summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/sound/ymf278b.cpp
blob: 50f655f19420a04aa12cefa94ac1951d0913d225 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
// license:BSD-3-Clause
// copyright-holders:R. Belmont, Olivier Galibert, hap
/*

   YMF278B  FM + Wave table Synthesizer (OPL4)

   Timer and PCM YMF278B.  The FM will be shared with the ymf262, eventually.

   This chip roughly splits the difference between the Sega 315-5560 MultiPCM
   (Multi32, Model 1/2) and YMF 292-F SCSP (later Model 2, STV, Saturn, Model 3).

   Features as listed in LSI-4MF2782 data sheet:
    FM Synthesis (same as YMF262)
     1. Sound generation mode
         Two-operater mode
          Generates eighteen voices or fifteen voices plus five rhythm sounds simultaneously
         Four-operator mode
          Generates six voices in four-operator mode plus six voices in two-operator mode simultaneously,
          or generates six voices in four-operator mode plus three voices in two-operator mode plus five
          rhythm sounds simultaneously
     2. Eight selectable waveforms
     3. Stereo output
    Wave Table Synthesis
     1. Generates twenty-four voices simultaneously
     2. 44.1kHz sampling rate for output sound data
     3. Selectable from 8-bit, 12-bit and 16-bit word lengths for wave data
     4. Stereo output (16-stage panpot for each voice)
    Wave Data
     1. Accepts 32M bit external memory at maximum
     2. Up to 512 wave tables
     3. External ROM or SRAM can be connected. With SRAM connected, the CPU can download wave data
     4. Outputs chip select signals for 1Mbit, 4Mbit, 8Mbit or 16Mbit memory
     5. Can be directly connected to the Yamaha YRW801 (Wave data ROM)
        Features of YRW801 as listed in LSI 4RW801A2
          Built-in wave data of tones which comply with GM system Level 1
           Melody tone ....... 128 tones
           Percussion tone ...  47 tones
          16Mbit capacity (2,097,152word x 8)

   By R. Belmont and O. Galibert.


   TODO:
   - accurate timing of envelopes
   - LFO (vibrato, tremolo)
   - integrate YMF262 mixing (used by Fuuki games, not used by Psikyo and Metro games)
   - Envelope and LFO function is similar algorithm as multipcm.cpp (except Damp, Pseudo Reverb)
     Can it be merged with/ported to this?
*/

#include "emu.h"
#include "ymf278b.h"
#include "ymf262.h"

#include <algorithm>

#define VERBOSE 0
#define LOG(x) do { if (VERBOSE) logerror x; } while (0)


/**************************************************************************/

int ymf278b_device::compute_rate(YMF278BSlot *slot, int val)
{
	int res, oct;

	if(val == 0)
		return 0;
	if(val == 15)
		return 63;
	if(slot->RC != 15)
	{
		oct = slot->octave;
		if (oct & 8)
			oct |= -8;

		res = (oct+slot->RC)*2 + (slot->F_NUMBER & 0x200 ? 1 : 0) + val*4;
	}
	else
		res = val * 4;
	if(res < 0)
		res = 0;
	else if(res > 63)
		res = 63;

	return res;
}

uint32_t ymf278b_device::compute_decay_env_vol_step(YMF278BSlot *slot, int val)
{
	int rate;
	uint32_t res;

	// rate override with damping/pseudo reverb
	if (slot->DAMP)
		rate = 56; // approximate, datasheet says it's slightly curved though
	else if (slot->preverb && slot->env_vol > ((6*8)<<23))
	{
		// pseudo reverb starts at -18dB (6 in voltab)
		slot->env_preverb = 1;
		rate = 5;
	}
	else
		rate = compute_rate(slot, val);

	if (rate < 4)
		res = 0;
	else
		res = (256U<<23) / m_lut_dr[rate];

	return res;
}

void ymf278b_device::compute_freq_step(YMF278BSlot *slot)
{
	uint32_t step;
	int oct;

	oct = slot->octave;
	if(oct & 8)
		oct |= -8;

	step = (slot->F_NUMBER | 1024) << (oct + 8);
	slot->step = step >> 3;
}

void ymf278b_device::compute_envelope(YMF278BSlot *slot)
{
	switch (slot->env_step)
	{
		// Attack
		case 0:
		{
			// Attack
			int rate = compute_rate(slot, slot->AR);
			slot->env_vol = 256U<<23;
			slot->env_vol_lim = (256U<<23) - 1;

			if (rate==63)
			{
				// immediate
				LOG(("YMF278B: Attack skipped - "));
				slot->env_vol = 0;
				slot->env_step++;
				compute_envelope(slot);
			}
			else if (rate<4)
			{
				slot->env_vol_step = 0;
			}
			else
			{
				// NOTE: attack rate is linear here, but datasheet shows a smooth curve
				LOG(("YMF278B: Attack, val = %d, rate = %d, delay = %g\n", slot->AR, rate, m_lut_ar[rate]*1000.0));
				slot->env_vol_step = ~((256U<<23) / m_lut_ar[rate]);
			}

			break;
		}

		// Decay 1
		case 1:
			if(slot->DL)
			{
				LOG(("YMF278B: Decay step 1, dl=%d, val = %d rate = %d, delay = %g, PRVB = %d, DAMP = %d\n", slot->DL, slot->D1R, compute_rate(slot, slot->D1R), m_lut_dr[compute_rate(slot, slot->D1R)]*1000.0, slot->preverb, slot->DAMP));
				slot->env_vol_step = compute_decay_env_vol_step(slot, slot->D1R);
				slot->env_vol_lim = (slot->DL*8)<<23;
			}
			else
			{
				LOG(("YMF278B: Decay 1 skipped - "));
				slot->env_step++;
				compute_envelope(slot);
			}

			break;

		// Decay 2
		case 2:
			LOG(("YMF278B: Decay step 2, val = %d, rate = %d, delay = %g, , PRVB = %d, DAMP = %d, current vol = %d\n", slot->D2R, compute_rate(slot, slot->D2R), m_lut_dr[compute_rate(slot, slot->D2R)]*1000.0, slot->preverb, slot->DAMP, slot->env_vol >> 23));
			slot->env_vol_step = compute_decay_env_vol_step(slot, slot->D2R);
			slot->env_vol_lim = 256U<<23;
			break;

		// Decay 2 reached -96dB
		case 3:
			LOG(("YMF278B: Voice cleared because of decay 2\n"));
			slot->env_vol = 256U<<23;
			slot->env_vol_step = 0;
			slot->env_vol_lim = 0;
			slot->active = 0;
			break;

		// Release
		case 4:
			LOG(("YMF278B: Release, val = %d, rate = %d, delay = %g, PRVB = %d, DAMP = %d\n", slot->RR, compute_rate(slot, slot->RR), m_lut_dr[compute_rate(slot, slot->RR)]*1000.0, slot->preverb, slot->DAMP));
			slot->env_vol_step = compute_decay_env_vol_step(slot, slot->RR);
			slot->env_vol_lim = 256U<<23;
			break;

		// Release reached -96dB
		case 5:
			LOG(("YMF278B: Release ends\n"));
			slot->env_vol = 256U<<23;
			slot->env_vol_step = 0;
			slot->env_vol_lim = 0;
			slot->active = 0;
			break;

		default: break;
	}
}

//-------------------------------------------------
//  sound_stream_update - handle a stream update
//-------------------------------------------------

void ymf278b_device::sound_stream_update(sound_stream &stream, std::vector<read_stream_view> const &inputs, std::vector<write_stream_view> &outputs)
{
	int i, j;
	YMF278BSlot *slot;
	int16_t sample = 0;
	int32_t *mixp;
	int32_t vl, vr;

	ymf262_update_one(m_ymf262, outputs);
	stream_buffer::sample_t fvl = stream_buffer::sample_t(m_mix_level[m_fm_l]) * (1.0 / 65536.0);
	stream_buffer::sample_t fvr = stream_buffer::sample_t(m_mix_level[m_fm_r]) * (1.0 / 65536.0);
	for (i = 0; i < outputs[0].samples(); i++)
	{
		// DO2 mixing
		outputs[0].put(i, outputs[0].get(i) * fvl);
		outputs[1].put(i, outputs[1].get(i) * fvr);
	}

	std::fill(m_mix_buffer.begin(), m_mix_buffer.end(), 0);

	for (i = 0; i < 24; i++)
	{
		slot = &m_slots[i];

		if (slot->active)
		{
			mixp = &m_mix_buffer[0];

			for (j = 0; j < outputs[0].samples(); j++)
			{
				if (slot->stepptr >= slot->endaddr)
				{
					slot->stepptr = slot->stepptr - slot->endaddr + slot->loopaddr;

					// NOTE: loop overflow is still possible here if (slot->stepptr >= slot->endaddr)
					// This glitch may be (ab)used to your advantage to create pseudorandom noise.
				}

				switch (slot->bits)
				{
					// 8 bit
					case 0:
						sample = read_byte(slot->startaddr + (slot->stepptr>>16))<<8;
						break;

					// 12 bit
					case 1:
						if (slot->stepptr & 0x10000)
							sample = read_byte(slot->startaddr + (slot->stepptr>>17)*3+2)<<8 |
								(read_byte(slot->startaddr + (slot->stepptr>>17)*3+1) & 0xf0);
						else
							sample = read_byte(slot->startaddr + (slot->stepptr>>17)*3)<<8 |
								((read_byte(slot->startaddr + (slot->stepptr>>17)*3+1) << 4) & 0xf0);
						break;

					// 16 bit
					case 2:
						sample = read_byte(slot->startaddr + ((slot->stepptr>>16)*2))<<8 |
							read_byte(slot->startaddr + ((slot->stepptr>>16)*2)+1);
						break;

					// ?? bit, effect is unknown, datasheet says it's prohibited
					case 3:
						sample = 0;
						break;
				}

				if (slot->CH) // DO1 out
				{
					mixp++;
					mixp++;
					*mixp++ += (sample * m_volume[slot->TL+m_pan_left [slot->pan]+(slot->env_vol>>23)])>>17;
					*mixp++ += (sample * m_volume[slot->TL+m_pan_right[slot->pan]+(slot->env_vol>>23)])>>17;
				}
				else // DO2 out
				{
					*mixp++ += (sample * m_volume[slot->TL+m_pan_left [slot->pan]+(slot->env_vol>>23)])>>17;
					*mixp++ += (sample * m_volume[slot->TL+m_pan_right[slot->pan]+(slot->env_vol>>23)])>>17;
					mixp++;
					mixp++;
				}

				// update frequency
				slot->stepptr += slot->step;

				// update envelope
				slot->env_vol += slot->env_vol_step;
				if (((int32_t)(slot->env_vol - slot->env_vol_lim)) >= 0)
				{
					slot->env_step++;
					compute_envelope(slot);
				}
				else if (slot->preverb && !slot->env_preverb && slot->env_step && slot->env_vol > ((6*8)<<23))
					compute_envelope(slot);
			}
		}
	}

	mixp = &m_mix_buffer[0];
	vl = m_mix_level[m_pcm_l];
	vr = m_mix_level[m_pcm_r];
	for (i = 0; i < outputs[0].samples(); i++)
	{
		outputs[0].add_int(i, (*mixp++ * vl) >> 16, 32768);
		outputs[1].add_int(i, (*mixp++ * vr) >> 16, 32768);
		outputs[4].put_int(i, *mixp++, 32768);
		outputs[5].put_int(i, *mixp++, 32768);
	}
}

void ymf278b_device::irq_check()
{
	int prev_line = m_irq_line;
	m_irq_line = m_current_irq ? 1 : 0;
	if (m_irq_line != prev_line && !m_irq_handler.isnull())
		m_irq_handler(m_irq_line);
}

enum
{
	TIMER_A = 0,
	TIMER_B,
	TIMER_BUSY_CLEAR,
	TIMER_LD_CLEAR
};

void ymf278b_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
	switch(id)
	{
	case TIMER_A:
		if(!(m_enable & 0x40))
		{
			m_current_irq |= 0x40;
			irq_check();
		}
		break;

	case TIMER_B:
		if(!(m_enable & 0x20))
		{
			m_current_irq |= 0x20;
			irq_check();
		}
		break;

	case TIMER_BUSY_CLEAR:
		m_status_busy = 0;
		break;

	case TIMER_LD_CLEAR:
		m_status_ld = 0;
		break;
	}
}


/**************************************************************************/

void ymf278b_device::A_w(uint8_t reg, uint8_t data)
{
	// FM register array 0 (compatible with YMF262)
	switch(reg)
	{
		// LSI TEST
		case 0x00:
		case 0x01:
			break;

		// timer a count
		case 0x02:
			if (data != m_timer_a_count)
			{
				m_timer_a_count = data;

				// change period, ~80.8us * t
				if (m_enable & 1)
					m_timer_a->adjust(m_timer_a->remaining(), 0, m_timer_base * (256-data) * 4);
			}
			break;

		// timer b count
		case 0x03:
			if (data != m_timer_b_count)
			{
				m_timer_b_count = data;

				// change period, ~323.1us * t
				if (m_enable & 2)
					m_timer_b->adjust(m_timer_b->remaining(), 0, m_timer_base * (256-data) * 16);
			}
			break;

		// timer control
		case 0x04:
			if(data & 0x80)
				m_current_irq = 0;
			else
			{
				// reset timers
				if((m_enable ^ data) & 1)
				{
					attotime period = (data & 1) ? m_timer_base * (256-m_timer_a_count) * 4 : attotime::never;
					m_timer_a->adjust(period, 0, period);
				}
				if((m_enable ^ data) & 2)
				{
					attotime period = (data & 2) ? m_timer_base * (256-m_timer_b_count) * 16 : attotime::never;
					m_timer_b->adjust(period, 0, period);
				}

				m_enable = data;
				m_current_irq &= ~data;
			}
			irq_check();
			break;

		default:
			logerror("YMF278B:  Port A write %02x, %02x\n", reg, data);
			break;
	}
}

void ymf278b_device::B_w(uint8_t reg, uint8_t data)
{
	// FM register array 1 (compatible with YMF262)
	switch(reg)
	{
		// LSI TEST
		case 0x00:
		case 0x01:
			break;

		// expansion register (NEW2/NEW)
		case 0x05:
			m_exp = data;
			break;

		default:
			logerror("YMF278B:  Port B write %02x, %02x\n", reg, data);
			break;
	}
}

void ymf278b_device::retrigger_note(YMF278BSlot *slot)
{
	// activate channel
	if (slot->octave != 8)
		slot->active = 1;

	// reset sample pos and go to attack stage
	slot->stepptr = 0;
	slot->env_step = 0;
	slot->env_preverb = 0;

	compute_freq_step(slot);
	compute_envelope(slot);
}

void ymf278b_device::C_w(uint8_t reg, uint8_t data)
{
	// Handle slot registers specifically
	if (reg >= 0x08 && reg <= 0xf7)
	{
		YMF278BSlot *slot;
		int snum;
		snum = (reg-8) % 24;
		slot = &m_slots[snum];
		switch((reg-8) / 24)
		{
			case 0:
			{
				attotime period;
				uint32_t offset;
				uint8_t p[12];
				int i;

				slot->wave &= 0x100;
				slot->wave |= data;

				// load wavetable header
				if(slot->wave < 384 || !m_wavetblhdr)
					offset = slot->wave * 12;
				else
					offset = m_wavetblhdr*0x80000 + (slot->wave - 384) * 12;
				for (i = 0; i < 12; i++)
					p[i] = read_byte(offset+i);

				slot->bits = (p[0]&0xc0)>>6;
				slot->startaddr = (p[2] | (p[1]<<8) | ((p[0]&0x3f)<<16));
				slot->loopaddr = (p[4]<<16) | (p[3]<<24);
				slot->endaddr = (p[6]<<16) | (p[5]<<24);
				slot->endaddr -= 0x00010000U;
				slot->endaddr ^= 0xffff0000U;

				// copy internal registers data
				for (i = 7; i < 12; i++)
					C_w(8 + snum + (i-2) * 24, p[i]);

				// status register LD bit is on for approx 300us
				m_status_ld = 1;
				period = clocks_to_attotime(10);
				m_timer_ld->adjust(period);

				// retrigger if key is on
				if (slot->KEY_ON)
					retrigger_note(slot);
				else if (slot->active)
				{
					// deactivate channel
					slot->env_step = 5;
					compute_envelope(slot);
				}

				break;
			}

			case 1:
				slot->wave &= 0xff;
				slot->wave |= ((data&0x1)<<8);
				slot->F_NUMBER &= 0x380;
				slot->F_NUMBER |= (data>>1);
				if (slot->active && (data ^ m_pcmregs[reg]) & 0xfe)
				{
					compute_freq_step(slot);
					compute_envelope(slot);
				}
				break;

			case 2:
				slot->F_NUMBER &= 0x07f;
				slot->F_NUMBER |= ((data&0x07)<<7);
				slot->preverb = (data&0x8)>>3;
				slot->octave = (data&0xf0)>>4;
				if (data != m_pcmregs[reg])
				{
					// channel goes off if octave is set to -8 (datasheet says it's prohibited)
					// (it is ok if this activates the channel while it was off: compute_envelope will reset it again if needed)
					slot->active = (slot->octave != 8);

					if (slot->active)
					{
						slot->env_preverb = 0;
						compute_freq_step(slot);
						compute_envelope(slot);
					}
				}
				break;

			case 3:
				slot->TL = data>>1;
				slot->LD = data&0x1;
				break;

			case 4:
				slot->CH = (data&0x10)>>4;
				// CH bit note: output to DO1 pin (1) or DO2 pin (0), this may
				// silence the channel depending on how it's wired up on the PCB.
				// For now, it's always enabled.
				// (bit 5 (LFO reset) is also not hooked up yet)

				slot->pan = data&0xf;
				slot->DAMP = (data&0x40)>>6;
				if (data & 0x80)
				{
					// don't retrigger if key was already on
					if (slot->KEY_ON)
					{
						if ((data ^ m_pcmregs[reg]) & 0x40)
							compute_envelope(slot);

						break;
					}

					retrigger_note(slot);
				}
				else if (slot->active)
				{
					// release
					slot->env_step = 4;
					compute_envelope(slot);
				}
				slot->KEY_ON = (data&0x80)>>7;
				break;

			case 5:
				// LFO and vibrato level, not hooked up yet
				slot->LFO = (data>>3)&0x7;
				slot->VIB = data&0x7;
				break;

			case 6:
				slot->AR = data>>4;
				slot->D1R = data&0xf;
				if (slot->active && data != m_pcmregs[reg])
					compute_envelope(slot);
				break;

			case 7:
				slot->DL = data>>4;
				slot->D2R = data&0xf;
				if (slot->active && data != m_pcmregs[reg])
					compute_envelope(slot);
				break;

			case 8:
				slot->RC = data>>4;
				slot->RR = data&0xf;
				if (slot->active && data != m_pcmregs[reg])
					compute_envelope(slot);
				break;

			case 9:
				// tremolo level, not hooked up yet
				slot->AM = data & 0x7;
				break;
		}
	}
	else
	{
		// All non-slot registers
		switch (reg)
		{
			// LSI TEST
			case 0x00:
			case 0x01:
				break;

			case 0x02:
				m_wavetblhdr = (data>>2)&0x7;
				m_memmode = data&3;
				break;

			case 0x03:
				data &= 0x3f; // !
				break;
			case 0x04:
				break;
			case 0x05:
				// set memory address
				m_memadr = m_pcmregs[3] << 16 | m_pcmregs[4] << 8 | data;
				break;

			case 0x06:
				// memory data
				space(0).write_byte(m_memadr, data);
				m_memadr = (m_memadr + 1) & 0x3fffff;
				break;

			case 0x07:
				break; // unused

			case 0xf8:
				m_fm_l = data & 0x7;
				m_fm_r = (data>>3)&0x7;
				break;

			case 0xf9:
				m_pcm_l = data & 0x7;
				m_pcm_r = (data>>3)&0x7;
				break;

			default:
				logerror("YMF278B:  Port C write %02x, %02x\n", reg, data);
				break;
		}
	}

	m_pcmregs[reg] = data;
}

void ymf278b_device::timer_busy_start(int is_pcm)
{
	// status register BUSY bit is on for 56(FM) or 88(PCM) cycles
	m_status_busy = 1;
	m_timer_busy->adjust(attotime::from_hz(m_clock / (is_pcm ? 88 : 56)));
}

void ymf278b_device::write(offs_t offset, u8 data)
{
	switch (offset)
	{
		case 0:
		case 2:
			timer_busy_start(0);
			m_port_AB = data;
			m_lastport = offset>>1 & 1;
			ymf262_write(m_ymf262, offset, data);
			break;

		case 1:
		case 3:
			timer_busy_start(0);
			if (m_lastport) B_w(m_port_AB, data);
			else A_w(m_port_AB, data);
			m_last_fm_data = data;
			ymf262_write(m_ymf262, offset, data);
			break;

		case 4:
			timer_busy_start(1);
			m_port_C = data;
			break;

		case 5:
			// PCM regs are only accessible if NEW2 is set
			if (~m_exp & 2)
				break;

			m_stream->update();

			timer_busy_start(1);
			C_w(m_port_C, data);
			break;

		default:
			logerror("%s: unexpected write at offset %X to ymf278b = %02X\n", machine().describe_context(), offset, data);
			break;
	}
}


u8 ymf278b_device::read(offs_t offset)
{
	uint8_t ret = 0;

	switch (offset)
	{
		// status register
		case 0:
		{
			// bits 0 and 1 are only valid if NEW2 is set
			uint8_t newbits = 0;
			if (m_exp & 2)
				newbits = (m_status_ld << 1) | m_status_busy;

			ret = newbits | m_current_irq | (m_irq_line ? 0x80 : 0x00);
			break;
		}

		// FM regs can be read too (on contrary to what the datasheet says)
		case 1:
		case 3:
			// but they're not implemented here yet
			// This may be incorrect, but it makes the mbwave moonsound detection in msx drivers pass.
			ret = m_last_fm_data;
			break;

		// PCM regs
		case 5:
			// only accessible if NEW2 is set
			if (~m_exp & 2)
				break;

			switch (m_port_C)
			{
				// special cases
				case 2:
					ret = (m_pcmregs[m_port_C] & 0x1f) | 0x20; // device ID in upper bits
					break;
				case 6:
					ret = read_byte(m_memadr);
					m_memadr = (m_memadr + 1) & 0x3fffff;
					break;

				default:
					ret = m_pcmregs[m_port_C];
					break;
			}
			break;

		default:
			logerror("%s: unexpected read at offset %X from ymf278b\n", machine().describe_context(), offset);
			break;
	}

	return ret;
}


/**************************************************************************/

//-------------------------------------------------
//  device_post_load - device-specific post load
//-------------------------------------------------

void ymf278b_device::device_post_load()
{
	ymf262_post_load(m_ymf262);
}

//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void ymf278b_device::device_reset()
{
	int i;

	// clear registers
	for (i = 0; i <= 4; i++)
		A_w(i, 0);
	B_w(5, 0);
	for (i = 0; i < 8; i++)
		C_w(i, 0);
	for (i = 0xff; i >= 8; i--)
		C_w(i, 0);
	C_w(0xf8, 0x1b);

	m_port_AB = m_port_C = 0;
	m_lastport = 0;
	m_memadr = 0;

	// init/silence channels
	for (i = 0; i < 24 ; i++)
	{
		YMF278BSlot *slot = &m_slots[i];

		slot->LFO = 0;
		slot->VIB = 0;
		slot->AR = 0;
		slot->D1R = 0;
		slot->DL = 0;
		slot->D2R = 0;
		slot->RC = 0;
		slot->RR = 0;
		slot->AM = 0;

		slot->startaddr = 0;
		slot->loopaddr = 0;
		slot->endaddr = 0;

		slot->env_step = 5;
		compute_envelope(slot);
	}

	m_timer_a->reset();
	m_timer_b->reset();
	m_timer_busy->reset();  m_status_busy = 0;
	m_timer_ld->reset();    m_status_ld = 0;

	m_irq_line = 0;
	m_current_irq = 0;
	if (!m_irq_handler.isnull())
		m_irq_handler(0);

	ymf262_reset_chip(m_ymf262);
}

void ymf278b_device::device_stop()
{
	ymf262_shutdown(m_ymf262);
	m_ymf262 = nullptr;
}

void ymf278b_device::device_clock_changed()
{
	int old_rate = m_rate;
	m_clock = clock();
	m_rate = m_clock/768;

	if (m_rate > old_rate)
	{
		m_mix_buffer.resize(m_rate*4,0);
	}
	m_stream->set_sample_rate(m_rate);

	m_timer_base = m_clock ? attotime::from_hz(m_clock) * (19 * 36) : attotime::zero;

	// YMF262 related

	ymf262_clock_changed(m_ymf262, clock(), m_rate);
}

void ymf278b_device::rom_bank_updated()
{
	m_stream->update();
}

void ymf278b_device::precompute_rate_tables()
{
	int i;

	// decay rate
	for (i = 0; i < 64; i++)
	{
		if (i <= 3)
			m_lut_dr[i] = 0;
		else if (i >= 60)
			m_lut_dr[i] = 15 << 4;
		else
			m_lut_dr[i] = (15 << (21 - i / 4)) / (4 + i % 4);
	}

	// attack rate (manual shows curve instead of linear though, so this is not entirely accurate)
	for (i = 0; i < 64; i++)
	{
		if (i <= 3 || i == 63)
			m_lut_ar[i] = 0;
		else if (i >= 60)
			m_lut_ar[i] = 17;
		else
			m_lut_ar[i] = (67 << (15 - i / 4)) / (4 + i % 4);
	}
}

void ymf278b_device::register_save_state()
{
	int i;

	save_item(NAME(m_pcmregs));
	save_item(NAME(m_wavetblhdr));
	save_item(NAME(m_memmode));
	save_item(NAME(m_memadr));
	save_item(NAME(m_status_busy));
	save_item(NAME(m_status_ld));
	save_item(NAME(m_exp));
	save_item(NAME(m_fm_l));
	save_item(NAME(m_fm_r));
	save_item(NAME(m_pcm_l));
	save_item(NAME(m_pcm_r));
	save_item(NAME(m_timer_a_count));
	save_item(NAME(m_timer_b_count));
	save_item(NAME(m_enable));
	save_item(NAME(m_current_irq));
	save_item(NAME(m_irq_line));
	save_item(NAME(m_port_AB));
	save_item(NAME(m_port_C));
	save_item(NAME(m_lastport));
	save_item(NAME(m_last_fm_data));

	for (i = 0; i < 24; ++i)
	{
		save_item(NAME(m_slots[i].wave), i);
		save_item(NAME(m_slots[i].F_NUMBER), i);
		save_item(NAME(m_slots[i].octave), i);
		save_item(NAME(m_slots[i].preverb), i);
		save_item(NAME(m_slots[i].DAMP), i);
		save_item(NAME(m_slots[i].CH), i);
		save_item(NAME(m_slots[i].LD), i);
		save_item(NAME(m_slots[i].TL), i);
		save_item(NAME(m_slots[i].pan), i);
		save_item(NAME(m_slots[i].LFO), i);
		save_item(NAME(m_slots[i].VIB), i);
		save_item(NAME(m_slots[i].AM), i);

		save_item(NAME(m_slots[i].AR), i);
		save_item(NAME(m_slots[i].D1R), i);
		save_item(NAME(m_slots[i].DL), i);
		save_item(NAME(m_slots[i].D2R), i);
		save_item(NAME(m_slots[i].RC), i);
		save_item(NAME(m_slots[i].RR), i);

		save_item(NAME(m_slots[i].step), i);
		save_item(NAME(m_slots[i].stepptr), i);

		save_item(NAME(m_slots[i].active), i);
		save_item(NAME(m_slots[i].KEY_ON), i);
		save_item(NAME(m_slots[i].bits), i);
		save_item(NAME(m_slots[i].startaddr), i);
		save_item(NAME(m_slots[i].loopaddr), i);
		save_item(NAME(m_slots[i].endaddr), i);

		save_item(NAME(m_slots[i].env_step), i);
		save_item(NAME(m_slots[i].env_vol), i);
		save_item(NAME(m_slots[i].env_vol_step), i);
		save_item(NAME(m_slots[i].env_vol_lim), i);
		save_item(NAME(m_slots[i].env_preverb), i);
	}
}

//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void ymf278b_device::device_start()
{
	int i;

	m_clock = clock();
	m_rate = m_clock / 768;
	m_irq_handler.resolve();

	m_timer_base = m_clock ? attotime::from_hz(m_clock) * (19*36) : attotime::zero;
	m_timer_a = timer_alloc(TIMER_A);
	m_timer_b = timer_alloc(TIMER_B);
	m_timer_busy = timer_alloc(TIMER_BUSY_CLEAR);
	m_timer_ld = timer_alloc(TIMER_LD_CLEAR);

	for (i = 0; i < 24; i++)
	{
		m_slots[i].num = i;
	}

	m_stream = stream_alloc(0, 6, m_rate);
	m_mix_buffer.resize(m_rate*4,0);

	// rate tables
	precompute_rate_tables();

	// Volume table, 1 = -0.375dB, 8 = -3dB, 256 = -96dB
	for(i = 0; i < 256; i++)
		m_volume[i] = 65536*pow(2.0, (-0.375/6)*i);
	for(i = 256; i < 256*4; i++)
		m_volume[i] = 0;

	// Pan values, units are -3dB, i.e. 8.
	for(i = 0; i < 16; i++)
	{
		m_pan_left[i] = i < 7 ? i*8 : i < 9 ? 256 : 0;
		m_pan_right[i] = i < 8 ? 0 : i < 10 ? 256 : (16-i)*8;
	}

	// Mixing levels, units are -3dB, and add some margin to avoid clipping
	for(i=0; i<7; i++)
		m_mix_level[i] = m_volume[8*i+13];
	m_mix_level[7] = 0;

	// Register state for saving
	register_save_state();

	// YMF262 related

	/* stream system initialize */
	m_ymf262 = ymf278b_init(this, clock(), m_rate);
	if (!m_ymf262)
		throw emu_fatalerror("ymf278b_device(%s): Error creating YMF262 chip", tag());

	/* YMF262 setup */
	ymf262_set_timer_handler (m_ymf262, ymf278b_device::static_timer_handler, this);
	ymf262_set_irq_handler   (m_ymf262, ymf278b_device::static_irq_handler, this);
	ymf262_set_update_handler(m_ymf262, ymf278b_device::static_update_request, this);
}


DEFINE_DEVICE_TYPE(YMF278B, ymf278b_device, "ymf278b", "Yamaha YMF278B OPL4")

ymf278b_device::ymf278b_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, YMF278B, tag, owner, clock)
	, device_sound_interface(mconfig, *this)
	, device_rom_interface(mconfig, *this)
	, m_irq_handler(*this)
	, m_last_fm_data(0)
{
}