0x00:						/* 1: 0000 0000 */
				nop();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0x01:
				ajmp();
				break;
			//LJMP code addr
			case 0x02:						/* 1: 0000 0010 */
				ljmp();
				break;
			//RR A
			case 0x03:						/* 1: 0000 0011 */
				rr_a();
				break;
			//INC A
			case 0x04:						/* 1: 0000 0100 */
				inc_a();
				break;
			//INC data addr
			case 0x05:						/* 1: 0000 0101 */
				RWM=1;
				inc_mem();
				RWM=0;
			break;
			//INC @R0/@R1                   /* 1: 0000 011i */
			case 0x06:
			case 0x07:
				inc_ir(op&1);
				break;
			//INC R0 to R7                  /* 1: 0000 1rrr */
			case 0x08:
			case 0x09:
			case 0x0a:
			case 0x0b:
			case 0x0c:
			case 0x0d:
			case 0x0e:
			case 0x0f:
				inc_r(op&7);
				break;
			//JBC bit addr, code addr
			case 0x10:						/* 1: 0001 0000 */
				RWM=1;
				jbc();
				RWM=0;
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0x11:
				acall();
				break;
			//LCALL code addr
			case 0x12:						/* 1: 0001 0010 */
				lcall();
				break;
			//RRC A
			case 0x13:						/* 1: 0001 0011 */
				rrc_a();
				break;
			//DEC A
			case 0x14:						/* 1: 0001 0100 */
				dec_a();
				break;
			//DEC data addr
			case 0x15:						/* 1: 0001 0101 */
				RWM=1;
				dec_mem();
				RWM=0;
				break;
			//DEC @R0/@R1                   /* 1: 0001 011i */
			case 0x16:
			case 0x17:
				dec_ir(op&1);
				break;
			//DEC R0 to R7                  /* 1: 0001 1rrr */
			case 0x18:
			case 0x19:
			case 0x1a:
			case 0x1b:
			case 0x1c:
			case 0x1d:
			case 0x1e:
			case 0x1f:
				dec_r(op&7);
				break;
			//JB  bit addr, code addr
			case 0x20:						/* 1: 0010 0000 */
				jb();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0x21:
				ajmp();
				break;
			//RET
			case 0x22:						/* 1: 0010 0010 */
				ret();
				break;
			//RL A
			case 0x23:						/* 1: 0010 0011 */
				rl_a();
				break;
			//ADD A, #data
			case 0x24:						/* 1: 0010 0100 */
				add_a_byte();
				break;
			//ADD A, data addr
			case 0x25:						/* 1: 0010 0101 */
				add_a_mem();
				break;
			//ADD A, @R0/@R1                /* 1: 0010 011i */
			case 0x26:
			case 0x27:
				add_a_ir(op&1);
				break;
			//ADD A, R0 to R7               /* 1: 0010 1rrr */
			case 0x28:
			case 0x29:
			case 0x2a:
			case 0x2b:
			case 0x2c:
			case 0x2d:
			case 0x2e:
			case 0x2f:
				add_a_r(op&7);
				break;
			//JNB bit addr, code addr
			case 0x30:						/* 1: 0011 0000 */
				jnb();
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0x31:
				acall();
				break;
			//RETI
			case 0x32:						/* 1: 0011 0010 */
				reti();
				break;
			//RLC A
			case 0x33:						/* 1: 0011 0011 */
				rlc_a();
				break;
			//ADDC A, #data
			case 0x34:						/* 1: 0011 0100 */
				addc_a_byte();
				break;
			//ADDC A, data addr
			case 0x35:						/* 1: 0011 0101 */
				addc_a_mem();
				break;
			//ADDC A, @R0/@R1               /* 1: 0011 011i */
			case 0x36:
			case 0x37:
				addc_a_ir(op&1);
				break;
			//ADDC A, R0 to R7              /* 1: 0011 1rrr */
			case 0x38:
			case 0x39:
			case 0x3a:
			case 0x3b:
			case 0x3c:
			case 0x3d:
			case 0x3e:
			case 0x3f:
				addc_a_r(op&7);
				break;
			//JC code addr
			case 0x40:						/* 1: 0100 0000 */
				jc();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0x41:
				ajmp();
				break;
			//ORL data addr, A
			case 0x42:						/* 1: 0100 0010 */
				RWM=1;
				orl_mem_a();
				RWM=0;
				break;
			//ORL data addr, #data
			case 0x43:						/* 1: 0100 0011 */
				RWM=1;
				orl_mem_byte();
				RWM=0;
				break;
			//ORL A, #data
			case 0x44:						/* 1: 0100 0100 */
				orl_a_byte();
				break;
			//ORL A, data addr
			case 0x45:						/* 1: 0100 0101 */
				orl_a_mem();
				break;
			//ORL A, @RO/@R1                /* 1: 0100 011i */
			case 0x46:
			case 0x47:
				orl_a_ir(op&1);
				break;
			//ORL A, RO to R7               /* 1: 0100 1rrr */
			case 0x48:
			case 0x49:
			case 0x4a:
			case 0x4b:
			case 0x4c:
			case 0x4d:
			case 0x4e:
			case 0x4f:
				orl_a_r(op&7);
				break;
			//JNC code addr
			case 0x50:						/* 1: 0101 0000 */
				jnc();
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0x51:
				acall();
				break;
			//ANL data addr, A
			case 0x52:						/* 1: 0101 0010 */
				RWM=1;
				anl_mem_a();
				RWM=0;
				break;
			//ANL data addr, #data
			case 0x53:						/* 1: 0101 0011 */
				RWM=1;
				anl_mem_byte();
				RWM=0;
				break;
			//ANL A, #data
			case 0x54:						/* 1: 0101 0100 */
				anl_a_byte();
				break;
			//ANL A, data addr
			case 0x55:						/* 1: 0101 0101 */
				anl_a_mem();
				break;
			//ANL A, @RO/@R1                /* 1: 0101 011i */
			case 0x56:
			case 0x57:
				anl_a_ir(op&1);
				break;
			//ANL A, RO to R7               /* 1: 0101 1rrr */
			case 0x58:
			case 0x59:
			case 0x5a:
			case 0x5b:
			case 0x5c:
			case 0x5d:
			case 0x5e:
			case 0x5f:
				anl_a_r(op&7);
				break;
			//JZ code addr
			case 0x60:						/* 1: 0110 0000 */
				jz();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0x61:
				ajmp();
				break;
			//XRL data addr, A
			case 0x62:						/* 1: 0110 0010 */
				RWM=1;
				xrl_mem_a();
				RWM=0;
				break;
			//XRL data addr, #data
			case 0x63:						/* 1: 0110 0011 */
				RWM=1;
				xrl_mem_byte();
				RWM=0;
				break;
			//XRL A, #data
			case 0x64:						/* 1: 0110 0100 */
				xrl_a_byte();
				break;
			//XRL A, data addr
			case 0x65:						/* 1: 0110 0101 */
				xrl_a_mem();
				break;
			//XRL A, @R0/@R1                /* 1: 0110 011i */
			case 0x66:
			case 0x67:
				xrl_a_ir(op&1);
				break;
			//XRL A, R0 to R7               /* 1: 0110 1rrr */
			case 0x68:
			case 0x69:
			case 0x6a:
			case 0x6b:
			case 0x6c:
			case 0x6d:
			case 0x6e:
			case 0x6f:
				xrl_a_r(op&7);
				break;
			//JNZ code addr
			case 0x70:						/* 1: 0111 0000 */
				jnz();
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0x71:
				acall();
				break;
			//ORL C, bit addr
			case 0x72:						/* 1: 0111 0010 */
				orl_c_bitaddr();
				break;
			//JMP @A+DPTR
			case 0x73:						/* 1: 0111 0011 */
				jmp_iadptr();
				break;
			//MOV A, #data
			case 0x74:						/* 1: 0111 0100 */
				mov_a_byte();
				break;
			//MOV data addr, #data
			case 0x75:						/* 1: 0111 0101 */
				mov_mem_byte();
				break;
			//MOV @R0/@R1, #data            /* 1: 0111 011i */
			case 0x76:
			case 0x77:
				mov_ir_byte(op&1);
				break;
			//MOV R0 to R7, #data           /* 1: 0111 1rrr */
			case 0x78:
			case 0x79:
			case 0x7a:
			case 0x7b:
			case 0x7c:
			case 0x7d:
			case 0x7e:
			case 0x7f:
				mov_r_byte(op&7);
				break;
			//SJMP code addr
			case 0x80:						/* 1: 1000 0000 */
				sjmp();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0x81:
				ajmp();
				break;
			//ANL C, bit addr
			case 0x82:						/* 1: 1000 0010 */
				anl_c_bitaddr();
				break;
			//MOVC A, @A + PC
			case 0x83:						/* 1: 1000 0011 */
				movc_a_iapc();
				break;
			//DIV AB
			case 0x84:						/* 1: 1000 0100 */
				div_ab();
				break;
			//MOV data addr, data addr
			case 0x85:						/* 1: 1000 0101 */
				mov_mem_mem();
				break;
			//MOV data addr, @R0/@R1        /* 1: 1000 011i */
			case 0x86:
			case 0x87:
				mov_mem_ir(op&1);
				break;
			//MOV data addr,R0 to R7        /* 1: 1000 1rrr */
			case 0x88:
			case 0x89:
			case 0x8a:
			case 0x8b:
			case 0x8c:
			case 0x8d:
			case 0x8e:
			case 0x8f:
				mov_mem_r(op&7);
				break;
			//MOV DPTR, #data
			case 0x90:						/* 1: 1001 0000 */
				mov_dptr_byte();
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0x91:
				acall();
				break;
			//MOV bit addr, C
			case 0x92:						/* 1: 1001 0010 */
				RWM = 1;
				mov_bitaddr_c();
				RWM = 0;
				break;
			//MOVC A, @A + DPTR
			case 0x93:						/* 1: 1001 0011 */
				movc_a_iadptr();
				break;
			//SUBB A, #data
			case 0x94:						/* 1: 1001 0100 */
				subb_a_byte();
				break;
			//SUBB A, data addr
			case 0x95:						/* 1: 1001 0101 */
				subb_a_mem();
				break;
			//SUBB A, @R0/@R1               /* 1: 1001 011i */
			case 0x96:
			case 0x97:
				subb_a_ir(op&1);
				break;
			//SUBB A, R0 to R7              /* 1: 1001 1rrr */
			case 0x98:
			case 0x99:
			case 0x9a:
			case 0x9b:
			case 0x9c:
			case 0x9d:
			case 0x9e:
			case 0x9f:
				subb_a_r(op&7);
				break;
			//ORL C, /bit addr
			case 0xa0:						/* 1: 1010 0000 */
				orl_c_nbitaddr();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0xa1:
				ajmp();
				break;
			//MOV C, bit addr
			case 0xa2:						/* 1: 1010 0010 */
				mov_c_bitaddr();
				break;
			//INC DPTR
			case 0xa3:						/* 1: 1010 0011 */
				inc_dptr();
				break;
			//MUL AB
			case 0xa4:						/* 1: 1010 0100 */
				mul_ab();
				break;
			//reserved
			case 0xa5:						/* 1: 1010 0101 */
				illegal();
				break;
			//MOV @R0/@R1, data addr        /* 1: 1010 011i */
			case 0xa6:
			case 0xa7:
				mov_ir_mem(op&1);
				break;
			//MOV R0 to R7, data addr       /* 1: 1010 1rrr */
			case 0xa8:
			case 0xa9:
			case 0xaa:
			case 0xab:
			case 0xac:
			case 0xad:
			case 0xae:
			case 0xaf:
				mov_r_mem(op&7);
				break;
			//ANL C,/bit addr
			case 0xb0:						/* 1: 1011 0000 */
				anl_c_nbitaddr();
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0xb1:
				acall();
				break;
			//CPL bit addr
			case 0xb2:						/* 1: 1011 0010 */
				RWM=1;
				cpl_bitaddr();
				RWM=0;
				break;
			//CPL C
			case 0xb3:						/* 1: 1011 0011 */
				cpl_c();
				break;
			//CJNE A, #data, code addr
			case 0xb4:						/* 1: 1011 0100 */
				cjne_a_byte();
				break;
			//CJNE A, data addr, code addr
			case 0xb5:						/* 1: 1011 0101 */
				cjne_a_mem();
				break;
			//CJNE @R0/@R1, #data, code addr /* 1: 1011 011i */
			case 0xb6:
			case 0xb7:
				cjne_ir_byte(op&1);
				break;
			//CJNE R0 to R7, #data, code addr/* 1: 1011 1rrr */
			case 0xb8:
			case 0xb9:
			case 0xba:
			case 0xbb:
			case 0xbc:
			case 0xbd:
			case 0xbe:
			case 0xbf:
				cjne_r_byte(op&7);
				break;
			//PUSH data addr
			case 0xc0:						/* 1: 1100 0000 */
				push();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0xc1:
				ajmp();
				break;
			//CLR bit addr
			case 0xc2:						/* 1: 1100 0010 */
				RWM=1;
				clr_bitaddr();
				RWM=0;
				break;
			//CLR C
			case 0xc3:						/* 1: 1100 0011 */
				clr_c();
				break;
			//SWAP A
			case 0xc4:						/* 1: 1100 0100 */
				swap_a();
				break;
			//XCH A, data addr
			case 0xc5:						/* 1: 1100 0101 */
				xch_a_mem();
				break;
			//XCH A, @RO/@R1                /* 1: 1100 011i */
			case 0xc6:
			case 0xc7:
				xch_a_ir(op&1);
				break;
			//XCH A, RO to R7               /* 1: 1100 1rrr */
			case 0xc8:
			case 0xc9:
			case 0xca:
			case 0xcb:
			case 0xcc:
			case 0xcd:
			case 0xce:
			case 0xcf:
				xch_a_r(op&7);
				break;
			//POP data addr
			case 0xd0:						/* 1: 1101 0000 */
				pop();
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0xd1:
				acall();
				break;
			//SETB bit addr
			case 0xd2:						/* 1: 1101 0010 */
				RWM=1;
				setb_bitaddr();
				RWM=0;
				break;
			//SETB C
			case 0xd3:						/* 1: 1101 0011 */
				setb_c();
				break;
			//DA A
			case 0xd4:						/* 1: 1101 0100 */
				da_a();
				break;
			//DJNZ data addr, code addr
			case 0xd5:						/* 1: 1101 0101 */
				RWM=1;
				djnz_mem();
				RWM=0;
				break;
			//XCHD A, @R0/@R1               /* 1: 1101 011i */
			case 0xd6:
			case 0xd7:
				xchd_a_ir(op&1);
				break;
			//DJNZ R0 to R7,code addr       /* 1: 1101 1rrr */
			case 0xd8:
			case 0xd9:
			case 0xda:
			case 0xdb:
			case 0xdc:
			case 0xdd:
			case 0xde:
			case 0xdf:
				djnz_r(op&7);
				break;
			//MOVX A,@DPTR
			case 0xe0:						/* 1: 1110 0000 */
				movx_a_idptr();
				break;
			//AJMP code addr                /* 1: aaa0 0001 */
			case 0xe1:
				ajmp();
				break;
			//MOVX A, @R0/@R1               /* 1: 1110 001i */
			case 0xe2:
			case 0xe3:
				movx_a_ir(op&1);
				break;
			//CLR A
			case 0xe4:						/* 1: 1110 0100 */
				clr_a();
				break;
			//MOV A, data addr
			case 0xe5:						/* 1: 1110 0101 */
				mov_a_mem();
				break;
			//MOV A,@RO/@R1                 /* 1: 1110 011i */
			case 0xe6:
			case 0xe7:
				mov_a_ir(op&1);
				break;
			//MOV A,R0 to R7                /* 1: 1110 1rrr */
			case 0xe8:
			case 0xe9:
			case 0xea:
			case 0xeb:
			case 0xec:
			case 0xed:
			case 0xee:
			case 0xef:
				mov_a_r(op&7);
				break;
			//MOVX @DPTR,A
			case 0xf0:						/* 1: 1111 0000 */
				movx_idptr_a();
				break;
			//ACALL code addr               /* 1: aaa1 0001 */
			case 0xf1:
				acall();
				break;
			//MOVX @R0/@R1,A                /* 1: 1111 001i */
			case 0xf2:
			case 0xf3:
				movx_ir_a(op&1);
				break;
			//CPL A
			case 0xf4:						/* 1: 1111 0100 */
				cpl_a();
				break;
			//MOV data addr, A
			case 0xf5:						/* 1: 1111 0101 */
				mov_mem_a();
				break;
			//MOV @R0/@R1, A                /* 1: 1111 011i */
			case 0xf6:
			case 0xf7:
				mov_ir_a(op&1);
				break;
			//MOV R0 to R7, A               /* 1: 1111 1rrr */
			case 0xf8:
			case 0xf9:
			case 0xfa:
			case 0xfb:
			case 0xfc:
			case 0xfd:
			case 0xfe:
			case 0xff:
				mov_r_a(op&7);
				break;
			default:
				illegal();
		}

		//Store # of used cycles for this opcode (for timer & serial check at top of code)
		i8051.prev_used_cycles = i8051_cycles[op];

		//Check for pending interrupts & handle - remove cycles used
		i8051_icount-=check_interrupts();

	} while( i8051_icount > 0 );

	return cycles - i8051_icount;
}

/* Get registers, return context size */
void i8051_get_context(void *dst)
{
	if( dst )
		memcpy(dst, &i8051, sizeof(I8051));
}

/* Set registers */
void i8051_set_context(void *src)
{
	if( src )
		memcpy(&i8051, src, sizeof(I8051));
}

/* Get Internal RAM value */
unsigned i8051_get_intram(int offset)
{
    UINT8 ram_ret = 0;
    RWM = 1;
    ram_ret = IRAM_R(offset);
    RWM = 0;
    return ram_ret;
}

/*NOTE: These are not used by the opcode functions, they are here only for MAME requirements*/
unsigned i8051_get_reg(int regnum)
{
	switch( regnum )
	{
	case REG_PREVIOUSPC: return PPC;
	case REG_PC:
	case I8051_PC:	return PC;
	case REG_SP:
	case I8051_SP:	return R_SP;
	case I8051_ACC:	return R_ACC;
	case I8051_PSW: return R_PSW;
	case I8051_B:	return R_B;
	case I8051_DPH:	return R_DPH;
	case I8051_DPL:	return R_DPL;
	case I8051_IE:	return R_IE;
	//Not real registers
	case I8051_R0:	return R_R(0);
	case I8051_R1:	return R_R(1);
	case I8051_R2:	return R_R(2);
	case I8051_R3:	return R_R(3);
	case I8051_R4:	return R_R(4);
	case I8051_R5:	return R_R(5);
	case I8051_R6:	return R_R(6);
	case I8051_R7:	return R_R(7);
	case I8051_RB:	return GET_RS;
	default:
		return 0;
	}
	return 0;
}

/*NOTE: These are not used by the opcode functions, they are here only for MAME requirements*/
void i8051_set_reg (int regnum, unsigned val)
{
	switch( regnum )
	{
	case REG_PC:
	case I8051_PC:	PC = val & 0xffff; break;
	case REG_SP:
	case I8051_SP:	SFR_W(SP,val);  break;		//Use SFR to handle error checking
	case I8051_ACC:	SFR_W(ACC,val); break;
	case I8051_PSW: SFR_W(PSW,val); break;
	case I8051_B:   SFR_W(B,val);   break;
	case I8051_DPH: SFR_W(DPH,val); break;
	case I8051_DPL: SFR_W(DPL,val); break;
	case I8051_IE:  SFR_W(IE,val);  break;
	//Not real registers
	case I8051_R0:	R_R(0) = val; break;
	case I8051_R1:	R_R(1) = val; break;
	case I8051_R2:	R_R(2) = val; break;
	case I8051_R3:	R_R(3) = val; break;
	case I8051_R4:	R_R(4) = val; break;
	case I8051_R5:	R_R(5) = val; break;
	case I8051_R6:	R_R(6) = val; break;
	case I8051_R7:	R_R(7) = val; break;
	case I8051_RB:  SET_RS( (val&3) ); break;

	default:
		return;
	}
}

void i8051_set_irq_line(int irqline, int state)
{
	switch( irqline )
	{
		//External Interrupt 0
		case I8051_INT0_LINE:
			//Line Asserted?
			if (state != CLEAR_LINE) {
				//Is the enable flag for this interrupt set?
				if(GET_EX0) {
					//Need cleared->active line transition? (Logical 1-0 Pulse on the line) - CLEAR->ASSERT Transition since INT0 active lo!
					if(GET_IT0){
						if(i8051.last_int0 == CLEAR_LINE)
							SET_IE0(1);
					}
					else
						SET_IE0(1);		//Nope, just set it..
				}
			}
			else
				SET_IE0(0);		//Clear Int occurred flag
			i8051.last_int0 = state;

			//Do the interrupt & handle - remove machine cycles used
			if(GET_IE0)
				i8051_icount-=check_interrupts();
			break;

		//External Interrupt 1
		case I8051_INT1_LINE:

			//Line Asserted?
			if (state != CLEAR_LINE) {
				if(GET_EX1) {
					//Need cleared->active line transition? (Logical 1-0 Pulse on the line) - CLEAR->ASSERT Transition since INT1 active lo!
					if(GET_IT1){
						if(i8051.last_int1 == CLEAR_LINE)
							SET_IE1(1);
					}
				else
					SET_IE1(1);		//Nope, just set it..
				}
			}
			else
				SET_IE1(0);		//Clear Int occurred flag
			i8051.last_int1 = state;

			//Do the interrupt & handle - remove machine cycles used
			if(GET_IE1)
				i8051_icount-=check_interrupts();
			break;

		//Serial Port Receive
		case I8051_RX_LINE:
			//Is the enable flags for this interrupt set?
			if(GET_ES && GET_REN) {
				int data = 0;
				//Call our callball function to retrieve the data
				if(i8051.serial_rx_callback)
					data = i8051.serial_rx_callback();
				//Update the register directly, since SFR_W() will trigger a serial transmit instead!
				R_SBUF=data;
				//Flag the IRQ
				SET_RI(1);
			}
			break;
			//Note: we won't call check interrupts, we'll let the main loop catch it
	}
}

/***********************************************************************************
 Check for pending Interrupts and process - returns # of cycles used for the int

 Note about priority & interrupting interrupts..
 1) A high priority interrupt cannot be interrupted by anything!
 2) A low priority interrupt can ONLY be interrupted by a high priority interrupt
 3) If more than 1 Interrupt Flag is set (ie, 2 simultaneous requests occur),
    the following logic works as follows:
    1) If two requests come in of different priority levels, the higher one is selected..
    2) If the requests are of the same level, an internal order is used:
        a) IEO
        b) TFO
        c) IE1
        d) TF1
        e) RI+TI
        f) TF2+EXF2
 **********************************************************************************/
INLINE UINT8 check_interrupts(void)
{
	//If All Inerrupts Disabled or no pending abort..
	if(!GET_EA)	return 0;

	//Any Interrupts Pending?
	if(NO_PENDING_IRQ) return 0;

	//Skip if current irq in progress is high priority!
	if(i8051.irq_priority)	{ /* LOG(("high priority irq in progress, skipping irq request\n")); */ return 0; }

	//Check which interrupt(s) requests have occurred..
	//NOTE: The order of checking is based on the internal/default priority levels when levels are the same

	//External Int 0
	if(GET_IE0) {
		//Set vector & priority level request
		i8051.int_vec = V_IE0;
		i8051.priority_request = GET_PX0;
	}
	//Timer 0 overflow
	if(!i8051.priority_request && GET_TF0 && (!i8051.int_vec || (i8051.int_vec && GET_PT0))) {
		//Set vector & priority level request
		i8051.int_vec = V_TF0;
		i8051.priority_request = GET_PT0;
	}
	//External Int 1
	if(!i8051.priority_request && GET_IE1 && (!i8051.int_vec || (i8051.int_vec && GET_PX1))) {
		//Set vector & priority level request
		i8051.int_vec = V_IE1;
		i8051.priority_request = GET_PX1;
	}
	//Timer 1 overflow
	if(!i8051.priority_request && GET_TF1 && (!i8051.int_vec || (i8051.int_vec && GET_PT1))) {
		//Set vector & priority level request
		i8051.int_vec = V_TF1;
		i8051.priority_request = GET_PT1;
	}
	//Serial Interrupt Transmit/Receive Interrupts (Note: ES Bit - Serial Interrupts must be enabled)
	if(!i8051.priority_request && GET_ES && (GET_TI || GET_RI) && (!i8051.int_vec || (i8051.int_vec && GET_PS))) {
		//Set vector & priority level request
		i8051.int_vec = V_RITI;
		i8051.priority_request = GET_PS;
	}
#if (HAS_I8052 || HAS_I8752)
	//Timer 2 overflow (Either Timer Overflow OR External Interrupt)
	if(!i8051.priority_request && GET_ET2 && (GET_TF2 || GET_EXF2) && (!i8051.int_vec || (i8051.int_vec && GET_PT2))) {
		//Set vector & priority level request
		i8051.int_vec = V_TF2;
		i8051.priority_request = GET_PT2;
	}
#endif

	//Skip the interrupt request if currently processing is lo priority, and the new request IS NOT HI PRIORITY!
	if(i8051.cur_irq < 0xff && !i8051.priority_request)
		{ LOG(("low priority irq in progress already, skipping low irq request\n")); return 0; }

    /*** --- Perform the interrupt --- ***/

	//Save current pc to stack, set pc to new interrupt vector
	push_pc();
	PC = i8051.int_vec;

	//Set current Irq & Priority being serviced
	i8051.cur_irq = i8051.int_vec;
	i8051.irq_priority = i8051.priority_request;

	//Clear any interrupt flags that should be cleared since we're servicing the irq!
	switch(i8051.cur_irq) {
		case V_IE0:
			//External Int Flag only cleared when configured as Edge Triggered..
			//if(GET_IT0)   - for some reason having this, breaks alving dmd games
				SET_IE0(0);
			break;
		case V_TF0:
			//Timer 0 - Always clear Flag
			SET_TF0(0);
			break;
		case V_IE1:
			//External Int Flag only cleared when configured as Edge Triggered..
			//if(GET_IT1)   - for some reason having this, breaks alving dmd games
				SET_IE1(0);
			break;
		case V_TF1:
			//Timer 0 - Always clear Flag
			SET_TF1(0);
			break;
		case V_RITI:
			// no flags are cleared, TI and RI remain set until reset by software
			break;
#if (HAS_I8052 || HAS_I8752)
		case V_TF2:
			// no flags are cleared according to manual
			break;
#endif
	}

	//Clear vars.. (these are part of the 8051 structure for speed, so we don't have to dynamically allocate space each time)
	i8051.int_vec = 0;
	i8051.priority_request = 0;

	//All interrupts use 2 machine cycles
	return 24;
}


void i8051_set_irq_callback(int (*callback)(int irqline))
{
	i8051.irq_callback = callback;
}

void i8051_set_serial_tx_callback(void (*callback)(int data))
{
	//Hold in static variable since this function can get called before reset has run, which wipes i8051 memory clean
	hold_serial_tx_callback = callback;
}
void i8051_set_serial_rx_callback(int (*callback)(void))
{
	//Hold in static variable since this function can get called before reset has run, which wipes i8051 memory clean
	hold_serial_rx_callback = callback;
}

void i8051_set_eram_iaddr_callback(READ32_HANDLER((*callback)))
{
	//Hold in static variable since this function can get called before reset has run, which wipes i8051 memory clean
	hold_eram_iaddr_callback = callback;
}


void i8051_state_save(void *file)
{
}

void i8051_state_load(void *file)
{
}

/* HELPER FUNCTIONS */

/*All writes to SFR are handled here*/
static WRITE8_HANDLER(sfr_write)
{
	data &= 0xff;		//Ensure only 8 bits
	switch (offset)
	{
		case P0:
			R_P0 = data;
			OUT(0,data);
			break;

		case SP:
			if(offset > 0xff)
				LOG(("i8051 #%d: attemping to write value to SP past 256 bytes at 0x%04x\n", cpu_getactivecpu(), PC));
			R_SP = data&0xff; //keep sp w/in 256 bytes
			break;

		case DPL:		R_DPL = data; break;
		case DPH:		R_DPH = data; break;
		case PCON:		R_PCON= data; break;
		case TCON:		R_TCON= data; break;
		case TMOD:		R_TMOD= data; break;
		case TL0:		R_TL0 = data; break;
		case TL1:		R_TL1 = data; break;
		case TH0:		R_TH0 = data; break;
		case TH1:		R_TH1 = data; break;

		case P1:
			R_P1 = data;
			OUT(1,data);
			break;

		case SCON: {
			//Update register
			R_SCON = data;
			break;
		}

		case SBUF:
			//R_SBUF = data;        //This register is used only for "Receiving data coming in!"
			serial_transmit(data);	//Set up to transmit the data
			break;

		case P2:
			R_P2 = data;
			OUT(2,data);
			break;

		case IE:		R_IE  = data; break;

		case P3:
			R_P3 = data;
			OUT(3,data);
			break;

		case IP:		R_IP  = data; break;

	//8052 Only registers
	#if (HAS_I8052 || HAS_I8752)
		case T2CON:		R_T2CON = data; break;
		case RCAP2L:	R_RCAP2L = data; break;
		case RCAP2H:	R_RCAP2H = data; break;
		case TL2:		R_TL2 = data; break;
		case TH2:		R_TH2 = data; break;
	#endif

		case PSW:
			R_PSW = data;
			SET_PARITY;
			break;

		case ACC:
			R_ACC = data;
			SET_PARITY;
			break;

		case B:			R_B   = data; break;

		/* Illegal or non-implemented sfr */
		default:
			LOG(("i8051 #%d: attemping to write to an invalid/non-implemented SFR address: %x at 0x%04x, data=%x\n", cpu_getactivecpu(), offset,PC,data));
	}
}

/*All reads to SFR are handled here*/
static READ8_HANDLER(sfr_read)
{
	switch (offset)
	{
		case P0:
			if(RWM)
				return R_P0;					//Read directly from port latch
			else
				return IN(0);					//Read from actual port
		case SP:		return R_SP;
		case DPL:		return R_DPL;
		case DPH:		return R_DPH;
		case PCON:		return R_PCON;
		case TCON:		return R_TCON;
		case TMOD:		return R_TMOD;
		case TL0:		return R_TL0;
		case TL1:		return R_TL1;
		case TH0:		return R_TH0;
		case TH1:		return R_TH1;
		case P1:
			if(RWM)
				return R_P1;					//Read directly from port latch
			else
				return IN(1);					//Read from actual port
		case SCON:		return R_SCON;
		case SBUF:		return R_SBUF;
		case P2:
			if(RWM)
				return R_P2;					//Read directly from port latch
			else
				return IN(2);					//Read from actual port
		case IE:		return R_IE;
		case P3:
			if(RWM)
				return R_P3;					//Read directly from port latch
			else
				return IN(3);					//Read from actual port
		case IP:		return R_IP;
	//8052 Only registers
	#if (HAS_I8052 || HAS_I8752)
		case T2CON:		return R_T2CON;
		case RCAP2L:	return R_RCAP2L;
		case RCAP2H:	return R_RCAP2H;
		case TL2:		return R_TL2;
		case TH2:		return R_TH2;
	#endif
		case PSW:		return R_PSW;
		case ACC:		return R_ACC;
		case B:			return R_B;

		/* Illegal or non-implemented sfr */
		default:
			LOG(("i8051 #%d: attemping to read an invalid/non-implemented SFR address: %x at 0x%04x\n", cpu_getactivecpu(), offset,PC));
	}
	return 0xff;
}

/* Reads the contents of the Internal RAM memory   */
/* Anything above 0x7f is a sfr/register */
static READ8_HANDLER(internal_ram_read)
{
	if (offset < 0x80)
		return i8051.IntRam[offset];
	else {
		if (offset < 0x100)
			return SFR_R(offset);
		else
			LOG(("i8051 #%d: attemping to read from an invalid Internal Ram address: %x at 0x%04x\n", cpu_getactivecpu(), offset,PC));
	}
	return 0xff;
}

/* Writes the contents of the Internal RAM memory   */
/* Anything above 0x7f is a sfr/register */
static WRITE8_HANDLER(internal_ram_write)
{
	data &= 0xff;				//Ensure it's only 8 bits
	if (offset < 0x80)
		i8051.IntRam[offset] = data;
	else {
		if (offset < 0x100)
			SFR_W(offset,data);
		else
			LOG(("i8051 #%d: attemping to write to invalid Internal Ram address: %x at 0x%04x\n", cpu_getactivecpu(), offset,PC));
	}
}

/* Reads the contents of the Internal RAM memory (BUT CALLED FROM AN INDIRECT ADDRESSING MODE)   */
/* Different chip types handle differently, for speed, simply call the chip's handler */
static READ8_HANDLER(internal_ram_iread)
{
	return i8051.iram_iread(offset);
}

/* Writes the contents of the Internal RAM memory (BUT CALLED FROM AN INDIRECT ADDRESSING MODE)   */
/* Different chip types handle differently, for speed, simply call the chip's handler */
static WRITE8_HANDLER(internal_ram_iwrite)
{
	i8051.iram_iwrite(offset,data);
}

/*Generate an external ram address for read/writing using indirect addressing mode */
/*The lowest 8 bits of the address are passed in (from the R0/R1 register), however
  the hardware can be configured to set the rest of the address lines to any available output port pins, which
  means the only way we can implement this is to allow the driver to setup a callback to generate the
  address as defined by the specific hardware setup. We'll assume the address won't be bigger than 32 bits
*/
static READ32_HANDLER(external_ram_iaddr)
{
    if(i8051.eram_iaddr_callback)
        return i8051.eram_iaddr_callback(offset,mem_mask);
    else
        LOG(("i8051 #%d: external ram address requested (8 bit offset=%02x), but no callback available! at PC:%04x\n", cpu_getactivecpu(), offset, PC));

	return offset;
}

/*Push the current PC to the stack*/
INLINE void push_pc()
{
	UINT8 tmpSP = R_SP;							//Grab and Increment Stack Pointer
	tmpSP++;									// ""
	SFR_W(SP,tmpSP);							// ""
    if (tmpSP == R_SP)							//Ensure it was able to write to new stack location
		IRAM_IW(tmpSP, (PC & 0xff));			//Store low byte of PC to Internal Ram (Use IRAM_IW to store stack above 128 bytes)
	tmpSP = R_SP;								//Increment Stack Pointer
	tmpSP++;									// ""
	SFR_W(SP,tmpSP);							// ""
	if (tmpSP == R_SP)							//Ensure it was able to write to new stack location
		IRAM_IW(tmpSP, ( (PC & 0xff00) >> 8));	//Store hi byte of PC to next address in Internal Ram (Use IRAM_IW to store stack above 128 bytes)
}

/*Pop the current PC off the stack and into the pc*/
INLINE void pop_pc()
{
	UINT8 tmpSP = R_SP;							//Grab Stack Pointer
	PC = (IRAM_IR(tmpSP) & 0xff) << 8;			//Store hi byte to PC (must use IRAM_IR to access stack pointing above 128 bytes)
	tmpSP = R_SP-1;								//Decrement Stack Pointer
	SFR_W(SP,tmpSP);							// ""
	if (tmpSP == R_SP)							//Ensure it was able to write to new stack location
		PC = PC | IRAM_IR(tmpSP);				//Store lo byte to PC (must use IRAM_IR to access stack pointing above 128 bytes)
	SFR_W(SP,tmpSP-1);							//Decrement Stack Pointer
}

//Set the PSW Parity Flag
INLINE void set_parity()
{
	//This flag will be set when the accumulator contains an odd # of bits set..
	int i,
	p = 0;
	for (i=1; i<=128; i=i*2) {		//Test for each of the 8 bits in the ACC!
		if ((R_ACC & i) != 0)
			p++;					//Keep track of how many bits are set
	}

	//Update the PSW Pairty bit
	SET_P(p & 1);
}

static READ8_HANDLER(bit_address_r)
{
	int	word;
	int	mask;
	int	bit_pos;
	int	base;		/* base of bit space or sfr */
	int	distance;	/* distance between bit addressable words */
					/* 1 for normal bits, 8 for sfr bit addresses */

	offset &= 0xff;

	//User defined bit addresses 0x20-0x2f (values are 0x0-0x7f)
	if (offset < 0x80) {
		base = 0x20;
		distance = 1;
	}
	//SFR bit addressable registers
	else {
		base = 0x80;
		distance = 8;
	}
	word = ( (offset & 0x78) >> 3) * distance + base;
	bit_pos = offset & 0x7;
	mask = 0x1 << bit_pos;
	return((IRAM_R(word) & mask) >> bit_pos);			//Do not use IRAM_IR
}


static WRITE8_HANDLER(bit_address_w)
{
	int	word;
	int	mask;
	int	bit_pos;
	int	result;
	int	base;
	int	distance;

	offset &= 0xff;

	//User defined bit addresses 0x20-0x2f (values are 0x0-0x7f)
	if (offset < 0x80) {
		base = 0x20;
		distance = 1;
	}
	//SFR bit addressable registers
	else {
		base = 0x80;
		distance = 8;
	}
	word = ((offset & 0x78) >> 3) * distance + base;
	bit_pos = offset & 0x7;
	data = (data & 0x1) << bit_pos;
	mask = ~(1 << bit_pos) & 0xff;
	result = IRAM_R(word) & mask;	//Do not use IRAM_IR
	result = result | data;
	IRAM_W(word, result);			//Do not use IRAM_IW
}

/* The following two handlers are used by the MAME Debugger Memory Window...
   By keeping these functions separate from the internally used IRAM_W/IRAM_R functions,
   we can manipulate and display internal memory in the debugger memory window in a layout
   that is not necessarily how the real memory is.. this will be especially useful for
   the 8052 chip where both the SFR and the upper 128 bytes of ram are mapped to the same
   address, so we can handle that here by mapping the sfr to a different address */

READ8_HANDLER(i8051_internal_r)
{
	//Restrict internal ram to 256 Bytes max
	if(offset < 0x100)
		return IRAM_R(offset);
	else
		return 0;
}
WRITE8_HANDLER(i8051_internal_w)
{
	//Restrict internal ram to 256 Bytes max
	if(offset < 0x100)
		IRAM_W(offset,data);
}

INLINE void do_add_flags(UINT8 a, UINT8 data, UINT8 c)
{
	UINT16 result = a+data+c;
	INT16 result1 = (INT8)a+(INT8)data+c;
	int cy, ac, ov;

	cy = (result & 0x100) >> 8;
	result = (a&0x0f)+(data&0x0f)+c;
	ac = (result & 0x10) >> 4;
	ov = (result1 < -128 || result1 > 127);

	SET_CY(cy);
	SET_AC(ac);
	SET_OV(ov);

#ifdef MAME_DEBUG
//  mame_printf_debug("add: result=%x, c=%x, ac=%x, ov=%x\n",a+data+c,cy,ac,ov);
#endif
}

INLINE void do_sub_flags(UINT8 a, UINT8 data, UINT8 c)
{
	UINT16 result = a-(data+c);
	INT16 result1 = (INT8)a-(INT8)(data+c);
	int cy, ac, ov;
	cy = (result & 0x100) >> 8;
	result = (a&0x0f)-((data&0x0f)+c);
	ac = (result & 0x10) >> 4;
	ov = (result1 < -128 || result1 > 127);
	SET_CY(cy);
	SET_AC(ac);
	SET_OV(ov);

#ifdef MAME_DEBUG
//  mame_printf_debug("sub: a=%x, d=%x, c=%x, result=%x, cy=%x, ac=%x, ov=%x\n",a,data,c,a-data-c,cy,ac,ov);
#endif
}

INLINE void update_timer(int cyc)
{
	//This code sucks, needs to be rewritten SJE

	//Todo: Probably better to store the current mode of the timer on a write, so we don't waste time reading it.

	//Note: Counting modes increment on 1 machine cycle (12 oscilator periods) - except Timer 2 in certain modes

	//Update Timer 0
	if(GET_TR0) {
		//Determine Mode
		int mode = (GET_M0_1<<1) | GET_M0_0;
		int overflow;
		UINT16 count = 0;
		switch(mode) {
			case 0:			//13 Bit Timer Mode
				count = ((R_TH0<<8) | R_TL0);
				overflow = 0x3fff;
				//Todo - really, we update HI counter when LO counter hits 0x20
			case 1:			//16 Bit Timer Mode
				count = ((R_TH0<<8) | R_TL0);
				overflow = 0xffff;
				//Check for overflow
				if((UINT32)(count+(cyc/12))>overflow) {
					//Any overflow from cycles?
					cyc-= (overflow-count)*12;
					count = 0;
                    SET_TF0(1);
				}
				//Update the timer
				if(cyc) {
					int inctimer = 0;
					//Gate Bit Set? Timer only incremented if Int0 is set!
					if(GET_GATE0 && GET_IE0)
						inctimer = (cyc/12);
					//Counter Mode? Only increment on 1-0 transition of the Port 3's T0 Line
					if(GET_CT0) {
						//Not supported
					}
					//Neither, regular timer mode
					if(!GET_GATE0 && !GET_CT0)
						inctimer = (cyc/12);

					count+=inctimer;		//Increment counter
				}
				//Update new values of the counter
				R_TH0 = (count>>8) & 0xff;
				R_TL0 = count & 0xff;
				break;
			case 2:			//8 Bit Autoreload
				overflow = 0xff;
				count = R_TL0;
				//Check for overflow
				if(count+(cyc/12)>overflow) {
                    SET_TF0(1);
					//Reload
					count = R_TH0+(overflow-count);
				}
				else
					count+=(cyc/12);
				//Update new values of the counter
				R_TL0 = count & 0xff;
				break;
			case 3:			//Split Timer
                //Split Timer 1
				overflow = 0xff;
				count = R_TL0;
				//Check for overflow
                if(count+(cyc/12)>overflow) {
					count = overflow-count;
                    SET_TF0(1);
                }
				else
					count+=(cyc/12);
				//Update new values of the counter
				R_TL0 = count & 0xff;

                //Split Timer 2
                if(GET_TR1) {
				    overflow = 0xff;
				    count = R_TH0;
				    //Check for overflow
                    if(count+(cyc/12)>overflow) {
					    count = overflow-count;
                        SET_TF1(1);
                    }
				    else
                        count+=(cyc/12);
				    //Update new values of the counter
				    R_TH0 = count & 0xff;
                }
				break;
		}
	}

	//Update Timer 1
	if(GET_TR1) {
		//Determine Mode
		int mode = (GET_M1_1<<1) | GET_M1_0;
		int overflow;
		UINT16 count = 0;
		switch(mode) {
			case 0:			//13 Bit Timer Mode
				count = ((R_TH1<<8) | R_TL1);
				overflow = 0x3fff;
				//Todo - really, we update HI counter when LO counter hits 0x20
			case 1:			//16 Bit Timer Mode
				count = ((R_TH1<<8) | R_TL1);
				overflow = 0xffff;
				//Check for overflow
				if((UINT32)(count+(cyc/12))>overflow) {

					//TODO: Timer 1 can be set as Serial Baud Rate in the 8051 only... process bits here..

					//Any overflow from cycles?
					cyc-= (overflow-count)*12;
					count = 0;
                    SET_TF1(1);
				}
				//Update the timer
				if(cyc) {
					int inctimer = 0;
					//Gate Bit Set? Timer only incremented if Int0 is set!
					if(GET_GATE1 && GET_IE1)
						inctimer = (cyc/12);
					//Counter Mode? Only increment on 1-0 transition of the Port 3's T0 Line
					if(GET_CT1) {
						//Not supported
					}
					//Neither, regular timer mode
					if(!GET_GATE1 && !GET_CT1)
						inctimer = (cyc/12);

					count+=inctimer;		//Increment counter
				}
				//Update new values of the counter
				R_TH1 = (count>>8) & 0xff;
				R_TL1 = count & 0xff;
				break;
			case 2:			//8 Bit Autoreload
				overflow = 0xff;
				count = R_TL1;
				//Check for overflow
				if(count+(cyc/12)>overflow) {
                    SET_TF1(1);
					//Reload
					count = R_TH1+(overflow-count);
				}
				else
					count+=(cyc/12);
				//Update new values of the counter
				R_TL1 = count & 0xff;
				break;
			case 3:			//Split Timer
				break;
		}
	}

#if (HAS_I8052 || HAS_I8752)
	//Update Timer 2
	if(GET_TR2) {
		int timerinc, overflow, isoverflow;
		UINT16 count = ((R_TH2<<8) | R_TL2);
		timerinc = overflow = isoverflow = 0;

		//Are we in counter mode?
		if(GET_CT2)		{
			//Not supported
		}
		//Are we in timer mode?
		else {
			//16 Bit Timer Mode
			overflow = 0xffff;
			//Timer 2 Used as Baud Generator? (For now, only *same* send/receive rates supported)
			if(GET_TCLK || GET_RCLK)
				timerinc = cyc/2;						//Timer increments ever 1/2 cycle in baud mode
			else
			//REGULAR TIMER -
				timerinc = cyc/12;						//Timer increments ever 1/12 cycles in normal mode

			//Check for overflow
			if((UINT32)(count+timerinc)>overflow) {
				//Set Interrupt flag *unless* used as baud generator
				if(!GET_TCLK && !GET_RCLK) {
					SET_TF2(1);
				}
				else {
				//Update bits sent if sending & bits left to send!
					if(uart.sending && uart.bits_to_send && uart.timerbaud)
						uart.bits_to_send-=1;
				}
				//Auto reload?
				if(!GET_CP)
					count = ((R_RCAP2H<<8) | R_RCAP2L); //+(overflow-count);
				else
					count = overflow-count;
			}
			else {
			//No overflow, just increment timer
				count+=timerinc;
			}
			//Update flags
			R_TH2 = (count>>8) & 0xff;
			R_TL2 = count & 0xff;
		}
	}
#endif
}

//Set up to transmit data out of serial port
//NOTE: Enable Serial Port Interrupt bit is NOT required to send/receive data!
INLINE void serial_transmit(UINT8 data)
{
	int mode = (GET_SM0<<1) | GET_SM1;

	//Flag that we're sending data
	uart.sending = 1;
	uart.data_out = data;
	switch(mode) {
		//8 bit shifter ( + start,stop bit ) - baud set by clock freq / 12
		case 0:
			uart.timerbaud = 0;
			uart.bitcycles = 0;
			uart.bits_to_send = 8+2;
			break;
		//8 bit uart ( + start,stop bit ) - baud set by timer1 or timer2
		case 1:
			uart.timerbaud = 1;
			uart.bits_to_send = 8+2;
			break;
		//9 bit uart
		case 2:
		case 3:
			LOG(("Serial mode 2 & 3 not supported in i8051!\n"));
			break;
	}
}

//Check and update status of serial port
INLINE void	update_serial(int cyc)
{
	//Any bits left to send?
	if(uart.bits_to_send) {
		//Timer Generated baud?
		if(uart.timerbaud) {
			//Let Timer overflow handle removing bits
		}
		else {
			//Oscillator Based baud rate = Osc/12 baud rate, however it also means 1 bit = 12 cycles.
			uart.bitcycles+=cyc;
			if(uart.bitcycles > 11)	{
				int bits_sent = uart.bitcycles / 12;
				int diff = uart.bitcycles % 12;
				//don't allow more bits sent than ready to send
				if(bits_sent > uart.bits_to_send) {
					bits_sent = uart.bits_to_send;
					diff = 0;
				}
				uart.bits_to_send-=bits_sent;
				uart.bitcycles = diff;
			}
		}
	}
	//If no bits left to send - flag the interrupt & call the callback
	if(!uart.bits_to_send) {
		//Clear sending flag
		uart.sending = 0;
		uart.bitcycles = 0;
		//Call the callback function
		if(i8051.serial_tx_callback)
			i8051.serial_tx_callback(uart.data_out);
		//Set Interrupt Flag
		SET_TI(1);
		//Note: we'll let the main loop catch the interrupt
	}
}


/****************************************************************************
 * 8752 Section
 ****************************************************************************/
#if (HAS_I8052 || HAS_I8752)
void i8752_init (int index, int clock, const void *config, int (*irqcallback)(int))	{ i8051_init(index, clock, config, irqcallback); }
void i8752_reset (void)
{
	memset(&i8051, 0, sizeof(I8051));
	memset(&uart, 0, sizeof(I8051_UART));
	i8051.subtype = 8752;

	//Set up 8052 specific internal read/write (indirect) handlers..
	i8051.iram_iread  = i8052_internal_ram_iread;
	i8051.iram_iwrite = i8052_internal_ram_iwrite;

	//Set up serial call back handlers
	i8051.serial_tx_callback = hold_serial_tx_callback;
	hold_serial_tx_callback = NULL;
	i8051.serial_rx_callback = hold_serial_rx_callback;
	hold_serial_rx_callback = NULL;

	//Setup External ram callback handlers
	i8051.eram_iaddr_callback = hold_eram_iaddr_callback;
	hold_eram_iaddr_callback = NULL;

	//Clear Ram (w/0xff)
	memset(&i8051.IntRam,0xff,sizeof(i8051.IntRam));

	/* these are all defined reset states */
	PC = 0;
	SFR_W(SP, 0x7);
	SFR_W(PSW, 0);
	SFR_W(DPH, 0);
	SFR_W(DPL, 0);
	SFR_W(ACC, 0);
	SFR_W(B, 0);
	SFR_W(IP, 0);
	SFR_W(IE, 0);
	SFR_W(SCON, 0);
	SFR_W(TCON, 0);
	SFR_W(TMOD, 0);
	SFR_W(TH1, 0);
	SFR_W(TH0, 0);
	SFR_W(TL1, 0);
	SFR_W(TL0, 0);
	//8052 Only registers
	SFR_W(T2CON, 0);
	SFR_W(RCAP2L, 0);
	SFR_W(RCAP2H, 0);
	SFR_W(TL2, 0);
	SFR_W(TH2, 0);

	/* set the port configurations to all 1's */
	SFR_W(P3, 0xff);
	SFR_W(P2, 0xff);
	SFR_W(P1, 0xff);
	SFR_W(P0, 0xff);

	/* Flag as NO IRQ in Progress */
	CLEAR_CURRENT_IRQ
}

void i8752_exit	(void)						{ i8051_exit(); }
int	i8752_execute(int cycles)				{ return i8051_execute(cycles); }
void i8752_get_context (void *dst)				{ i8051_get_context(dst); }
void i8752_set_context (void *src)				{ i8051_set_context(src); }
unsigned i8752_get_reg (int regnum)				{ return i8051_get_reg(regnum); }
void i8752_set_reg (int regnum, unsigned val)			{ i8051_set_reg(regnum,val); }
void i8752_set_irq_line(int irqline, int state)			{ i8051_set_irq_line(irqline,state); }
void i8752_set_irq_callback(int (*callback)(int irqline))	{ i8051_set_irq_callback(callback); }
void i8752_set_serial_tx_callback(void (*callback)(int data))	{ i8051_set_serial_tx_callback(callback); }
void i8752_set_serial_rx_callback(int (*callback)(void))	{ i8051_set_serial_rx_callback(callback); }
void i8752_state_save(void *file)				{ i8051_state_save(file); }
void i8752_state_load(void *file)				{ i8051_state_load(file); }

/* The following two handlers are used by the MAME Debugger Memory Window...
   By keeping these functions separate from the internally used IRAM_W/IRAM_R functions,
   we can manipulate and display internal memory in the debugger memory window in a layout
   that is not necessarily how the real memory is.. this will be especially useful for
   the 8052 chip where both the SFR and the upper 128 bytes of ram are mapped to the same
   address, so we can handle that here by mapping the sfr to a different address */

READ8_HANDLER(i8752_internal_r)
{
	//USE INDIRECT READ TO ALLOW FULL 256 Bytes of RAM to show in the debugger
	if(offset < 0x100)
		return IRAM_IR(offset);
	else
	//MAP SFR registers starting at 256 (they are only 128 bytes in size)
	if(offset < 0x100+0x80)
		return SFR_R(offset-0x80);
	else
	//Everything else is 0 (and invalid)
		return 0;
}
WRITE8_HANDLER(i8752_internal_w)
{
	//USE INDIRECT WRITE TO ALLOW FULL 256 Bytes of RAM to show in the debugger
	if(offset < 0x100)
		IRAM_IW(offset,data);
	else
		if(offset < 0x100+0x80)
			SFR_W(offset-0x80,data);
}

/* Reads the contents of the Internal RAM memory INDIRECTLY  */
/* Anything above 0x7f is NOT sfr/register, but rather UPPER 128K OF INTERNAL RAM */
static READ8_HANDLER(i8052_internal_ram_iread)
{
	if (offset < 0x100)
		return i8051.IntRam[offset];
	else
		LOG(("i8051 #%d: attemping to read from an invalid Internal Ram address: %x at 0x%04x\n", cpu_getactivecpu(), offset,PC));
	return 0xff;
}

/* Writes the contents of the Internal RAM memory INDIRECTLY */
/* Anything above 0x7f is NOT sfr/register, but rather UPPER 128K OF INTERNAL RAM */
static WRITE8_HANDLER(i8052_internal_ram_iwrite)
{
	data &= 0xff;				//Ensure it's only 8 bits
	if (offset < 0x100)
		i8051.IntRam[offset] = data;
	else
		LOG(("i8051 #%d: attemping to write to an invalid Internal Ram address: %x at 0x%04x\n", cpu_getactivecpu(), offset,PC));
}

#endif	//(HAS_8752)

/**************************************************************************
 * Generic set_info
 **************************************************************************/

static void i8051_set_info(UINT32 state, cpuinfo *info)
{
	switch (state)
	{
		/* --- the following bits of info are set as 64-bit signed integers --- */
		case CPUINFO_INT_PC:							PC = info->i;							break;
		case CPUINFO_INT_SP:							i8051.sp = info->i;	     				break;

		case CPUINFO_INT_INPUT_STATE + I8051_INT0_LINE:	i8051_set_irq_line(I8051_INT0_LINE, info->i); break;
		case CPUINFO_INT_INPUT_STATE + I8051_INT1_LINE:	i8051_set_irq_line(I8051_INT1_LINE, info->i); break;
		case CPUINFO_INT_INPUT_STATE + I8051_T0_LINE:	i8051_set_irq_line(I8051_T0_LINE, info->i); break;
		case CPUINFO_INT_INPUT_STATE + I8051_T1_LINE:	i8051_set_irq_line(I8051_T1_LINE, info->i); break;
		case CPUINFO_INT_INPUT_STATE + I8051_RX_LINE:	i8051_set_irq_line(I8051_RX_LINE, info->i); break;

		case CPUINFO_INT_REGISTER + I8051_PC: 			PC = info->i;							break;
		case CPUINFO_INT_REGISTER + I8051_SP: 			R_SP = info->i;							break;
		case CPUINFO_INT_REGISTER + I8051_PSW:			i8051.psw = info->i;					break;
		case CPUINFO_INT_REGISTER + I8051_ACC:			i8051.acc = info->i;					break;
		case CPUINFO_INT_REGISTER + I8051_B:  			i8051.b = info->i;						break;
		case CPUINFO_INT_REGISTER + I8051_DPH:			i8051.dph = info->i;					break;
		case CPUINFO_INT_REGISTER + I8051_DPL:			i8051.dpl = info->i;					break;
		case CPUINFO_INT_REGISTER + I8051_IE: 			i8051.ie = info->i;						break;
		case CPUINFO_INT_REGISTER + I8051_R0: 			i8051.IntRam[0+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_R1: 			i8051.IntRam[1+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_R2: 			i8051.IntRam[2+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_R3: 			i8051.IntRam[3+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_R4: 			i8051.IntRam[4+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_R5: 			i8051.IntRam[5+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_R6: 			i8051.IntRam[6+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_R7: 			i8051.IntRam[7+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
		case CPUINFO_INT_REGISTER + I8051_RB: 			i8051.IntRam[8+(8*((i8051.psw & 0x18)>>3))] = info->i; break;
	}
}

/**************************************************************************
 * Generic get_info
 **************************************************************************/

void i8051_get_info(UINT32 state, cpuinfo *info)
{
	I8051 *r = &i8051;

	switch (state)
	{
		/* --- the following bits of info are returned as 64-bit signed integers --- */
		case CPUINFO_INT_CONTEXT_SIZE:					info->i = sizeof(i8051);				break;
		case CPUINFO_INT_DEFAULT_IRQ_VECTOR:			info->i = 0;							break;
		case CPUINFO_INT_ENDIANNESS:					info->i = CPU_IS_LE;					break;
		case CPUINFO_INT_CLOCK_DIVIDER:					info->i = 1;							break;
		case CPUINFO_INT_MIN_INSTRUCTION_BYTES:			info->i = 1;							break;
		case CPUINFO_INT_MAX_INSTRUCTION_BYTES:			info->i = 5;							break;
		case CPUINFO_INT_MIN_CYCLES:					info->i = 1;							break;
		case CPUINFO_INT_MAX_CYCLES:					info->i = 20; /* rough guess */			break;
		case CPUINFO_INT_INPUT_LINES:        			info->i = 3;							break;

		case CPUINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_PROGRAM:	info->i = 8;					break;
		case CPUINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_PROGRAM: info->i = 16;					break;
		case CPUINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_PROGRAM: info->i = 0;					break;
		case CPUINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_DATA:	info->i = 8;					break;
		case CPUINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_DATA: 	info->i = 16;					break;
		case CPUINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_DATA: 	info->i = 0;					break;
		case CPUINFO_INT_DATABUS_WIDTH + ADDRESS_SPACE_IO:	info->i = 8;						break;
		case CPUINFO_INT_ADDRBUS_WIDTH + ADDRESS_SPACE_IO: 	info->i = 16;						break;
		case CPUINFO_INT_ADDRBUS_SHIFT + ADDRESS_SPACE_IO: 	info->i = 0;						break;

		case CPUINFO_INT_PREVIOUSPC:					info->i = PPC;							break;
		case CPUINFO_INT_PC:	 						info->i = PC;							break;
		case CPUINFO_INT_SP:							info->i = R_SP;							break;

		case CPUINFO_INT_REGISTER + I8051_PC: 			info->i = PC;							break;
		case CPUINFO_INT_REGISTER + I8051_SP: 			info->i = R_SP;							break;
		case CPUINFO_INT_REGISTER + I8051_PSW:			info->i = i8051.psw;					break;
		case CPUINFO_INT_REGISTER + I8051_ACC:			info->i = i8051.acc;					break;
		case CPUINFO_INT_REGISTER + I8051_B:  			info->i = i8051.b;						break;
		case CPUINFO_INT_REGISTER + I8051_DPH:			info->i = i8051.dph;					break;
		case CPUINFO_INT_REGISTER + I8051_DPL:			info->i = i8051.dpl;					break;
		case CPUINFO_INT_REGISTER + I8051_IE: 			info->i = i8051.ie;						break;
		case CPUINFO_INT_REGISTER + I8051_R0: 			info->i = i8051.IntRam[0+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_R1: 			info->i = i8051.IntRam[1+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_R2: 			info->i = i8051.IntRam[2+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_R3: 			info->i = i8051.IntRam[3+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_R4: 			info->i = i8051.IntRam[4+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_R5: 			info->i = i8051.IntRam[5+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_R6: 			info->i = i8051.IntRam[6+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_R7: 			info->i = i8051.IntRam[7+(8*((i8051.psw & 0x18)>>3))]; break;
		case CPUINFO_INT_REGISTER + I8051_RB: 			info->i = i8051.IntRam[8+(8*((i8051.psw & 0x18)>>3))]; break;

		/* --- the following bits of info are returned as pointers to data or functions --- */
		case CPUINFO_PTR_SET_INFO:						info->setinfo = i8051_set_info;			break;
		case CPUINFO_PTR_GET_CONTEXT:					info->getcontext = i8051_get_context;	break;
		case CPUINFO_PTR_SET_CONTEXT:					info->setcontext = i8051_set_context;	break;
		case CPUINFO_PTR_INIT:							info->init = i8051_init;				break;
		case CPUINFO_PTR_RESET:							info->reset = i8051_reset;				break;
		case CPUINFO_PTR_EXIT:							info->exit = i8051_exit;				break;
		case CPUINFO_PTR_EXECUTE:						info->execute = i8051_execute;			break;
		case CPUINFO_PTR_BURN:							info->burn = NULL;						break;
#ifdef MAME_DEBUG
		case CPUINFO_PTR_DISASSEMBLE:					info->disassemble = i8051_dasm;			break;
#endif /* MAME_DEBUG */
		case CPUINFO_PTR_INSTRUCTION_COUNTER:			info->icount = &i8051_icount;			break;

		case CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_PROGRAM: info->internal_map = 0;	break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_DATA:    info->internal_map = 0;	break;
		case CPUINFO_PTR_INTERNAL_MEMORY_MAP + ADDRESS_SPACE_IO:      info->internal_map = 0;	break;

		/* --- the following bits of info are returned as NULL-terminated strings --- */
		case CPUINFO_STR_NAME:							strcpy(info->s, "I8051");				break;
		case CPUINFO_STR_CORE_FAMILY:					strcpy(info->s, "MCS-51");				break;
		case CPUINFO_STR_CORE_VERSION:					strcpy(info->s, "1.0");					break;
		case CPUINFO_STR_CORE_FILE:						strcpy(info->s, __FILE__);				break;
		case CPUINFO_STR_CORE_CREDITS:					strcpy(info->s, "Copyright (c) 2003-2004 Steve Ellenoff"); break;

		case CPUINFO_STR_FLAGS:
			sprintf(info->s, "%c%c%c%c%c%c%c%c",
				r->psw & 0x80 ? 'C':'.',
				r->psw & 0x40 ? 'A':'.',
				r->psw & 0x20 ? 'F':'.',
				r->psw & 0x10 ? '0':'.',
				r->psw & 0x08 ? '1':'.',
				r->psw & 0x04 ? 'V':'.',
				r->psw & 0x02 ? '?':'.',
				r->psw & 0x01 ? 'P':'.');
			break;

		case CPUINFO_STR_REGISTER + I8051_PC:        	sprintf(info->s, "PC:%04X", r->pc);		break;
		case CPUINFO_STR_REGISTER + I8051_SP:        	sprintf(info->s, "SP:%02X", r->sp);		break;
		case CPUINFO_STR_REGISTER + I8051_PSW:       	sprintf(info->s, "PSW:%02X", r->psw);	break;
		case CPUINFO_STR_REGISTER + I8051_ACC:       	sprintf(info->s, "A:%02X", r->acc);		break;
		case CPUINFO_STR_REGISTER + I8051_B:         	sprintf(info->s, "B:%02X", r->b);		break;
		case CPUINFO_STR_REGISTER + I8051_DPH:       	sprintf(info->s, "DPH:%02X", r->dph);	break;
		case CPUINFO_STR_REGISTER + I8051_DPL:       	sprintf(info->s, "DPL:%02X", r->dpl);	break;
		case CPUINFO_STR_REGISTER + I8051_IE:        	sprintf(info->s, "IE:%02X", r->ie);		break;
		case CPUINFO_STR_REGISTER + I8051_R0:        	sprintf(info->s, "R0:%02X", r->IntRam[0+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_R1:        	sprintf(info->s, "R1:%02X", r->IntRam[1+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_R2:        	sprintf(info->s, "R2:%02X", r->IntRam[2+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_R3:			sprintf(info->s, "R3:%02X", r->IntRam[3+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_R4: 			sprintf(info->s, "R4:%02X", r->IntRam[4+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_R5: 			sprintf(info->s, "R5:%02X", r->IntRam[5+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_R6: 			sprintf(info->s, "R6:%02X", r->IntRam[6+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_R7: 			sprintf(info->s, "R7:%02X", r->IntRam[7+(8*((r->psw & 0x18)>>3))]); break;
		case CPUINFO_STR_REGISTER + I8051_RB: 			sprintf(info->s, "RB:%02X", ((r->psw & 0x18)>>3)); break;
	}
}

#if (HAS_I8052)
void i8052_get_info(UINT32 state, cpuinfo *info)
{
	switch (state)
	{
		case CPUINFO_PTR_GET_CONTEXT:					info->getcontext = i8752_get_context;	break;
		case CPUINFO_PTR_SET_CONTEXT:					info->setcontext = i8752_set_context;	break;
		case CPUINFO_PTR_INIT:							info->init = i8752_init;				break;
		case CPUINFO_PTR_RESET:							info->reset = i8752_reset;				break;
		case CPUINFO_PTR_EXIT:							info->exit = i8752_exit;				break;
		case CPUINFO_PTR_EXECUTE:						info->execute = i8752_execute;			break;

		case CPUINFO_STR_NAME:							strcpy(info->s, "I8052");				break;

		default:										i8051_get_info(state, info);			break;
	}
}
#endif

#if (HAS_I8751)
void i8751_get_info(UINT32 state, cpuinfo *info)
{
	switch (state)
	{
		case CPUINFO_STR_NAME:							strcpy(info->s, "I8751");				break;

		default:										i8051_get_info(state, info);			break;
	}
}
#endif

#if (HAS_I8752)
void i8752_get_info(UINT32 state, cpuinfo *info)
{
	switch (state)
	{
		case CPUINFO_PTR_GET_CONTEXT:					info->getcontext = i8752_get_context;	break;
		case CPUINFO_PTR_SET_CONTEXT:					info->setcontext = i8752_set_context;	break;
		case CPUINFO_PTR_INIT:							info->init = i8752_init;				break;
		case CPUINFO_PTR_RESET:							info->reset = i8752_reset;				break;
		case CPUINFO_PTR_EXIT:							info->exit = i8752_exit;				break;
		case CPUINFO_PTR_EXECUTE:						info->execute = i8752_execute;			break;

		case CPUINFO_STR_NAME:							strcpy(info->s, "I8752");				break;

		default:										i8051_get_info(state, info);			break;
	}
}
#endif