summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/sound/upd7759.cpp
blob: 5c20e7c13da9efe1fae2e2399c4717b8403746de (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
// license:BSD-3-Clause
// copyright-holders:Juergen Buchmueller, Mike Balfour, Howie Cohen, Olivier Galibert, Aaron Giles
/************************************************************

    NEC uPD7759/55/56/P56/57/58 ADPCM Speech Processor
    by: Juergen Buchmueller, Mike Balfour, Howie Cohen,
        Olivier Galibert, and Aaron Giles

    TODO:
    - is there a doable method to dump the internal maskrom? :(
      As far as we know, decapping is the only option
    - low-level emulation
    - watchdog? - according to uPD775x datasheet, the chip goes into standy mode
      if CS/ST/RESET have not been accessed for more than 3 seconds
    - convert to MAME modern device

*************************************************************

    uPD7759 Description:

    The uPD7759 is a speech processing LSI that utilizes ADPCM to produce
    speech or other sampled sounds.  It can directly address up to 1Mbit
    (128k) of external data ROM, or the host CPU can control the speech
    data transfer.  The uPD7759 is usually hooked up to a 640 kHz clock and
    has one 8-bit input port, a start pin, a busy pin, and a clock output.

    The chip is composed of 3 parts:
    - a clock divider
    - a rom-reading engine
    - an adpcm engine
    - a 4-to-9 bit adpcm converter

    The clock divider takes the base 640KHz clock and divides it first
    by a fixed divisor of 4 and then by a value between 9 and 32.  The
    result gives a clock between 5KHz and 17.78KHz.  It's probably
    possible, but not recommended and certainly out-of-spec, to push the
    chip harder by reducing the divider.

    The rom-reading engine reads one byte every two divided clock cycles.
    The factor two comes from the fact that a byte has two nibbles, i.e.
    two samples.

    The apdcm engine takes bytes and interprets them as commands:

        00000000                    sample end
        00dddddd                    silence
        01ffffff                    send the 256 following nibbles to the converter
        10ffffff nnnnnnnn           send the n+1 following nibbles to the converter
        11---rrr --ffffff nnnnnnnn  send the n+1 following nibbles to the converter, and repeat r+1 times

    "ffffff" is sent to the clock divider to be the base clock for the
    adpcm converter, i.e., it's the sampling rate.  If the number of
    nibbles to send is odd the last nibble is ignored.  The commands
    are always 8-bit aligned.

    "dddddd" is the duration of the silence.  The base speed is unknown,
    1ms sounds reasonably.  It does not seem linked to the adpcm clock
    speed because there often is a silence before any 01 or 10 command.

    The adpcm converter converts nibbles into 9-bit DAC values.  It has
    an internal state of 4 bits that's used in conjunction with the
    nibble to lookup which of the 256 possible steps is used.  Then
    the state is changed according to the nibble value.  Essentially, the
    higher the state, the bigger the steps are, and using big steps
    increase the state.  Conversely, using small steps reduces the state.
    This allows the engine to be a little more adaptative than a
    classical ADPCM algorithm.

    The uPD7759 can run in two modes, master (also known as standalone)
    and slave.  The mode is selected through the "md" pin.  No known
    game changes modes on the fly, and it's unsure if that's even
    possible to do.


    Master mode:

    The output of the rom reader is directly connected to the adpcm
    converter.  The controlling cpu only sends a sample number and the
    7759 plays it.

    The sample rom has a header at the beginning of the form

        nn 5a a5 69 55

    where nn is the number of the last sample.  This is then followed by
    a vector of 2-bytes msb-first values, one per sample.  Multiplying
    them by two gives the sample start offset in the rom.  A 0x00 marks
    the end of each sample.

    It seems that the uPD7759 reads at least part of the rom header at
    startup.  Games doing rom banking are careful to reset the chip after
    each change.


    Slave mode:

    The rom reader is completely disconnected.  The input port is
    connected directly to the adpcm engine.  The first write to the input
    port activates the engine (the value itself is ignored).  The engine
    activates the clock output and waits for commands.  The clock speed
    is unknown, but its probably a divider of 640KHz.  We use 40KHz here
    because 80KHz crashes altbeast.  The chip probably has an internal
    fifo to the converter and suspends the clock when the fifo is full.
    The first command is always 0xFF.  A second 0xFF marks the end of the
    sample and the engine stops.  OTOH, there is a 0x00 at the end too.
    Go figure.

*************************************************************

    The other chip models don't support slave mode, and have an internal ROM.
    Other than that, they are thought to be nearly identical to uPD7759.

    55C    18-pin DIP   96 Kbit ROM
    55G    24-pin SOP   96 Kbit ROM
    56C    18-pin DIP  256 Kbit ROM
    56G    24-pin SOP  256 Kbit ROM
    P56CR  20-pin DIP  256 Kbit ROM (OTP) - dumping the ROM is trivial
    P56G   24-pin SOP  256 Kbit ROM (OTP) - "
    57C    18-pin DIP  512 Kbit ROM
    57G    24-pin SOP  512 Kbit ROM
    58C    18-pin DIP    1 Mbit ROM
    58G    24-pin SOP    1 Mbit ROM

*************************************************************/

#include "emu.h"
#include "upd7759.h"


#define DEBUG_STATES    (0)



/************************************************************

    Constants

*************************************************************/

/* step value fractional bits */
#define FRAC_BITS       20
#define FRAC_ONE        (1 << FRAC_BITS)
#define FRAC_MASK       (FRAC_ONE - 1)


upd775x_device::upd775x_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, type, tag, owner, clock)
	, device_sound_interface(mconfig, *this)
	, m_channel(nullptr)
	, m_sample_offset_shift(0)
	, m_pos(0)
	, m_step(0)
	, m_fifo_in(0)
	, m_reset(0)
	, m_start(0)
	, m_drq(0)
	, m_state(0)
	, m_clocks_left(0)
	, m_nibbles_left(0)
	, m_repeat_count(0)
	, m_post_drq_state(0)
	, m_post_drq_clocks(0)
	, m_req_sample(0)
	, m_last_sample(0)
	, m_block_header(0)
	, m_sample_rate(0)
	, m_first_valid_header(0)
	, m_offset(0)
	, m_repeat_offset(0)
	, m_adpcm_state(0)
	, m_adpcm_data(0)
	, m_sample(0)
	, m_rombase(*this, DEVICE_SELF)
	, m_rom(nullptr)
	, m_romoffset(0)
	, m_rommask(0)
{
}

DEFINE_DEVICE_TYPE(UPD7759, upd7759_device, "upd7759", "NEC uPD7759")

upd7759_device::upd7759_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: upd7759_device(mconfig, UPD7759, tag, owner, clock)
{
}


upd7759_device::upd7759_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock)
	: upd775x_device(mconfig, type, tag, owner, clock)
	, m_drqcallback(*this)
	, m_timer(nullptr)
{
}


DEFINE_DEVICE_TYPE(UPD7756, upd7756_device, "upd7756", "NEC uPD7756")

upd7756_device::upd7756_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: upd7756_device(mconfig, UPD7756, tag, owner, clock)
{
}

upd7756_device::upd7756_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock)
	: upd775x_device(mconfig, type, tag, owner, clock)
{
}

//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void upd775x_device::device_start()
{
	// chip configuration
	m_sample_offset_shift = 0;

	// allocate a stream channel
	m_channel = machine().sound().stream_alloc(*this, 0, 1, clock()/4);

	// compute the stepping rate based on the chip's clock speed
	m_step = 4 * FRAC_ONE;

	// compute the clock period
	m_clock_period = attotime::from_hz(clock());

	// set the intial state
	m_state = STATE_IDLE;

	// compute the ROM base or allocate a timer
	m_romoffset = 0;
	m_rom = m_rombase;
	if (m_rombase)
	{
		uint32_t const romsize = m_rombase.bytes();
		if (romsize >= 0x20000)
			m_rommask = 0x1ffff;
		else
			m_rommask = romsize - 1;
	}
	else
	{
		m_rommask = 0;
	}

	// assume /RESET and /START are both high
	m_reset = 1;
	m_start = 1;

	save_item(NAME(m_pos));
	save_item(NAME(m_step));

	save_item(NAME(m_fifo_in));
	save_item(NAME(m_reset));
	save_item(NAME(m_start));
	save_item(NAME(m_drq));

	save_item(NAME(m_state));
	save_item(NAME(m_clocks_left));
	save_item(NAME(m_nibbles_left));
	save_item(NAME(m_repeat_count));
	save_item(NAME(m_post_drq_state));
	save_item(NAME(m_post_drq_clocks));
	save_item(NAME(m_req_sample));
	save_item(NAME(m_last_sample));
	save_item(NAME(m_block_header));
	save_item(NAME(m_sample_rate));
	save_item(NAME(m_first_valid_header));
	save_item(NAME(m_offset));
	save_item(NAME(m_repeat_offset));

	save_item(NAME(m_adpcm_state));
	save_item(NAME(m_adpcm_data));
	save_item(NAME(m_sample));

	save_item(NAME(m_romoffset));
}

void upd7759_device::device_start()
{
	upd775x_device::device_start();

	// chip configuration
	m_sample_offset_shift = 1;

	// alloate a timer
	if (m_rombase)
		m_drqcallback.reset();
	else
		m_timer = timer_alloc(TIMER_SLAVE_UPDATE);

	m_drqcallback.resolve_safe();

	// toggle the reset line to finish the reset
	device_reset();
}


void upd7756_device::device_start()
{
	upd775x_device::device_start();

	// toggle the reset line to finish the reset
	device_reset();
}

//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void upd775x_device::device_reset()
{
	m_pos                = 0;
	m_fifo_in            = 0;
	m_drq                = 0;
	m_state              = STATE_IDLE;
	m_clocks_left        = 0;
	m_nibbles_left       = 0;
	m_repeat_count       = 0;
	m_post_drq_state     = STATE_IDLE;
	m_post_drq_clocks    = 0;
	m_req_sample         = 0;
	m_last_sample        = 0;
	m_block_header       = 0;
	m_sample_rate        = 0;
	m_first_valid_header = 0;
	m_offset             = 0;
	m_repeat_offset      = 0;
	m_adpcm_state        = 0;
	m_adpcm_data         = 0;
	m_sample             = 0;
}

void upd7759_device::device_reset()
{
	upd775x_device::device_reset();

	// turn off any timer
	if (m_timer)
		m_timer->adjust(attotime::never);
}


/************************************************************

    Local variables

*************************************************************/

static const int upd775x_step[16][16] =
{
	{ 0,  0,  1,  2,  3,   5,   7,  10,  0,   0,  -1,  -2,  -3,   -5,   -7,  -10 },
	{ 0,  1,  2,  3,  4,   6,   8,  13,  0,  -1,  -2,  -3,  -4,   -6,   -8,  -13 },
	{ 0,  1,  2,  4,  5,   7,  10,  15,  0,  -1,  -2,  -4,  -5,   -7,  -10,  -15 },
	{ 0,  1,  3,  4,  6,   9,  13,  19,  0,  -1,  -3,  -4,  -6,   -9,  -13,  -19 },
	{ 0,  2,  3,  5,  8,  11,  15,  23,  0,  -2,  -3,  -5,  -8,  -11,  -15,  -23 },
	{ 0,  2,  4,  7, 10,  14,  19,  29,  0,  -2,  -4,  -7, -10,  -14,  -19,  -29 },
	{ 0,  3,  5,  8, 12,  16,  22,  33,  0,  -3,  -5,  -8, -12,  -16,  -22,  -33 },
	{ 1,  4,  7, 10, 15,  20,  29,  43, -1,  -4,  -7, -10, -15,  -20,  -29,  -43 },
	{ 1,  4,  8, 13, 18,  25,  35,  53, -1,  -4,  -8, -13, -18,  -25,  -35,  -53 },
	{ 1,  6, 10, 16, 22,  31,  43,  64, -1,  -6, -10, -16, -22,  -31,  -43,  -64 },
	{ 2,  7, 12, 19, 27,  37,  51,  76, -2,  -7, -12, -19, -27,  -37,  -51,  -76 },
	{ 2,  9, 16, 24, 34,  46,  64,  96, -2,  -9, -16, -24, -34,  -46,  -64,  -96 },
	{ 3, 11, 19, 29, 41,  57,  79, 117, -3, -11, -19, -29, -41,  -57,  -79, -117 },
	{ 4, 13, 24, 36, 50,  69,  96, 143, -4, -13, -24, -36, -50,  -69,  -96, -143 },
	{ 4, 16, 29, 44, 62,  85, 118, 175, -4, -16, -29, -44, -62,  -85, -118, -175 },
	{ 6, 20, 36, 54, 76, 104, 144, 214, -6, -20, -36, -54, -76, -104, -144, -214 },
};

static const int upd775x_state_table[16] = { -1, -1, 0, 0, 1, 2, 2, 3, -1, -1, 0, 0, 1, 2, 2, 3 };


/************************************************************

    ADPCM sample updater

*************************************************************/

void upd775x_device::update_adpcm(int data)
{
	/* update the sample and the state */
	m_sample += upd775x_step[m_adpcm_state][data];
	m_adpcm_state += upd775x_state_table[data];

	/* clamp the state to 0..15 */
	if (m_adpcm_state < 0)
		m_adpcm_state = 0;
	else if (m_adpcm_state > 15)
		m_adpcm_state = 15;
}



/************************************************************

    Master chip state machine

*************************************************************/

void upd775x_device::advance_state()
{
	switch (m_state)
	{
		/* Idle state: we stick around here while there's nothing to do */
		case STATE_IDLE:
			m_clocks_left = 4;
			break;

		/* drop DRQ state: update to the intended state */
		case STATE_DROP_DRQ:
			m_drq = 0;

			m_clocks_left = m_post_drq_clocks;
			m_state = m_post_drq_state;
			break;

		/* Start state: we begin here as soon as a sample is triggered */
		case STATE_START:
			m_req_sample = m_rom ? m_fifo_in : 0x10;
			if (DEBUG_STATES) logerror("req_sample = %02X\n", m_req_sample);

			/* 35+ cycles after we get here, the /DRQ goes low
			 *     (first byte (number of samples in ROM) should be sent in response)
			 *
			 * (35 is the minimum number of cycles I found during heavy tests.
			 * Depending on the state the chip was in just before the /MD was set to 0 (reset, standby
			 * or just-finished-playing-previous-sample) this number can range from 35 up to ~24000).
			 * It also varies slightly from test to test, but not much - a few cycles at most.) */
			m_clocks_left = 70; /* 35 - breaks cotton */
			m_state = STATE_FIRST_REQ;
			break;

		/* First request state: issue a request for the first byte */
		/* The expected response will be the index of the last sample */
		case STATE_FIRST_REQ:
			if (DEBUG_STATES) logerror("first data request\n");
			m_drq = 1;

			/* 44 cycles later, we will latch this value and request another byte */
			m_clocks_left = 44;
			m_state = STATE_LAST_SAMPLE;
			break;

		/* Last sample state: latch the last sample value and issue a request for the second byte */
		/* The second byte read will be just a dummy */
		case STATE_LAST_SAMPLE:
			m_last_sample = m_rom ? m_rom[0] : m_fifo_in;
			if (DEBUG_STATES) logerror("last_sample = %02X, requesting dummy 1\n", m_last_sample);
			m_drq = 1;

			/* 28 cycles later, we will latch this value and request another byte */
			m_clocks_left = 28; /* 28 - breaks cotton */
			m_state = (m_req_sample > m_last_sample) ? STATE_IDLE : STATE_DUMMY1;
			break;

		/* First dummy state: ignore any data here and issue a request for the third byte */
		/* The expected response will be the MSB of the sample address */
		case STATE_DUMMY1:
			if (DEBUG_STATES) logerror("dummy1, requesting offset_hi\n");
			m_drq = 1;

			/* 32 cycles later, we will latch this value and request another byte */
			m_clocks_left = 32;
			m_state = STATE_ADDR_MSB;
			break;

		/* Address MSB state: latch the MSB of the sample address and issue a request for the fourth byte */
		/* The expected response will be the LSB of the sample address */
		case STATE_ADDR_MSB:
			m_offset = (m_rom ? m_rom[m_req_sample * 2 + 5] : m_fifo_in) << (8 + m_sample_offset_shift);
			if (DEBUG_STATES) logerror("offset_hi = %02X, requesting offset_lo\n", m_offset >> (8 + m_sample_offset_shift));
			m_drq = 1;

			/* 44 cycles later, we will latch this value and request another byte */
			m_clocks_left = 44;
			m_state = STATE_ADDR_LSB;
			break;

		/* Address LSB state: latch the LSB of the sample address and issue a request for the fifth byte */
		/* The expected response will be just a dummy */
		case STATE_ADDR_LSB:
			m_offset |= (m_rom ? m_rom[m_req_sample * 2 + 6] : m_fifo_in) << m_sample_offset_shift;
			if (DEBUG_STATES) logerror("offset_lo = %02X, requesting dummy 2\n", (m_offset >> m_sample_offset_shift) & 0xff);
			if (m_offset > m_rommask) logerror("uPD7759 offset %X > rommask %X\n",m_offset, m_rommask);
			m_drq = 1;

			/* 36 cycles later, we will latch this value and request another byte */
			m_clocks_left = 36;
			m_state = STATE_DUMMY2;
			break;

		/* Second dummy state: ignore any data here and issue a request for the sixth byte */
		/* The expected response will be the first block header */
		case STATE_DUMMY2:
			m_offset++;
			m_first_valid_header = 0;
			if (DEBUG_STATES) logerror("dummy2, requesting block header\n");
			m_drq = 1;

			/* 36?? cycles later, we will latch this value and request another byte */
			m_clocks_left = 36;
			m_state = STATE_BLOCK_HEADER;
			break;

		/* Block header state: latch the header and issue a request for the first byte afterwards */
		case STATE_BLOCK_HEADER:

			/* if we're in a repeat loop, reset the offset to the repeat point and decrement the count */
			if (m_repeat_count)
			{
				m_repeat_count--;
				m_offset = m_repeat_offset;
			}
			m_block_header = m_rom ? m_rom[m_offset++ & m_rommask] : m_fifo_in;
			if (DEBUG_STATES) logerror("header (@%05X) = %02X, requesting next byte\n", m_offset, m_block_header);
			m_drq = 1;

			/* our next step depends on the top two bits */
			switch (m_block_header & 0xc0)
			{
				case 0x00:  /* silence */
					m_clocks_left = 1024 * ((m_block_header & 0x3f) + 1);
					m_state = (m_block_header == 0 && m_first_valid_header) ? STATE_IDLE : STATE_BLOCK_HEADER;
					m_sample = 0;
					m_adpcm_state = 0;
					break;

				case 0x40:  /* 256 nibbles */
					m_sample_rate = (m_block_header & 0x3f) + 1;
					m_nibbles_left = 256;
					m_clocks_left = 36; /* just a guess */
					m_state = STATE_NIBBLE_MSN;
					break;

				case 0x80:  /* n nibbles */
					m_sample_rate = (m_block_header & 0x3f) + 1;
					m_clocks_left = 36; /* just a guess */
					m_state = STATE_NIBBLE_COUNT;
					break;

				case 0xc0:  /* repeat loop */
					m_repeat_count = (m_block_header & 7) + 1;
					m_repeat_offset = m_offset;
					m_clocks_left = 36; /* just a guess */
					m_state = STATE_BLOCK_HEADER;
					break;
			}

			/* set a flag when we get the first non-zero header */
			if (m_block_header != 0)
				m_first_valid_header = 1;
			break;

		/* Nibble count state: latch the number of nibbles to play and request another byte */
		/* The expected response will be the first data byte */
		case STATE_NIBBLE_COUNT:
			m_nibbles_left = (m_rom ? m_rom[m_offset++ & m_rommask] : m_fifo_in) + 1;
			if (DEBUG_STATES) logerror("nibble_count = %u, requesting next byte\n", (unsigned)m_nibbles_left);
			m_drq = 1;

			/* 36?? cycles later, we will latch this value and request another byte */
			m_clocks_left = 36; /* just a guess */
			m_state = STATE_NIBBLE_MSN;
			break;

		/* MSN state: latch the data for this pair of samples and request another byte */
		/* The expected response will be the next sample data or another header */
		case STATE_NIBBLE_MSN:
			m_adpcm_data = m_rom ? m_rom[m_offset++ & m_rommask] : m_fifo_in;
			update_adpcm(m_adpcm_data >> 4);
			m_drq = 1;

			/* we stay in this state until the time for this sample is complete */
			m_clocks_left = m_sample_rate * 4;
			if (--m_nibbles_left == 0)
				m_state = STATE_BLOCK_HEADER;
			else
				m_state = STATE_NIBBLE_LSN;
			break;

		/* LSN state: process the lower nibble */
		case STATE_NIBBLE_LSN:
			update_adpcm(m_adpcm_data & 15);

			/* we stay in this state until the time for this sample is complete */
			m_clocks_left = m_sample_rate * 4;
			if (--m_nibbles_left == 0)
				m_state = STATE_BLOCK_HEADER;
			else
				m_state = STATE_NIBBLE_MSN;
			break;
	}

	/* if there's a DRQ, fudge the state */
	if (m_drq)
	{
		m_post_drq_state = m_state;
		m_post_drq_clocks = m_clocks_left - 21;
		m_state = STATE_DROP_DRQ;
		m_clocks_left = 21;
	}
}

/************************************************************

    DRQ callback

*************************************************************/

void upd7759_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
	uint8_t olddrq = m_drq;

	switch (id)
	{
		case TIMER_SLAVE_UPDATE:

		/* update the stream */
		m_channel->update();

		/* advance the state */
		advance_state();

		/* if the DRQ changed, update it */
		if (DEBUG_STATES)
			logerror("upd7759_slave_update: DRQ %d->%d\n", olddrq, m_drq);
		if (olddrq != m_drq)
			m_drqcallback(m_drq);

		/* set a timer to go off when that is done */
		if (m_state != STATE_IDLE)
			m_timer->adjust(m_clock_period * m_clocks_left);
		break;

		default:
			assert_always(false, "Unknown id in upd7759_device::device_timer");
	}
}

/************************************************************

    Sound startup

*************************************************************/

void upd775x_device::device_post_load()
{
	if (m_rombase)
		m_rom = m_rombase + m_romoffset;
}

/************************************************************

    I/O handlers

*************************************************************/

WRITE_LINE_MEMBER( upd775x_device::reset_w )
{
	/* update the reset value */
	uint8_t oldreset = m_reset;
	m_reset = (state != 0);

	/* update the stream first */
	m_channel->update();

	/* on the falling edge, reset everything */
	if (oldreset && !m_reset)
		device_reset();
}

WRITE_LINE_MEMBER( upd7759_device::start_w )
{
	/* update the start value */
	uint8_t oldstart = m_start;
	m_start = (state != 0);

	if (DEBUG_STATES)
		logerror("upd7759_start_w: %d->%d\n", oldstart, m_start);

	/* update the stream first */
	m_channel->update();

	/* on the rising edge, if we're idle, start going, but not if we're held in reset */
	if (m_state == STATE_IDLE && !oldstart && m_start && m_reset)
	{
		m_state = STATE_START;

		/* for slave mode, start the timer going */
		if (m_timer)
			m_timer->adjust(attotime::zero);
	}
}

WRITE_LINE_MEMBER( upd7756_device::start_w )
{
	/* update the start value */
	uint8_t oldstart = m_start;
	m_start = (state != 0);

	if (DEBUG_STATES)
		logerror("upd7759_start_w: %d->%d\n", oldstart, m_start);

	/* update the stream first */
	m_channel->update();

	/* on the rising edge, if we're idle, start going, but not if we're held in reset */
	if (m_state == STATE_IDLE && !oldstart && m_start && m_reset)
	{
		m_state = STATE_START;
	}
}


WRITE8_MEMBER( upd775x_device::port_w )
{
	/* update the FIFO value */
	m_fifo_in = data;
}


READ_LINE_MEMBER( upd775x_device::busy_r )
{
	/* return /BUSY */
	return (m_state == STATE_IDLE);
}


void upd775x_device::set_bank_base(uint32_t base)
{
	assert(m_rombase != nullptr);
	m_rom = m_rombase + base;
	m_romoffset = base;
}

//-------------------------------------------------
//  sound_stream_update - handle a stream update
//-------------------------------------------------

void upd775x_device::sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples)
{
	int32_t clocks_left = m_clocks_left;
	int16_t sample = m_sample;
	uint32_t step = m_step;
	uint32_t pos = m_pos;
	stream_sample_t *buffer = outputs[0];

	/* loop until done */
	if (m_state != STATE_IDLE)
		while (samples != 0)
		{
			/* store the current sample */
			*buffer++ = sample << 7;
			samples--;

			/* advance by the number of clocks/output sample */
			pos += step;

			/* handle clocks, but only in standalone mode */
			while (m_rom && pos >= FRAC_ONE)
			{
				int clocks_this_time = pos >> FRAC_BITS;
				if (clocks_this_time > clocks_left)
					clocks_this_time = clocks_left;

				/* clock once */
				pos -= clocks_this_time * FRAC_ONE;
				clocks_left -= clocks_this_time;

				/* if we're out of clocks, time to handle the next state */
				if (clocks_left == 0)
				{
					/* advance one state; if we hit idle, bail */
					advance_state();
					if (m_state == STATE_IDLE)
						break;

					/* reimport the variables that we cached */
					clocks_left = m_clocks_left;
					sample = m_sample;
				}
			}
		}

	/* if we got out early, just zap the rest of the buffer */
	if (samples != 0)
		memset(buffer, 0, samples * sizeof(*buffer));

	/* flush the state back */
	m_clocks_left = clocks_left;
	m_pos = pos;
}