summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/sound/k005289.cpp
blob: bf07743f7d3c1b78614c52528f918cd119be7579 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// license:BSD-3-Clause
// copyright-holders:Bryan McPhail
/***************************************************************************

    Konami 005289 - SCC sound as used in Bubblesystem

    This file is pieced together by Bryan McPhail from a combination of
    Namco Sound, Amuse by Cab, Nemesis schematics and whoever first
    figured out SCC!

    The 005289 is a 2 channel sound generator. Each channel gets its
    waveform from a prom (4 bits wide).

    (From Nemesis schematics)

    Address lines A0-A4 of the prom run to the 005289, giving 32 bytes
    per waveform.  Address lines A5-A7 of the prom run to PA5-PA7 of
    the AY8910 control port A, giving 8 different waveforms. PA0-PA3
    of the AY8910 control volume.

    The second channel is the same as above except port B is used.

    The 005289 has 12 address inputs and 4 control inputs: LD1, LD2, TG1, TG2.
    It has no data bus, so data values written don't matter.
    When LD1 or LD2 is asserted, the 12 bit value on the address bus is
    latched. Each of the two channels has its own latch.
    When TG1 or TG2 is asserted, the frequency of the respective channel is
    set to the previously latched value.

    The 005289 itself is nothing but an address generator. Digital to analog
    conversion, volume control and mixing of the channels is all done
    externally via resistor networks and 4066 switches and is only implemented
    here for convenience.

***************************************************************************/

#include "emu.h"
#include "k005289.h"

// is this an actual hardware limit? or just an arbitrary divider
// to bring the output frequency down to a reasonable value for MAME?
#define CLOCK_DIVIDER 32

// device type definition
DEFINE_DEVICE_TYPE(K005289, k005289_device, "k005289", "K005289 SCC")


//**************************************************************************
//  LIVE DEVICE
//**************************************************************************

//-------------------------------------------------
//  k005289_device - constructor
//-------------------------------------------------

k005289_device::k005289_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, K005289, tag, owner, clock)
	, device_sound_interface(mconfig, *this)
	, m_sound_prom(*this, DEVICE_SELF)
	, m_stream(nullptr)
	, m_rate(0)
	, m_mixer_table(nullptr)
	, m_mixer_lookup(nullptr)
	, m_mixer_buffer(nullptr)
{
}


//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void k005289_device::device_start()
{
	/* get stream channels */
	m_rate = clock() / CLOCK_DIVIDER;
	m_stream = stream_alloc_legacy(0, 1, m_rate);

	/* allocate a pair of buffers to mix into - 1 second's worth should be more than enough */
	m_mixer_buffer = std::make_unique<short[]>(2 * m_rate);

	/* build the mixer table */
	make_mixer_table(2);

	/* reset all the voices */
	for (int i = 0; i < 2; i++)
	{
		m_counter[i] = 0;
		m_frequency[i] = 0;
		m_freq_latch[i] = 0;
		m_waveform[i] = i * 0x100;
		m_volume[i] = 0;
	}

	save_item(NAME(m_counter));
	save_item(NAME(m_frequency));
	save_item(NAME(m_freq_latch));
	save_item(NAME(m_waveform));
	save_item(NAME(m_volume));
}


//-------------------------------------------------
//  sound_stream_update_legacy - handle a stream update
//-------------------------------------------------

void k005289_device::sound_stream_update_legacy(sound_stream &stream, stream_sample_t const * const *inputs, stream_sample_t * const *outputs, int samples)
{
	stream_sample_t *buffer = outputs[0];
	short *mix;
	int i,v,f;

	/* zap the contents of the mixer buffer */
	memset(m_mixer_buffer.get(), 0, samples * sizeof(int16_t));

	v=m_volume[0];
	f=m_frequency[0];
	if (v && f)
	{
		const unsigned char *w = &m_sound_prom[m_waveform[0]];
		int c = m_counter[0];

		mix = m_mixer_buffer.get();

		/* add our contribution */
		for (i = 0; i < samples; i++)
		{
			int offs;

			c += CLOCK_DIVIDER;
			offs = (c / f) & 0x1f;
			*mix++ += ((w[offs] & 0x0f) - 8) * v;
		}

		/* update the counter for this voice */
		m_counter[0] = c % (f * 0x20);
	}

	v=m_volume[1];
	f=m_frequency[1];
	if (v && f)
	{
		const unsigned char *w = &m_sound_prom[m_waveform[1]];
		int c = m_counter[1];

		mix = m_mixer_buffer.get();

		/* add our contribution */
		for (i = 0; i < samples; i++)
		{
			int offs;

			c += CLOCK_DIVIDER;
			offs = (c / f) & 0x1f;
			*mix++ += ((w[offs] & 0x0f) - 8) * v;
		}

		/* update the counter for this voice */
		m_counter[1] = c % (f * 0x20);
	}

	/* mix it down */
	mix = m_mixer_buffer.get();
	for (i = 0; i < samples; i++)
		*buffer++ = m_mixer_lookup[*mix++];
}




/********************************************************************************/

/* build a table to divide by the number of voices */
void k005289_device::make_mixer_table(int voices)
{
	int count = voices * 128;
	int i;
	int gain = 16;

	/* allocate memory */
	m_mixer_table = std::make_unique<int16_t[]>(256 * voices);

	/* find the middle of the table */
	m_mixer_lookup = m_mixer_table.get() + (128 * voices);

	/* fill in the table - 16 bit case */
	for (i = 0; i < count; i++)
	{
		int val = i * gain * 16 / voices;
		if (val > 32767) val = 32767;
		m_mixer_lookup[ i] = val;
		m_mixer_lookup[-i] = -val;
	}
}


void k005289_device::control_A_w(uint8_t data)
{
	m_stream->update();

	m_volume[0] = data & 0xf;
	m_waveform[0] = data & 0xe0;
}


void k005289_device::control_B_w(uint8_t data)
{
	m_stream->update();

	m_volume[1] = data & 0xf;
	m_waveform[1] = (data & 0xe0) + 0x100;
}


void k005289_device::ld1_w(offs_t offset, uint8_t data)
{
	m_freq_latch[0] = 0xfff - offset;
}


void k005289_device::ld2_w(offs_t offset, uint8_t data)
{
	m_freq_latch[1] = 0xfff - offset;
}


void k005289_device::tg1_w(uint8_t data)
{
	m_stream->update();

	m_frequency[0] = m_freq_latch[0];
}


void k005289_device::tg2_w(uint8_t data)
{
	m_stream->update();

	m_frequency[1] = m_freq_latch[1];
}