summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/sound/discrete.h
blob: eca3fcea4af240c44a4e97a52507566527929772 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
// license:BSD-3-Clause
// copyright-holders:K.Wilkins,Couriersud,Derrick Renaud,Frank Palazzolo
#ifndef MAME_SOUND_DISCRETE_H
#define MAME_SOUND_DISCRETE_H

#pragma once

#include "machine/rescap.h"

/***********************************************************************
 *
 *  MAME - Discrete sound system emulation library
 *
 *  Written by K.Wilkins (mame@esplexo.co.uk)
 *
 *  (c) K.Wilkins 2000
 *
 *  Coding started in November 2000
 *
 *  Additions/bugfix February 2003 - Derrick Renaud, F.Palazzolo, K.Wilkins
 *  Discrete parallel tasks 2009 - Couriersud
 *
 ***********************************************************************
 *
 * For free text books on electronic theory check out:
 * http://www.ibiblio.org/obp/electricCircuits/
 * For a free circuit simulator:
 * http://qucs.sourceforge.net/index.html
 * For a free waveform editor to view DISCRETE_WAVLOG dumps:
 * http://audacity.sourceforge.net/
 * http://www.sonicvisualiser.org/
 *
 ***********************************************************************
 *
 * Currently only one instance of a discrete sound system is supported.
 * If more then one instance is required in the future, then a chip #
 * will have to be added to the read/writes and the discrete inputs
 * modified to match.  This functionality should never be needed.
 * There is no real need to run more then 1 discrete system.
 *
 * If a clock is specified in the machine driver setup, then this is
 * used for the simulation sample rate.  Otherwise it will default to
 * run at the audio sample rate.
 *
 * Unused/Unconnected input nodes should be set to NODE_NC (No Connect)
 *
 * Each node can have many inputs from either constants or other
 * nodes within the system.
 *
 * It should be remembered that the discrete sound system emulation
 * does not do individual device emulation, but instead does a function
 * emulation. So you will need to convert the schematic design into
 * a logic block representation.
 *
 * There is the possibility to support multiple outputs per module.
 * In this case, NODE_XXX is the default output. Alternative outputs may
 * be accessed by using NODE_XXX_YY where 00<=Y<08.
 *
 * You may also access nodes with a macros:
 *
 *     NODE_XXX = NODE_SUB(NODE_XXX, 0)
 *     NODE_XXX = NODE_XXX_00
 *     NODE_XXX = NODE(XXX)
 *     NODE_XXX_YY = NODE_SUB(NODE_XXX, YY)
 *
 * One node point may feed a number of inputs, for example you could
 * connect the output of a DISCRETE_SINEWAVE to the AMPLITUDE input
 * of another DISCRETE_SINEWAVE to amplitude modulate its output and
 * also connect it to the frequency input of another to frequency
 * modulate its output, the combinations are endless....
 *
 * Consider the circuit below:
 *
 *  .--------.             .----------.                 .-------.
 *  |        |             |          |                 |       |
 *  | SQUARE |       Enable| SINEWAVE |                 |       |
 *  | WAVE   |-+---------->|  2000Hz  |---------------->|       |
 *  |        | |           |          |                 | ADDER |-->OUT
 *  | NODE11 | |           |  NODE12  |                 |       |
 *  '--------' |           '----------'              .->|       |
 *             |                                     |  |NODE20 |
 *             |  .------.              .---------.  |  '-------'
 *             |  |Logic |              |         |  |       ^
 *             |  | INV  |       Enable | SINEWVE |  |       |
 *             '->| ERT  |------------->| 4000Hz  |--'  .-------.
 *                |      |              |         |     |       |
 *                |NODE13|              | NODE14  |     | INPUT |
 *                '------'              '---------'     |       |
 *                                                      |NODE01 |
 *                                                      '-------'
 *
 * This should give you an alternating two tone sound switching
 * between the 2000Hz and 4000Hz sine waves at the frequency of the
 * square wave, with the memory mapped enable signal mapped onto NODE07
 * so discrete_sound_w(NODE_01,1) will enable the sound, and
 * discrete_sound_w(NODE_01,0) will disable the sound.
 *
 *  DISCRETE_SOUND_START(test_interface)
 *      DISCRETE_INPUT_LOGIC(NODE_01)
 *      DISCRETE_SQUAREWFIX(NODE_11, 1, 0.5, 1, 50, 1.0/2, 0)   // Output 0:1
 *      DISCRETE_SINEWAVE(NODE_12, NODE_11, 2000, 10000, 0, 0)
 *      DISCRETE_LOGIC_INVERT(NODE_13, NODE_11)
 *      DISCRETE_SINEWAVE(NODE_14, NODE_13, 4000, 10000, 0, 0)
 *      DISCRETE_ADDER2(NODE_20, NODE_01, NODE_12, NODE_14)
 *      DISCRETE_OUTPUT(NODE_20, 1)
 *  DISCRETE_SOUND_END
 *
 * To aid simulation speed it is preferable to use the enable/disable
 * inputs to a block rather than setting the output amplitude to zero
 *
 * Feedback loops are allowed BUT they will always feedback one time
 * step later, the loop over the netlist is only performed once per
 * deltaT so feedback occurs in the next deltaT step. This is not
 * the perfect solution but saves repeatedly traversing the netlist
 * until all nodes have settled.
 *
 * The best way to work out your system is generally to use a pen and
 * paper to draw a logical block diagram like the one above, it helps
 * to understand the system ,map the inputs and outputs and to work
 * out your node numbering scheme.
 *
 * Node numbers NODE_01 to NODE_299 are defined at present.
 *
 * It is recommended to put all Inputs at the start of the interface.
 * That way they are updated first.
 *
 * Each sound effects final node should come after all nodes that
 * create it.  The final mixing of all sound effects should come
 * at the end of the interface.
 *
 ***********************************************************************
 *
 * x_time - ANTI-ALIASING features.
 *
 * Certain modules make use of x_time.  This is a feature that passes
 * information between modules about how long in the current sample, the
 * switch in state happened.  This is a decimal value of the % of the
 * full sample period that it has been in the new state.
 * 0 means it has been at the same state the whole sample.
 *
 * Example: Here is the output of a clock source with x_time on the
 *          output.  The square wave is the real world waveform we
 *          want.  The ^'s are the sample point.  The numbers under
 *          the ^'s are the node output with the logic state left of
 *          the decimal and the x_time to the right.  Under that is
 *          what the node's anti-aliased output energy would be.
 *          Note: the example is not 4x sampling so the energy
 *                does not provide an accurate representation of the
 *                original waveform.  This is intentional so it fits
 *                in this header file.
 *  1      ____    ____    ____    ____    ____    ____    ____    ____
 *  0   ___    ____    ____    ____    ____    ____    ____    ____    __
 *        ^....^....^....^....^....^....^....^....^....^....^....^....^
 *   x_time   0.2  1.4  0.6  1.8  1.2  0.4  1.6  0.8  0.2  1.4  0.6
 *   energy   0.8  0.4  0.4  0.8  0.2  0.6  0.6  0.2  0.8  0.4  0.4
 *
 * Some modules will just pass the x_time onto another module.
 *
 * Modules that process x_time will keep track of the node's previous
 * state so they can calculate the actual energy at the sample time.
 *
 * Example: Say we have a 555 module that outputs a clock with x_time
 *          that is connected to a counter.  The output of the counter
 *          is connected to DAC_R1.
 *          In this case the counter module continues counting dependant
 *          on the integer portion of the 555 output.  But it also
 *          passes the decimal portion as the x_time.
 *          The DAC_R1 then uses this info to anti-alias its output.
 *          Consider the following counter outputs vs DAC_R1
 *          calculations.  The count changes from 9 to 10.  It has
 *          been at the new state for 75% of the sample.
 *
 *          counter    binary   x_time    -- DAC_R1 bit energy --
 *            out       count              D3    D2    D1    D0
 *            9.0       1001     0.0      1.0   0.0   0.0   1.0
 *           10.75      1010     0.75     1.0   0.0   0.75  0.25
 *           10.0       1010     0.0      1.0   0.0   1.0   0.0
 *
 *           The DAC_R1 uses these energy calculations to scale the
 *           voltages created on each of its resistors.  This
 *           anti-aliases the waveform no mater what the resistor
 *           weighting is.
 *
 ***********************************************************************
 *
 * LIST OF CURRENTLY IMPLEMENTED DISCRETE BLOCKS
 * ---------------------------------------------
 *
 * DISCRETE_SOUND_START(STRUCTURENAME)
 * DISCRETE_SOUND_END
 *
 * DISCRETE_ADJUSTMENT(NODE,MIN,MAX,LOGLIN,TAG)
 * DISCRETE_ADJUSTMENTX(NODE,MIN,MAX,LOGLIN,TAG,PMIN,PMAX)
 * DISCRETE_CONSTANT(NODE,CONST0)
 * DISCRETE_INPUT_DATA(NODE)
 * DISCRETE_INPUTX_DATA(NODE,GAIN,OFFSET,INIT)
 * DISCRETE_INPUT_LOGIC(NODE)
 * DISCRETE_INPUTX_LOGIC(NODE,GAIN,OFFSET,INIT)
 * DISCRETE_INPUT_NOT(NODE)
 * DISCRETE_INPUTX_NOT(NODE,GAIN,OFFSET,INIT)
 * DISCRETE_INPUT_PULSE(NODE,INIT)
 * DISCRETE_INPUT_STREAM(NODE, NUM)
 * DISCRETE_INPUTX_STREAM(NODE,NUM, GAIN,OFFSET)
 *
 * DISCRETE_COUNTER(NODE,ENAB,RESET,CLK,MIN,MAX,DIR,INIT0,CLKTYPE)
 * DISCRETE_COUNTER_7492(NODE,ENAB,RESET,CLK,CLKTYPE)
 * DISCRETE_LFSR_NOISE(NODE,ENAB,RESET,CLK,AMPL,FEED,BIAS,LFSRTB)
 * DISCRETE_NOISE(NODE,ENAB,FREQ,AMP,BIAS)
 * DISCRETE_NOTE(NODE,ENAB,CLK,DATA,MAX1,MAX2,CLKTYPE)
 * DISCRETE_SAWTOOTHWAVE(NODE,ENAB,FREQ,AMP,BIAS,GRADIENT,PHASE)
 * DISCRETE_SINEWAVE(NODE,ENAB,FREQ,AMP,BIAS,PHASE)
 * DISCRETE_SQUAREWAVE(NODE,ENAB,FREQ,AMP,DUTY,BIAS,PHASE)
 * DISCRETE_SQUAREWFIX(NODE,ENAB,FREQ,AMP,DUTY,BIAS,PHASE)
 * DISCRETE_SQUAREWAVE2(NODE,ENAB,AMPL,T_OFF,T_ON,BIAS,TSHIFT)
 * DISCRETE_TRIANGLEWAVE(NODE,ENAB,FREQ,AMP,BIAS,PHASE)
 *
 * DISCRETE_INVERTER_OSC(NODE,ENAB,MOD,RCHARGE,RP,C,R2,INFO)
 * DISCRETE_OP_AMP_OSCILLATOR(NODE,ENAB,INFO)
 * DISCRETE_OP_AMP_VCO1(NODE,ENAB,VMOD1,INFO)
 * DISCRETE_OP_AMP_VCO2(NODE,ENAB,VMOD1,VMOD2,INFO)
 * DISCRETE_SCHMITT_OSCILLATOR(NODE,ENAB,INP0,AMPL,TABLE)
 *
 * DISCRETE_ADDER2(NODE,ENAB,IN0,IN1)
 * DISCRETE_ADDER3(NODE,ENAB,IN0,IN1,IN2)
 * DISCRETE_ADDER4(NODE,ENAB,IN0,IN1,IN2,IN3)
 * DISCRETE_CLAMP(NODE,IN0,MIN,MAX)
 * DISCRETE_DIVIDE(NODE,ENAB,IN0,IN1)
 * DISCRETE_GAIN(NODE,IN0,GAIN)
 * DISCRETE_INVERT(NODE,IN0)
 * DISCRETE_LOOKUP_TABLE(NODE,ADDR,SIZE,TABLE)
 * DISCRETE_MULTIPLY(NODE,ENAB,IN0,IN1)
 * DISCRETE_MULTADD(NODE,INP0,INP1,INP2)
 * DISCRETE_ONESHOT(NODE,TRIG,AMPL,WIDTH,TYPE)
 * DISCRETE_ONESHOTR(NODE,RESET,TRIG,AMPL,WIDTH,TYPE)
 * DISCRETE_ONOFF(NODE,ENAB,INP0)
 * DISCRETE_RAMP(NODE,ENAB,RAMP,GRAD,MIN,MAX,CLAMP)
 * DISCRETE_SAMPLHOLD(NODE,INP0,CLOCK,CLKTYPE)
 * DISCRETE_SWITCH(NODE,ENAB,SWITCH,INP0,INP1)
 * DISCRETE_ASWITCH(NODE,CTRL,INP,THRESHOLD)
 * DISCRETE_TRANSFORM2(NODE,INP0,INP1,FUNCT)
 * DISCRETE_TRANSFORM3(NODE,INP0,INP1,INP2,FUNCT)
 * DISCRETE_TRANSFORM4(NODE,INP0,INP1,INP2,INP3,FUNCT)
 * DISCRETE_TRANSFORM5(NODE,INP0,INP1,INP2,INP3,INP4,FUNCT)
 *
 * DISCRETE_COMP_ADDER(NODE,DATA,TABLE)
 * DISCRETE_DAC_R1(NODE,DATA,VDATA,LADDER)
 * DISCRETE_DIODE_MIXER2(NODE,IN0,IN1,TABLE)
 * DISCRETE_DIODE_MIXER3(NODE,IN0,IN1,IN2,TABLE)
 * DISCRETE_DIODE_MIXER4(NODE,IN0,IN1,IN2,IN3,TABLE)
 * DISCRETE_INTEGRATE(NODE,TRG0,TRG1,INFO)
 * DISCRETE_MIXER2(NODE,ENAB,IN0,IN1,INFO)
 * DISCRETE_MIXER3(NODE,ENAB,IN0,IN1,IN2,INFO)
 * DISCRETE_MIXER4(NODE,ENAB,IN0,IN1,IN2,IN3,INFO)
 * DISCRETE_MIXER5(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,INFO)
 * DISCRETE_MIXER6(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,IN5,INFO)
 * DISCRETE_MIXER7(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,IN5,IN6,INFO)
 * DISCRETE_MIXER8(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7,INFO)
 * DISCRETE_OP_AMP(NODE,ENAB,IN0,IN1,INFO)
 * DISCRETE_OP_AMP_ONESHOT(NODE,TRIG,INFO)
 * DISCRETE_OP_AMP_TRIG_VCA(NODE,TRG0,TRG1,TRG2,IN0,IN1,INFO)
 *
 * DISCRETE_BIT_DECODE(NODE,INP,BIT_N,VOUT)
 * DISCRETE_BITS_DECODE(NODE,INP,BIT_FROM,BIT_TO,VOUT)
 *
 * DISCRETE_LOGIC_INVERT(NODE,INP0)
 * DISCRETE_LOGIC_AND(NODE,INP0,INP1)
 * DISCRETE_LOGIC_AND3(NODE,INP0,INP1,INP2)
 * DISCRETE_LOGIC_AND4(NODE,INP0,INP1,INP2,INP3)
 * DISCRETE_LOGIC_NAND(NODE,INP0,INP1)
 * DISCRETE_LOGIC_NAND3(NODE,INP0,INP1,INP2)
 * DISCRETE_LOGIC_NAND4(NODE,INP0,INP1,INP2,INP3)
 * DISCRETE_LOGIC_OR(NODE,INP0,INP1)
 * DISCRETE_LOGIC_OR3(NODE,INP0,INP1,INP2)
 * DISCRETE_LOGIC_OR4(NODE,INP0,INP1,INP2,INP3)
 * DISCRETE_LOGIC_NOR(NODE,INP0,INP1)
 * DISCRETE_LOGIC_NOR3(NODE,INP0,INP1,INP2)
 * DISCRETE_LOGIC_NOR4(NODE,INP0,INP1,INP2,INP3)
 * DISCRETE_LOGIC_XOR(NODE,INP0,INP1)
 * DISCRETE_LOGIC_XNOR(NODE,INP0,INP1)
 * DISCRETE_LOGIC_DFLIPFLOP(NODE,RESET,SET,CLK,INP)
 * DISCRETE_LOGIC_JKFLIPFLOP(NODE,RESET,SET,CLK,J,K)
 * DISCRETE_LOGIC_SHIFT(NODE,INP0,RESET,CLK,SIZE,OPTIONS)
 * DISCRETE_MULTIPLEX2(NODE,ADDR,INP0,INP1)
 * DISCRETE_MULTIPLEX4(NODE,ADDR,INP0,INP1,INP2,INP3)
 * DISCRETE_MULTIPLEX8(NODE,ADDR,INP0,INP1,INP2,INP3,INP4,INP5,INP6,INP7)
 * DISCRETE_XTIME_BUFFER(NODE,IN0,LOW,HIGH)
 * DISCRETE_XTIME_INVERTER(NODE,IN0,LOW,HIGH)
 * DISCRETE_XTIME_AND(NODE,IN0,IN1,LOW,HIGH)
 * DISCRETE_XTIME_NAND(NODE,IN0,IN1,LOW,HIGH)
 * DISCRETE_XTIME_OR(NODE,IN0,IN1,LOW,HIGH)
 * DISCRETE_XTIME_NOR(NODE,IN0,IN1,LOW,HIGH)
 * DISCRETE_XTIME_XOR(NODE,IN0,IN1,LOW,HIGH)
 * DISCRETE_XTIME_XNOR(NODE,IN0,IN1,LOW,HIGH)
 *
 * DISCRETE_FILTER1(NODE,ENAB,INP0,FREQ,TYPE)
 * DISCRETE_FILTER2(NODE,ENAB,INP0,FREQ,DAMP,TYPE)
 *
 * DISCRETE_CRFILTER(NODE,IN0,RVAL,CVAL)
 * DISCRETE_CRFILTER_VREF(NODE,IN0,RVAL,CVAL,VREF)
 * DISCRETE_OP_AMP_FILTER(NODE,ENAB,INP0,INP1,TYPE,INFO)
 * DISCRETE_RC_CIRCUIT_1(NODE,INP0,INP1,RVAL,CVAL)
 * DISCRETE_RCDISC(NODE,ENAB,IN0,RVAL,CVAL)
 * DISCRETE_RCDISC2(NODE,SWITCH,INP0,RVAL0,INP1,RVAL1,CVAL)
 * DISCRETE_RCDISC3(NODE,ENAB,INP0,RVAL0,RVAL1,CVAL, DJV)
 * DISCRETE_RCDISC4(NODE,ENAB,INP0,RVAL0,RVAL1,RVAL2,CVAL,VP,TYPE)
 * DISCRETE_RCDISC5(NODE,ENAB,IN0,RVAL,CVAL)
 * DISCRETE_RCINTEGRATE(NODE,INP0,RVAL0,RVAL1,RVAL2,CVAL,vP,TYPE)
 * DISCRETE_RCDISC_MODULATED(NODE,INP0,INP1,RVAL0,RVAL1,RVAL2,RVAL3,CVAL,VP)
 * DISCRETE_RCFILTER(NODE,IN0,RVAL,CVAL)
 * DISCRETE_RCFILTER_VREF(NODE,IN0,RVAL,CVAL,VREF)
 *
 * DISCRETE_555_ASTABLE(NODE,RESET,R1,R2,C,OPTIONS)
 * DISCRETE_555_ASTABLE_CV(NODE,RESET,R1,R2,C,CTRLV,OPTIONS)
 * DISCRETE_555_MSTABLE(NODE,RESET,TRIG,R,C,OPTIONS)
 * DISCRETE_555_CC(NODE,RESET,VIN,R,C,RBIAS,RGND,RDIS,OPTIONS)
 * DISCRETE_555_VCO1(NODE,RESET,VIN,OPTIONS)
 * DISCRETE_555_VCO1_CV(NODE,RESET,VIN,CTRLV,OPTIONS)
 * DISCRETE_566(NODE,VMOD,R,C,VPOS,VNEG,VCHARGE,OPTIONS)
 * DISCRETE_74LS624(NODE,ENAB,VMOD,VRNG,C,R_FREQ_IN,C_FREQ_IN,R_RNG_IN,OUTTYPE)
 *
 * DISCRETE_CUSTOM1(NODE,IN0,INFO)
 * DISCRETE_CUSTOM2(NODE,IN0,IN1,INFO)
 * DISCRETE_CUSTOM3(NODE,IN0,IN1,IN2,INFO)
 * DISCRETE_CUSTOM4(NODE,IN0,IN1,IN2,IN3,INFO)
 * DISCRETE_CUSTOM5(NODE,IN0,IN1,IN2,IN3,IN4,INFO)
 * DISCRETE_CUSTOM6(NODE,IN0,IN1,IN2,IN3,IN4,IN5,INFO)
 * DISCRETE_CUSTOM7(NODE,IN0,IN1,IN2,IN3,IN4,IN5,IN6,INFO)
 * DISCRETE_CUSTOM8(NODE,IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7,INFO)
 * DISCRETE_CUSTOM9(NODE,IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7,IN8,INFO)
 *
 * DISCRETE_CSVLOG1(NODE1)
 * DISCRETE_CSVLOG2(NODE1,NODE2)
 * DISCRETE_CSVLOG3(NODE1,NODE2,NODE3)
 * DISCRETE_CSVLOG4(NODE1,NODE2,NODE3,NODE4)
 * DISCRETE_CSVLOG5(NODE1,NODE2,NODE3,NODE4,NODE5)
 * DISCRETE_WAVLOG1(NODE1,GAIN1)
 * DISCRETE_WAVLOG2(NODE1,GAIN1,NODE2,GAIN2)
 * DISCRETE_OUTPUT(OPNODE,GAIN)
 *
 ***********************************************************************
 =======================================================================
 * from from disc_inp.inc
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_ADJUSTMENT     - Adjustable constant set by the UI [~] menu.
 *
 *                        .----------.
 *                        |          |
 *                        | ADJUST.. |-------->   Netlist node
 *                        |          |
 *                        '----------'
 *  Declaration syntax
 *
 *     DISCRETE_ADJUSTMENT(name of node,
 *                         static minimum value the node can take,
 *                         static maximum value the node can take,
 *                         log/linear scale 0=Linear !0=Logarithmic,
 *                         port tag name of the adjuster)
 *
 *  Note: When using DISC_LOGADJ, the min/max values must be > 0.
 *        If they are <=0, they will be forced to 1.
 *        Min can be a higher value then max.
 *        Min/max is just how the slider is displayed.
 *
 *  Example config line
 *
 *     DISCRETE_ADJUSTMENT(NODE_01,0.0,5.0,DISC_LINADJ,0,"pot")
 *
 *  Define an adjustment slider that takes a 0-100 input from input
 *  port "pot", scaling between 0.0 and 5.0. Adjustment scaling is Linear.
 *
 *      DISC_LOGADJ 1.0
 *      DISC_LINADJ 0.0
 *
 * EXAMPLES: see Hit Me, Fire Truck
 *
 ***********************************************************************
 *
 * DISCRETE_CONSTANT - Single output, fixed at compile time.
 *                     This is useful as a placeholder for
 *                     incomplete circuits.
 *
 *                        .----------.
 *                        |          |
 *                        | CONSTANT |-------->   Netlist node
 *                        |          |
 *                        '----------'
 *  Declaration syntax
 *
 *     DISCRETE_CONSTANT(name of node, constant value)
 *
 *  Example config line
 *
 *     DISCRETE_CONSTANT(NODE_01, 100)
 *
 *  Define a node that has a constant value of 100
 *
 ***********************************************************************
 *
 * DISCRETE_INPUT_DATA  - accepts 8-bit data.  Value at reset is 0.
 * DISCRETE_INPUT_LOGIC - 0 if data=0; 1 if data=1.  Value at reset is 0.
 * DISCRETE_INPUT_NOT   - 0 if data=1; 1 if data=0.  Value at reset is 1.
 *
 * DISCRETE_INPUTX_xx   - same as above, but will modify the value by the
 *                        given GAIN and OFFSET.  At reset the value will
 *                        be INIT modified by GAIN and OFFSET.
 *
 * DISCRETE_INPUT_PULSE - Same as normal input node but the netlist
 *                        node output returns to INIT after a single
 *                        cycle of sound output. To allow for scenarios
 *                        whereby the register write pulse is used as
 *                        a reset to a system.
 *
 *                            .----------.
 *                      -----\|          |
 *     discrete_sound_w  data | INPUT(A) |---->   Netlist node
 *            Write     -----/|          |
 *                            '----------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_INPUT_DATA  (name of node)
 *     DISCRETE_INPUT_LOGIC (name of node)
 *     DISCRETE_INPUT_NOT   (name of node)
 *     DISCRETE_INPUTX_DATA (name of node, gain, offset, initial value)
 *     DISCRETE_INPUTX_LOGIC(name of node, gain, offset, initial value)
 *     DISCRETE_INPUTX_NOT  (name of node, gain, offset, initial value)
 *     DISCRETE_INPUT_PULSE (name of node, default value)
 *
 *  Can be written to with:    discrete_sound_w(NODE_xx, data);
 *
 ***********************************************************************
 *
 * DISCRETE_INPUT_STREAM(NODE,NUM)              - Accepts stream input NUM
 * DISCRETE_INPUTX_STREAM(NODE,NUM,GAIN,OFFSET) - Accepts a stream input and
 *                                                applies a gain and offset.
 *
 *  Declaration syntax
 *
 *     DISCRETE_INPUT_STREAM (name of node, stream number, )
 *     DISCRETE_INPUTX_STREAM(name of node, stream nubmer, gain, offset)
 *
 * Note: The discrete system is floating point based.  So when routing a stream
 *       set it's gain to 100% and then use DISCRETE_INPUTX_STREAM to adjust
 *       it if needed.
 *       If you need to access a stream from a discrete task, the stream node
 *       must be part of that task. If a given stream is used in two tasks or
 *       a task and the main task, you must declare two stream nodes accessing the
 *       same stream input NUM.
 *
 * EXAMPLES: see scramble, frogger
 *
 ***********************************************************************
 =======================================================================
 * from from disc_wav.inc
 * Generic modules
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_COUNTER     - up/down counter.
 *
 *  This counter counts up/down from MIN to MAX.  When the enable is low, the output
 *  is held at it's last value.  When reset is high, the reset value is loaded
 *  into the output.  The counter can be clocked internally or externally.  It also
 *  supports x_time used by the clock modules to pass on anti-aliasing info.
 *
 *  Declaration syntax
 *
 *       where:  direction: DISC_COUNT_DOWN = 0 = down
 *                          DISC_COUNT_UP   = 1 = up
 *
 *               clock type: DISC_CLK_ON_F_EDGE - toggle on falling edge.
 *                           DISC_CLK_ON_R_EDGE - toggle on rising edge.
 *                           DISC_CLK_BY_COUNT  - toggle specified number of times.
 *                           DISC_CLK_IS_FREQ   - internally clock at this frequency.
 *
 *               x_time options: you can also | these x_time features to the basic
 *                               types above if needed, or use separately with 7492.
 *                           DISC_OUT_IS_ENERGY - This will uses the x_time to
 *                                                anti-alias the count.  Might be
 *                                                useful if not connected to other
 *                                                modules.
 *                           DISC_OUT_HAS_XTIME - This will generate x_time if
 *                                                being used with DISC_CLK_IS_FREQ.
 *                                                It will pass x_time for the
 *                                                other clock types.
 *
 *     DISCRETE_COUNTER(name of node,
 *                      enable node or static value,
 *                      reset node or static value, (reset when true)
 *                      clock node or static value,
 *                      min count static value,
 *                      max count static value,
 *                      direction node or static value,
 *                      reset value node or static value,
 *                      clock type static value)
 *
 *     DISCRETE_COUNTER_7492(name of node,
 *                           enable node or static value,
 *                           reset node or static value,
 *                           clock node or static value,
 *                           clock type static value)
 *
 *  Note: A 7492 counter outputs a special bit pattern on its /6 stage.
 *        A 7492 clocks on the falling edge,
 *        so it is not recommended to use DISC_CLK_ON_R_EDGE for a 7492.
 *        This module emulates the /6 stage only.
 *        Use another DISCRETE_COUNTER for the /2 stage.
 *
 * EXAMPLES: see Fire Truck, Monte Carlo, Super Bug, Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_LFSR_NOISE - Noise waveform generator node, generates
 *                       pseudo random digital stream at the requested
 *                       clock frequency.
 *
 *  Declaration syntax
 *
 *     DISCRETE_LFSR_NOISE(name of node,
 *                         enable node or static value,
 *                         reset node or static value,
 *                         clock node or static value,
 *                         amplitude node or static value,
 *                         forced infeed bit to shift reg,
 *                         bias node or static value,
 *                         LFSR noise descriptor structure)
 *
 *     discrete_lfsr_desc = {clock type,  (see DISCRETE_COUNTER),
 *                           bitlength, reset_value,
 *                           feedback_bitsel0, feedback_bitsel1,
 *                           feedback_function0, feedback_function1, feedback_function2,
 *                           feedback_function2_mask, flags, output_bit}
 *
 *     flags: DISC_LFSR_FLAG_OUT_INVERT     - invert output
 *            DISC_LFSR_FLAG_RESET_TYPE_L   - reset when LOW (Defalut)
 *            DISC_LFSR_FLAG_RESET_TYPE_H   - reset when HIGH
 *            DISC_LFSR_FLAG_OUTPUT_F0      - output is result of F0
 *            DISC_LFSR_FLAG_OUTPUT_SR_SN1  - output shift register to sub-node output #1
 *
 *  The diagram below outlines the structure of the LFSR model.
 *
 *         .-------.
 *   FEED  |       |
 *   ----->|  F1   |<--------------------------------------------.
 *         |       |                                             |
 *         '-------'               BS - Bit Select               |
 *             |                   Fx - Programmable Function    |
 *             |        .-------.  PI - Programmable Inversion   |
 *             |        |       |                                |
 *             |  .---- | SR>>1 |<--------.                      |
 *             |  |     |       |         |                      |
 *             V  V     '-------'         |  .----               |
 *           .------.                     +->| BS |--. .------.  |
 *   BITMASK |      |    .-------------.  |  '----'  '-|      |  |
 *   ------->|  F2  |-+->| Shift Reg   |--+            |  F0  |--'
 *           |      | |  '-------------'  |  .----.  .-|      |
 *           '------' |         ^         '->| BS |--' '------'
 *                    |         |            '----'
 *   CLOCK            |     RESET VAL
 *   ---->            |                      .----.  .----.
 *                    '----------------------| BS |--| PI |--->OUTPUT
 *                                           '----'  '----'
 *
 * EXAMPLES: see Fire Truck, Monte Carlo, Super Bug, Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_NOISE      - Noise waveform generator node, generates
 *                       random noise of the chosen frequency.
 *
 *                        .------------.
 *                        |            |
 *    ENABLE     -0------>|            |
 *                        |            |
 *    FREQUENCY  -1------>|   NOISE    |---->   Netlist node
 *                        |            |
 *    AMPLITUDE  -2------>|            |
 *                        |            |
 *    BIAS       -3------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_NOISE(name of node,
 *                    enable node or static value,
 *                    frequency node or static value,
 *                    amplitude node or static value)
 *
 *  Example config line
 *
 *     DISCRETE_NOISE(NODE_03,1,5000,NODE_01,0)
 *
 ***********************************************************************
 *
 * DISCRETE_NOTE - Note generator.  This takes a chosen clock, and
 *                 clocks an up counter that is preloaded with the data
 *                 value at every max 1 count.  Every time max 1 count
 *                 is reached, the output counts up one and rolls over
 *                 to 0 at max 2 count.
 *                 When the data value is the same as max count 1, the
 *                 counter no longer counts.
 *
 *  Declaration syntax
 *
 *     DISCRETE_NOTE(name of node,
 *                   enable node or static value,
 *                   clock node or static value,
 *                   data node or static value,
 *                   max 1 count static value,
 *                   max 2 count static value,
 *                   clock type  (see DISCRETE_COUNTER))
 *
 * EXAMPLES: see Polaris, Blockade
 *
 ***********************************************************************
 *
 * DISCRETE_SAWTOOTHWAVE - Saw tooth shape waveform generator, rapid
 *                         rise and then graduated fall
 *
 *                        .------------.
 *                        |            |
 *    ENABLE     -0------>|            |
 *                        |            |
 *    FREQUENCY  -1------>|            |
 *                        |            |
 *    AMPLITUDE  -2------>|  SAWTOOTH  |----> Netlist Node
 *                        |    WAVE    |
 *    BIAS       -3------>|            |
 *                        |            |
 *    GRADIENT   -4------>|            |
 *                        |            |
 *    PHASE      -5------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_SAWTOOTHWAVE(name of node,
 *                         enable node or static value,
 *                         frequency node or static value,
 *                         amplitude node or static value,
 *                         dc bias value for waveform,
 *                         gradient of wave ==0 //// !=0 \\\\,
 *                         starting phase value in degrees)
 *
 *  Example config line
 *
 *     DISCRETE_SAWTOOTHWAVE(NODE_03,1,5000,NODE_01,0,0,90)
 *
 ***********************************************************************
 *
 * DISCRETE_SINEWAVE   - Sinewave waveform generator node, has four
 *                       input nodes FREQUENCY, AMPLITUDE, ENABLE and
 *                       PHASE, if a node is not connected it will
 *                       default to the initialised value in the macro
 *
 *                        .------------.
 *                        |            |
 *    ENABLE     -0------>|            |
 *                        |            |
 *    FREQUENCY  -1------>|            |
 *                        | SINEWAVE   |---->   Netlist node
 *    AMPLITUDE  -2------>|            |
 *                        |            |
 *    BIAS       -3------>|            |
 *                        |            |
 *    PHASE      -4------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_SINEWAVE  (name of node,
 *                         enable node or static value,
 *                         frequency node or static value,
 *                         amplitude node or static value,
 *                         dc bias value for waveform,
 *                         starting phase value in degrees)
 *
 *  Example config line
 *
 *     DISCRETE_SINEWAVE(NODE_03,NODE_01,NODE_02,10000,5000.0,90)
 *
 ***********************************************************************
 *
 * DISCRETE_SQUAREWAVE - Squarewave waveform generator node.
 * DISCRETE_SQUAREWFIX   Waveform is defined by frequency and duty
 *                       cycle.
 *
 *                        .------------.
 *                        |            |
 *    ENABLE     -0------>|            |
 *                        |            |
 *    FREQUENCY  -1------>|            |
 *                        |            |
 *    AMPLITUDE  -2------>| SQUAREWAVE |---->   Netlist node
 *                        |            |
 *    DUTY CYCLE -3------>|            |
 *                        |            |
 *    BIAS       -4------>|            |
 *                        |            |
 *    PHASE      -5------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_SQUAREWAVE(name of node,
 *                         enable node or static value,
 *                         frequency node or static value,
 *                         amplitude node or static value,
 *                         duty cycle node or static value,
 *                         dc bias value for waveform,
 *                         starting phase value in degrees)
 *
 *  Example config line
 *
 *     DISCRETE_SQUAREWAVE(NODE_03,NODE_01,NODE_02,100,50,0,90)
 *
 * NOTE: DISCRETE_SQUAREWFIX is used the same as DISCRETE_SQUAREWAVE.
 *       BUT... It does not stay in sync when you change the freq or
 *              duty values while enabled.  This should be used only
 *              when these values are stable while the wave is enabled.
 *              It takes up less CPU time then DISCRETE_SQUAREWAVE and
 *              should be used whenever possible.
 *
 * EXAMPLES: see Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_SQUAREWAVE2 - Squarewave waveform generator node.
 *                        Waveform is defined by it's off/on time
 *                        periods.
 *
 *                        .------------.
 *                        |            |
 *    ENABLE     -0------>|            |
 *                        |            |
 *    AMPLITUDE  -1------>|            |
 *                        |            |
 *    OFF TIME   -2------>| SQUAREWAVE |---->   Netlist node
 *                        |            |
 *    ON TIME    -3------>|            |
 *                        |            |
 *    BIAS       -4------>|            |
 *                        |            |
 *    TIME SHIFT -5------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_SQUAREWAVE2(name of node,
 *                          enable node or static value,
 *                          amplitude node or static value,
 *                          off time node or static value in seconds,
 *                          on time node or static value in seconds,
 *                          dc bias value for waveform,
 *                          starting phase value in seconds)
 *
 *  Example config line
 *
 *   DISCRETE_SQUAREWAVE2(NODE_03,NODE_01,NODE_02,0.01,0.001,0.0,0.001)
 *
 ***********************************************************************
 *
 * DISCRETE_TRIANGLEW  - Triangular waveform generator, generates
 *                       equal ramp up/down at chosen frequency
 *
 *                        .------------.
 *                        |            |
 *    ENABLE     -0------>|            |
 *                        |            |
 *    FREQUENCY  -1------>|  TRIANGLE  |---->   Netlist node
 *                        |    WAVE    |
 *    AMPLITUDE  -2------>|            |
 *                        |            |
 *    BIAS       -3------>|            |
 *                        |            |
 *    PHASE      -4------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_TRIANGLEWAVE(name of node,
 *                         enable node or static value,
 *                         frequency node or static value,
 *                         amplitude node or static value,
 *                         dc bias value for waveform,
 *                         starting phase value in degrees)
 *
 *  Example config line
 *
 *     DISCRETE_TRIANGLEWAVE(NODE_03,1,5000,NODE_01,0.0,0.0)
 *
 ***********************************************************************
 =======================================================================
 * from from disc_wav.inc
 * Component specific modules
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_OP_AMP_OSCILLATOR - Various single power supply op-amp oscillator circuits
 *
 *  Declaration syntax
 *
 *     DISCRETE_OP_AMP_OSCILLATOR(name of node,
 *                                enable node or static value,
 *                                address of dss_op_amp_osc_context structure)
 *
 *     discrete_op_amp_osc_info = {type, r1, r2, r3, r4, r5, r6, r7, r8, c, vP}
 *
 * Note: Set all unused components to 0.
 *       _OUT_SQW can also be replaced with
 *                _OUT_ENERGY, _OUT_LOGIC_X, _OUT_COUNT_F_X, _OUT_COUNT_R_X
 *
 *  Types:
 *
 *     DISC_OP_AMP_OSCILLATOR_1 | DISC_OP_AMP_IS_NORTON
 *          Basic Norton Op Amp Oscillator circuit.
 *
 *              vP >-.
 *                   |         c
 *                   Z     .---||----+-------------------------> DISC_OP_AMP_OSCILLATOR_OUT_CAP
 *                   Z r1  |         |
 *                   Z     |   |\    |
 *                   |     |   | \   |            |\
 *                   '-----+---|- \  |     r3     | \
 *                             |   >-+----ZZZZ----|- \
 *                             |+ /               |   >--+-----> DISC_OP_AMP_OSCILLATOR_OUT_SQW
 *                         .---| /             .--|+ /   |
 *                         |   |/        r5    |  | /    |
 *           vP >-.        |      vP >--ZZZZ---+  |/     |
 *                |        Z                   |         |
 *                Z        Z r2                |   r4    |
 *                Z 1k     Z                   '--ZZZZ---+
 *                Z        |                             |
 *            |\  |  r6    |                             |
 * Enable >---| >-+-ZZZZ---+-----------------------------'
 *            |/ O.C.
 *
 * Note: R1 - R5 can be nodes.
 *
 * EXAMPLES: see Polaris, Amazing Maze
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_OSCILLATOR_2 | DISC_OP_AMP_IS_NORTON
 *          Basic Norton Op Amp Oscillator circuit.
 *
 *       .-------------------------------------------> DISC_OP_AMP_OSCILLATOR_OUT_CAP
 *       |
 *       |       r1
 *       +------ZZZZ-----.
 *       |               |
 *       |   r5          |
 *       +--ZZZZ---|>|---.
 *       |               |
 *       |   r6          |
 *       +--ZZZZ---|<|---.
 *       |               |
 *       |         |\    |
 *       |    r2   | \   |
 *       +---ZZZZ--|- \  |
 *       |         |   >-+-------> DISC_OP_AMP_OSCILLATOR_OUT_SQW
 *      --- c      |+ /  |
 *      ---    .---| /   |
 *       |     |   |/    |
 *      gnd    |         |
 *             |   r3    |
 *             +--ZZZZ---'
 *             |
 *             Z
 *             Z r4
 *             Z
 *             |
 *             ^
 *             vP
 *
 * Note: All values are static.
 *
 * EXAMPLES: see Space Walk, Blue Shark
 *
 ***********************************************************************
 *
 * DISCRETE_OP_AMP_VCOn - Various single power supply op-amp VCO circuits
 *                   (n = 1 or 2)
 *
 *  Declaration syntax
 *
 *     DISCRETE_OP_AMP_VCOn(name of node,
 *                          enable node or static value,
 *                          modulation voltage 1 node or static value,
 *                          modulation voltage 2 node or static value,  [optional]
 *                          address of dss_op_amp_osc_context structure)
 *
 *     discrete_op_amp_osc_info = {type, r1, r2, r3, r4, r5, r6, r7, r8, c, vP}
 *
 * Note: Set all unused components to 0.
 *       _OUT_SQW can also be replaced with
 *                _OUT_ENERGY, _OUT_LOGIC_X, _OUT_COUNT_F_X, _OUT_COUNT_R_X
 *
 *  Types:
 *
 *     DISC_OP_AMP_OSCILLATOR_VCO_1
 *          Basic Op Amp Voltage Controlled Oscillator circuit.
 *          Note that this circuit has only 1 modulation voltage.
 *          So it is used only with DISCRETE_OP_AMP_VCO1.
 *
 *                               c
 *  .------------------------+---||----+---------------------------> DISC_OP_AMP_OSCILLATOR_OUT_CAP
 *  |                        |         |
 *  |                        |   |\    |
 *  |              r1        |   | \   |            |\
 *  | vMod1 >--+--ZZZZ-------+---|- \  |            | \
 *  |          |                 |   >-+------------|- \
 *  |          |   r2            |+ /               |   >--+-------> DISC_OP_AMP_OSCILLATOR_OUT_SQW
 *  Z          '--ZZZZ--+--------| /             .--|+ /   |
 *  Z r6                |        |/        r4    |  | /    |
 *  Z                   Z         vP/2 >--ZZZZ---+  |/     |
 *  |                   Z r5                     |         |
 * .----.               Z                        |   r3    |
 * | sw |<--------.     |                        '--ZZZZ---+
 * '----'         |    gnd                                 |
 *    |           |                                        |
 *   gnd          '----------------------------------------'
 *
 * Notes: The 'sw' block can be a transistor or 4066 switch.  It connects
 *        r6 to ground when 'sw' is high.
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_OSCILLATOR_VCO_1 | DISC_OP_AMP_IS_NORTON
 *          Basic Norton Op Amp Voltage Controlled Oscillator circuit.
 *          When disabled, c discharges and sqw out goes high.
 *
 *                                             .---------------------------> DISC_OP_AMP_OSCILLATOR_OUT_CAP
 *                                       c     |
 *               r6                  .---||----+
 *        vP >--ZZZZ---.             |         |         r5    |\
 *                     |             |   |\    |  vP >--ZZZZ-. | \
 *               r7    |   r1        |   | \   |             '-|- \
 *     vMod1 >--ZZZZ---+--ZZZZ-------+---|- \  |     r3        |   >--+-------> DISC_OP_AMP_OSCILLATOR_OUT_SQW
 *                     |                 |   >-+----ZZZZ----+--|+ /   |
 *               r8    |   r2    .----.  |+ /               |  | /    |
 *     vMod2 >--ZZZZ---+--ZZZZ---| sw |--| /                |  |/     |
 *                               '----'  |/                 |         |
 *                                 ^ ^                      |   r4    |
 *                                 | |                      '--ZZZZ---+
 *                                 | |                                |
 *                Enable >---------' |                                |
 *                                   '--------------------------------'
 *
 * EXAMPLES: see Polaris
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_OSCILLATOR_VCO_2 | DISC_OP_AMP_IS_NORTON
 *          Basic Norton Op Amp Voltage Controlled Oscillator circuit.
 *          Note that this circuit has only 1 modulation voltage.
 *          So it is used only with DISCRETE_OP_AMP_VCO1.
 *          When vMod1 goes to 0V, the oscillator is disabled.
 *          c fully charges and the sqw out goes low.
 *
 *                                             .---------------------------> DISC_OP_AMP_OSCILLATOR_OUT_CAP
 *                                             |
 *                                             |                 r4
 *                                       c     |             .--ZZZZ--.
 *                                   .---||----+             |        |
 *                                   |         |         r5  | |\     |
 *                                   |   |\    |  vP >--ZZZZ-+ | \    |
 *               r1                  |   | \   |             '-|+ \   |
 *     vMod1 >--ZZZZ-----------------+---|- \  |     r3        |   >--+-------> DISC_OP_AMP_OSCILLATOR_OUT_SQW
 *                                       |   >-+----ZZZZ-------|- /   |
 *               r2                      |+ /                  | /    |
 *        vP >--ZZZZ-----------------+---| /                   |/     |
 *                                   |   |/                           |
 *               r6      .----.      |                                |
 *        vP >--ZZZZ-----|-sw-|------'                                |
 *                       '----'                                       |
 *                          ^                                         |
 *                          |                                         |
 *                          '-----------------------------------------'
 *
 * EXAMPLES: see Double Play
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_OSCILLATOR_VCO_3 | DISC_OP_AMP_IS_NORTON
 *          Basic Norton Op Amp Voltage Controlled Oscillator circuit.
 *
 *
 *                                  c
 *              r7              .---||----+---------------------------> DISC_OP_AMP_OSCILLATOR_OUT_CAP
 *       vP >--ZZZZ---.         |         |
 *                    |         |   |\    |
 *              r1    |         |   | \   |            |\
 *    vMod1 >--ZZZZ---+---------+---|- \  |     r3     | \
 *                    |             |   >-+----ZZZZ----|- \
 *              r6    |             |+ /               |   >--+-------> DISC_OP_AMP_OSCILLATOR_OUT_SQW
 *    vMod2 >--ZZZZ---'         .---| /             .--|+ /   |
 *                              |   |/        r5    |  | /    |
 *                vP >-.        |      vP >--ZZZZ---+  |/     |
 *                     |        Z                   |         |
 *                     Z        Z r2                |   r4    |
 *                     Z 1k     Z                   '--ZZZZ---+
 *                     Z        |                             |
 *                 |\  |  r8    |                             |
 *      Enable >---| >-+-ZZZZ---+-----------------------------'
 *                 |/ O.C.
 *
 * EXAMPLES: see Space Encounter, Blue Shark
 *
 ***********************************************************************
 *
 * DISCRETE_SCHMITT_OSCILLATOR - Schmitt Inverter gate oscillator
 *
 *                  rFeedback
 *                .---ZZZ----.                   .--< Amplitude
 *                |          |                   |
 *                |  |\      |      .------.     |
 *           rIn  |  | \     | 0/1  | AND/ |    .-.
 *  INP0 >---ZZZ--+--|S >o---+----->|NAND/ |--->|*|-----> Netlist Node
 *                |  | /            |  OR/ |    '-'
 *                |  |/          .->| NOR  |
 *               ---             |  '------'
 *               --- C           |
 *                |              ^
 *               gnd          Enable
 *
 *  Declaration syntax
 *
 *     DISCRETE_SCHMITT_OSCILLATOR(name of node,
 *                                 enable node or static value,
 *                                 Input 0 node or static value,
 *                                 Amplitude node or static value,
 *                                 address of discrete_schmitt_osc_desc structure)
 *
 *     discrete_schmitt_osc_desc = {rIn, rFeedback, c, trshRise, trshFall, vGate, options}
 *
 *  Note: trshRise, trshFall, vGate can be replaced with one of these common types:
 *        DEFAULT_7414_VALUES or DEFAULT_74LS14_VALUES  (the LS makes a difference)
 *    eg: {rIn, rFeedback, c, DEFAULT_7414_VALUES, options}
 *
 *  Where:
 *     trshRise is the voltage level that triggers the gate input to go high (vGate) on rise.
 *     trshFall is the voltage level that triggers the gate input to go low (0V) on fall.
 *     vGate    is the output high voltage of the gate that gets fedback through rFeedback.
 *
 *  Input Options:
 *     DISC_SCHMITT_OSC_IN_IS_LOGIC (DEFAULT)
 *     DISC_SCHMITT_OSC_IN_IS_VOLTAGE
 *
 *  Enable Options: (ORed with input options)
 *     DISC_SCHMITT_OSC_ENAB_IS_AND (DEFAULT)
 *     DISC_SCHMITT_OSC_ENAB_IS_NAND
 *     DISC_SCHMITT_OSC_ENAB_IS_OR
 *     DISC_SCHMITT_OSC_ENAB_IS_NOR
 *
 * EXAMPLES: see Fire Truck, Monte Carlo, Super Bug
 *
 ***********************************************************************
 *
 * DISCRETE_INVERTER_OSC - Inverter gate oscillator circuits
 *
 * TYPE 1/3
 *               .----------------------------> Netlist Node (Type 3)
 *               |
 *        |\     |  |\        |\
 *        | \    |  | \       | \
 *     +--|  >o--+--|-->o--+--|  >o--+--------> Netlist Node (Type 1)
 *     |  | /       | /    |  | /    |
 *     |  |/        |/     |  |/     |
 *     Z                   |         |
 *     Z RP               ---        |
 *     Z                  --- C      |
 *     |                   |     R1  |
 *     '-------------------+----ZZZ--'
 *
 * TYPE 2
 *
 *        |\        |\
 *        | \       | \
 *     +--|  >o--+--|-->o--+-------> Netlist Node
 *     |  | /    |  | /    |
 *     |  |/     |  |/     |
 *     Z         Z         |
 *     Z RP      Z R1     ---
 *     Z         Z        --- C
 *     |         |         |
 *     '---------+---------'
 *
 *
 * TYPE 4 / see vicdual
 *
 *                |\        |\
 *                | \       | \
 * Enable >-+-----+--|>o-+--|-->o--+-------> Netlist Node
 *          |     | /    |  | /    |
 *          |     |/     |  |/     |
 *          Z            Z         |
 *          Z RP         Z R1     ---
 *          Z            Z        --- C
 *          |       D    |         |
 *          '------|>|---+---------'
 *                       |
 * Mod    >-----ZZZ------'
 *               R2
 *
 * TYPE 5 / see vicdual
 *    Diode will cause inverted input behaviour and inverted output
 *
 *                |\        |\
 *                | \       | \
 * Enable >-+-----+--|>o-+--|-->o--+-------> Netlist Node
 *          |     | /    |  | /    |
 *          |     |/     |  |/     |
 *          Z            Z         |
 *          Z RP         Z R1     ---
 *          Z            Z        --- C
 *          |       D    |         |
 *          '------|<|---+---------'
 *                       |
 * Mod    >-----ZZZ------'
 *               R2
 *
 *  Declaration syntax
 *
 *     DISCRETE_INVERTER_OSC( name of node,
 *                            enable node or static value,
 *                            modulation node or static value (0 when not used),
 *                            R1 static value,
 *                            RP static value
 *                            C  static value,
 *                            R2 static value (0 when not used),
 *                            address of discrete_inverter_osc_desc structure)
 *
 *     discrete_inverter_osc_desc = {vB, vOutLow, vOutHigh, vInRise, vInFall, clamp, options}
 *
 *     Where
 *        vB       Supply Voltage
 *        vOutLow  Low Output voltage
 *        vOutHigh High Output voltage
 *        vInRise  voltage that triggers the gate input to go high (vGate) on rise
 *        vInFall  voltage that triggers the gate input to go low (0V) on fall
 *        clamp    internal diode clamp:  [-clamp ... vb+clamp] if clamp>= 0
 *        options  bitmapped options
 *
 *     There is a macro DEFAULT_CD40XX_VALUES(_vB) which may be used to initialize the
 *     structure with .... = { 5, DEFAULT_CD40XX_VALUES(5), DISC_OSC_INVERTER_IS_TYPE1}
 *
 *     The parameters are used to construct a input/output transfer function.
 *
 *     Option Values
 *
 *         DISC_OSC_INVERTER_IS_TYPE1
 *         DISC_OSC_INVERTER_IS_TYPE2
 *         DISC_OSC_INVERTER_IS_TYPE3
 *         DISC_OSC_INVERTER_IS_TYPE4
 *         DISC_OSC_INVERTER_OUT_IS_LOGIC
 *
 * EXAMPLES: see dkong
 *
 ***********************************************************************
 =======================================================================
 * from from disc_wav.inc
 * Not yet implemented
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_ADSR_ENV  - Attack Decay Sustain Release envelope generator
 *
 * Note: Not yet implemented.
 *
 *                        .------------.
 *                        |            |
 *    ENABLE     -0------>|            |
 *                        |    /\__    |
 *    TRIGGER    -1------>|   /    \   |---->   Netlist node
 *                        |    ADSR    |
 *    GAIN       -2------>|    Env     |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_ADSR_ENV  (name of node,
 *                         enable node or static value,
 *                         envelope gain node or static value,
 *                         envelope descriptor struct)
 *
 *  Example config line
 *
 *     DISCRETE_ADSR_ENV(NODE_3,1,NODE_21,1.0,&adsrdesc)
 *
 ***********************************************************************
 =======================================================================
 * from from disc_mth.inc
 * Generic modules
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_ADDER      - Node addition function, available in three
 *                       lovely flavours, ADDER2,ADDER3,ADDER4
 *                       that perform a summation of incoming nodes
 *
 *                        .------------.
 *                        |            |
 *    INPUT0     -0------>|            |
 *                        |            |
 *    INPUT1     -1------>|     |      |
 *                        |    -+-     |---->   Netlist node
 *    INPUT2     -2------>|     |      |
 *                        |            |
 *    INPUT3     -3------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_ADDERx    (name of node,
 *        (x=2/3/4)        enable node or static value,
 *                         input0 node or static value,
 *                         input1 node or static value,
 *                         input2 node or static value,  [optional]
 *                         input3 node or static value)  [optional]
 *
 *  Example config line
 *
 *     DISCRETE_ADDER2(NODE_03,1,NODE_12,-2000)
 *
 *  Always enabled, subtracts 2000 from the output of NODE_12
 *
 ***********************************************************************
 *
 * DISCRETE_CLAMP - Force a signal to stay within bounds MIN/MAX
 *
 *                        .------------.
 *                        |            |
 *    INP0       -0------>|            |
 *                        |            |
 *    MIN        -1------>|   CLAMP    |---->   Netlist node
 *                        |            |
 *    MAX        -2------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *        DISCRETE_CLAMP(name of node,
 *                       input node,
 *                       minimum node or static value,
 *                       maximum node or static value),
 *
 *  Example config line
 *
 *     DISCRETE_CLAMP(NODE_9,NODE_10,2.0,10.0)
 *
 *  Force the value on the node output, to be within the MIN/MAX
 *  boundary.  In this example the output is clamped to the range
 *  of 2.0 to 10.0 inclusive.
 *
 * EXAMPLES: Sprint 8
 *
 ***********************************************************************
 *
 * DISCRETE_DIVIDE     - Node division function
 *
 *                        .------------.
 *                        |            |
 *    ENAB       -0------>|            |
 *                        |     o      |
 *    INPUT1     -1------>|    ---     |---->   Netlist node
 *                        |     o      |
 *    INPUT2     -2------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_DIVIDE    (name of node,
 *                         enable node or static value,
 *                         input0 node or static value,
 *                         input1 node or static value)
 *
 *  Example config line
 *
 *     DISCRETE_DIVIDE(NODE_03,1.0,NODE_12,50.0)
 *
 *  Always enabled, divides the input NODE_12 by 50.0. Note that a
 *  divide by zero condition will give a LARGE number output, it
 *  will not stall the machine or simulation. It will also attempt
 *  to write a divide by zero error to the Mame log if enabled.
 *
 ***********************************************************************
 *
 * DISCRETE_BIT_DECODE - Decode a bit from value
 * DISCRETE_BITS_DECODE - Decode a range of bits from value
 *
 *  Declaration syntax
 *
 *     DISCRETE_BIT_DECODE(name of node,
 *                         input0 node or static value,
 *                         bit number static value,
 *                         output voltage (logic high) static value)
 *
 * Note: This module can decode x_time from counters, etc.
 *       If you set the output voltage to 0, then 0/1 with x_time will be output.
 *       Otherwise it will be used as energy based on the output voltage.
 *
 *  Example config lines
 *
 *     DISCRETE_BIT_DECODE(NODE_03,7,0,5)
 *
 *  Node output is 5
 *
 *     DISCRETE_BIT_DECODE(NODE_03,7,3,5)
 *
 *  Node output is 0
 *
 *  if the range variant is used, you may access the bits (up to 8)
 *  by using NODE_SUB, i.e.
 *
 *     DISCRETE_BITS_DECODE(NODE_03,5,0,4,5)
 *
 * NODE_SUB(NODE_03, 0) = 5
 * NODE_SUB(NODE_03, 1) = 0
 * NODE_SUB(NODE_03, 2) = 5
 * NODE_SUB(NODE_03, 3) = 0
 * NODE_SUB(NODE_03, 4) = 0
 *
 * EXAMPLES: galaxian, dkong, mario
 *
 ***********************************************************************
 *
 * DISCRETE_LOGIC_INVERT - Logic invertor
 * DISCRETE_LOGIC_AND  - Logic AND gate (3 & 4 input also available)
 * DISCRETE_LOGIC_NAND - Logic NAND gate (3 & 4 input also available)
 * DISCRETE_LOGIC_OR   - Logic OR gate (3 & 4 input also available)
 * DISCRETE_LOGIC_NOR  - Logic NOR gate (3 & 4 input also available)
 * DISCRETE_LOGIC_XOR  - Logic XOR gate
 * DISCRETE_LOGIC_XNOR - Logic NXOR gate
 *
 *                        .------------.
 *                        |            |
 *    INPUT0     -0------>|            |
 *                        |   LOGIC    |
 *    [INPUT1]   -1------>|  FUNCTION  |---->   Netlist node
 *                        |    !&|^    |
 *    [INPUT2]   -2------>|            |
 *                        |            |
 *    [INPUT3]   -3------>|            |
 *                        |            |
 *    [] - Optional       '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_LOGIC_XXXn(name of node,
 *      (X=INV/AND/etc)
 *      (n=Blank/2/3)      input0 node or static value,
 *                         [input1 node or static value],
 *                         [input2 node or static value],
 *                         [input3 node or static value])
 *
 *  Example config lines
 *
 *     DISCRETE_LOGIC_INVERT(NODE_03,NODE_12)
 *     DISCRETE_LOGIC_AND(NODE_03,NODE_12,NODE_13)
 *     DISCRETE_LOGIC_NOR4(NODE_03,NODE_12,NODE_13,NODE_14,NODE_15)
 *
 *  Node output is always either 0.0 or 1.0 any input value !=0.0 is
 *  taken as a logic 1.
 *
 ***********************************************************************
 *
 * DISCRETE_XTIME_BUFFER
 * DISCRETE_XTIME_INVERTER
 * DISCRETE_XTIME_AND
 * DISCRETE_XTIME_NAND
 * DISCRETE_XTIME_OR
 * DISCRETE_XTIME_NOR
 * DISCRETE_XTIME_XOR
 * DISCRETE_XTIME_XNOR
 *
 *  Declaration syntax
 *
 *     DISCRETE_XTIME_xxx(name of node,
 *      (xxx=INV/AND/etc)
 *                        input0 node or static value,
 *                        [input1 node or static value],
 *                        logic Low voltage (static value),
 *                        logic High voltage (static value))
 *
 * These modules all take 0/1 with x_time data and perform the logic
 * while keeping and using the x_time anti-alaising data.
 * If both logic Low and High are set to 0, the 0/1 + x_time data
 * will be output.  Otherwise the Low/High voltages will be used
 * to convert the x_time to energy.
 *
 * EXAMPLES: see Mario Bros.; Donkey Kong Jr
 *
 ***********************************************************************
 *
 * DISCRETE_LOGIC_DFLIPFLOP - Standard D-type flip-flop.
 *                            Changes on rising edge of clock.
 *
 *    /SET       -2 ------------.
 *                              v
 *                        .-----o------.
 *                        |            |
 *    DATA       -4 ----->|            |
 *                        |  FLIPFLOP  |
 *                        |           Q|---->    Netlist node
 *                        |            |
 *    CLOCK      -3 ----->|            |
 *                        |            |
 *                        '-----o------'
 *                              ^
 *    /RESET     -1 ------------'
 *
 *  Declaration syntax
 *
 *       DISCRETE_LOGIC_DFLIPFLOP(name of node,
 *                                reset node or static value,
 *                                set node or static value,
 *                                clock node,
 *                                data node or static value)
 *
 *  Example config line
 *
 *     DISCRETE_LOGIC_DFLIPFLOP(NODE_7,NODE_17,0,NODE_13,1)
 *
 *  A flip-flop that clocks a logic 1 through on the rising edge of
 *  NODE_13. A logic 1 on NODE_17 resets the output to 0.
 *
 * EXAMPLES: see Hit Me, Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_LOGIC_JKFLIPFLOP - Standard JK-type flip-flop.
 *                             Changes on falling edge of clock.
 *
 *    /SET       -2 ------------.
 *                              v
 *                        .-----o------.
 *                        |            |
 *    J          -4 ----->|            |
 *                        |  FLIPFLOP  |
 *    CLOCK      -3 ----->|           Q|---->    Netlist node
 *                        |            |
 *    K          -5 ----->|            |
 *                        |            |
 *                        '-----o------'
 *                              ^
 *    /RESET     -1 ------------'
 *
 *  Declaration syntax
 *
 *       DISCRETE_LOGIC_JKFLIPFLOP(name of node,
 *                                 reset node or static value,
 *                                 set node or static value,
 *                                 clock node,
 *                                 J node or static value,
 *                                 K node or static value)
 *
 * EXAMPLES: see Amazing Maze
 *
 ***********************************************************************
 *
 * DISCRETE_LOOKUP_TABLE - returns the value in a table
 *
 *  Declaration syntax
 *
 *       DISCRETE_LOOKUP_TABLE(name of node,
 *                             address node,
 *                             size of table static value,
 *                             address of table of double values)
 *
 ***********************************************************************
 *
 * DISCRETE_MULTIPLEX - 1 of 2/4/8 multiplexer
 *
 *                 .-------------.
 *   Input 0 >-----|>-<.         |
 *                 |    \        |
 *   Input 1 >-----|>-   \       |
 *                 |      \      |
 *   Input 2 >-----|>-    |\     |
 *                 |      | \    |
 *   Input 3 >-----|>-    |  o-->|------> Netlist Node
 *                 |      |      |
 *   Input 4 >-----|>-    |      |
 *                 |      |      |
 *   Input 5 >-----|>-    '------|----< Address
 *                 |             |     (0 shown)
 *   Input 6 >-----|>-           |
 *                 |             |
 *   Input 7 >-----|>-           |
 *                 '-------------'
 *
 *  Declaration syntax
 *
 *       DISCRETE_MULTIPLEXx(name of node,
 *           (x=2/4/8)       address node,
 *                           input 0 node or static value,
 *                           input 1 node or static value, ...)
 *
 ***********************************************************************
 *
 * DISCRETE_LOGIC_SHIFT - shift register
 *
 *  Declaration syntax
 *
 *     DISCRETE_LOGIC_SHIFT(name of node,
 *                          input node,
 *                          reset node or static value,
 *                          clock node or static value,
 *                          size static value,
 *                          options static value)
 *
 * Options:
 *          reset type: DISC_LOGIC_SHIFT__RESET_L
 *                      DISC_LOGIC_SHIFT__RESET_H
 *          shift type: DISC_LOGIC_SHIFT__LEFT
 *                      DISC_LOGIC_SHIFT__RIGHT
 *          clock type: DISC_CLK_ON_F_EDGE - toggle on falling edge.
 *                      DISC_CLK_ON_R_EDGE - toggle on rising edge.
 *                      DISC_CLK_BY_COUNT  - toggle specified number of times.
 *                      DISC_CLK_IS_FREQ   - internally clock at this frequency.
 *
 * EXAMPLES: see Sky Raider
 *
 ***********************************************************************
 *
 * DISCRETE_GAIN       - Node multiplication function output is equal
 * DISCRETE_MULTIPLY     to INPUT0 * INPUT1
 * DISCRETE_MULTADD      to (INPUT0 * INPUT1) + INPUT 2
 *
 *                        .------------.
 *                        |            |
 *    INPUT0     -1------>|     \|/    |
 *                        |     -+-    |---->   Netlist node
 *    INPUT1     -2------>|     /|\    |
 *                        |            |
 *    INPUT2     -3------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_MULTIPLY  (name of node,
 *                         input0 node or static value,
 *                         input1 node or static value)
 *
 *     DISCRETE_MULTADD   (name of node,
 *                         input0 node or static value,
 *                         input1 node or static value,
 *                         input2 node or static value)
 *
 *     DISCRETE_GAIN      (name of node,
 *                         input0 node or static value,
 *                         static value for gain)
 *  Example config line
 *
 *     DISCRETE_GAIN(NODE_03,NODE_12,112.0)
 *
 *  Always enabled, multiplies the input NODE_12 by 112.0
 *
 ***********************************************************************
 *
 * DISCRETE_ONESHOT    - Monostable multivibrator, no reset
 * DISCRETE_ONESHOTR   - Monostable multivibrator, with reset
 *
 *  Declaration syntax
 *
 *     DISCRETE_ONESHOT   (name of node,
 *                         trigger node,
 *                         amplitude node or static value,
 *                         width (in seconds) node or static value,
 *                         type of oneshot static value)
 *
 *     DISCRETE_ONESHOTR  (name of node,
 *                         reset node or static value,
 *                         trigger node,
 *                         amplitude node or static value,
 *                         width (in seconds) node or static value,
 *                         type of oneshot static value)
 *
 *  Types:
 *
 *     DISC_ONESHOT_FEDGE    0x00 - trigger on falling edge (DEFAULT)
 *     DISC_ONESHOT_REDGE    0x01 - trigger on rising edge
 *
 *     DISC_ONESHOT_NORETRIG 0x00 - non-retriggerable (DEFAULT)
 *     DISC_ONESHOT_RETRIG   0x02 - retriggerable
 *
 *     DISC_OUT_ACTIVE_LOW   0x04 - output active low
 *     DISC_OUT_ACTIVE_HIGH  0x00 - output active high (DEFAULT)
 *
 *  NOTE: A width of 0 seconds will output a pulse of 1 sample.
 *        This is useful for a guaranteed minimum pulse, regardless
 *        of the sample rate.
 *
 * EXAMPLES: see Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_RAMP - Ramp up/down circuit with clamps & reset
 *
 *                        .------------.
 *                        |            |
 *    ENAB       -0------>| FREE/CLAMP |
 *                        |            |
 *    RAMP       -1------>| FW/REV     |
 *                        |            |
 *    GRAD       -2------>| Grad/sec   |
 *                        |            |---->   Netlist node
 *    START      -3------>| Start clamp|
 *                        |            |
 *    END        -4------>| End clamp  |
 *                        |            |
 *    CLAMP      -5------>| off clamp  |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *         DISCRETE_RAMP(name of node,
 *                       enable,
 *                       ramp forward/reverse node (or value),
 *                       gradient node (or static value),
 *                       start node or static value,
 *                       end node or static value,
 *                       clamp node or static value when disabled)
 *
 *  Example config line
 *
 *     DISCRETE_RAMP(NODE_9,NODE_10,NODE_11,10.0,-10.0,10.0,0)
 *
 *  Node10 when not zero will allow ramp to operate, when 0 then output
 *  is clamped to clamp value specified. Node11 ramp when 0 change
 *  gradient from start to end. 1 is reverse. Output is clamped to max-
 *  min values. Gradient is specified in change/second.
 *
 ***********************************************************************
 *
 * DISCRETE_SAMPHOLD - Sample & Hold circuit
 *
 *                        .------------.
 *                        |            |
 *    ENAB       -0------>|            |
 *                        |            |
 *    INP0       -1------>|   SAMPLE   |
 *                        |     &      |----> Netlist node
 *    CLOCK      -2------>|    HOLD    |
 *                        |            |
 *    CLKTYPE    -3------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_SAMPHOLD(name of node,
 *                       enable,
 *                       input node,
 *                       clock node or static value,
 *                       input clock type)
 *
 *  Example config line
 *
 *     DISCRETE_SAMPHOLD(NODE_9,1,NODE_11,NODE_12,DISC_SAMPHOLD_REDGE)
 *
 *  Node9 will sample the input node 11 on the rising edge (REDGE) of
 *  the input clock signal of node 12.
 *
 *   DISC_SAMPHOLD_REDGE  - Rising edge clock
 *   DISC_SAMPHOLD_FEDGE  - Falling edge clock
 *   DISC_SAMPHOLD_HLATCH - Output is latched whilst clock is high
 *   DISC_SAMPHOLD_LLATCH - Output is latched whilst clock is low
 *
 ***********************************************************************
 *
 * DISCRETE_SWITCH     - Node switch function, output node is switched
 *                       by switch input to take one node/contst or
 *                       other. Can be nodes or constants.
 *
 *    SWITCH     -0--------------.
 *                               V
 *                        .------------.
 *                        |      |     |
 *    INPUT0     -1------}|----o       |
 *                        |       .--- |---->   Netlist node
 *    INPUT1     -2------>|----o /     |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_SWITCH    (name of node,
 *                         enable node or static value,
 *                         switch node or static value,
 *                         input0 node or static value,
 *                         input1 node or static value)
 *
 *  Example config line
 *
 *     DISCRETE_SWITCH(NODE_03,1,NODE_10,NODE_90,5.0)
 *
 *  Always enabled, NODE_10 switches output to be either NODE_90 or
 *  constant value 5.0. Switch==0 inp0=output else inp1=output
 *
 ***********************************************************************
 *
 * DISCRETE_ASWITCH     - Node switch function, output node is same
 *                        as input when CTRL is above threshold.
 *
 *    CTRL       -0--------------.
 *                               V
 *                        .------------.
 *                        |      |     |
 *    INPUT0     -1------ |----- . --- |---->   Netlist node
 *                        |            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_ASWITCH   (name of node,
 *                         ctrl node or static value,
 *                         input node or static value,
 *                         threshold satic value )
 *
 *  Example config line
 *
 *     DISCRETE_ASWITCH(NODE_03,NODE_10,NODE_90, 2.73)
 *
 *  Always enabled, NODE_10 switches output to be either NODE_90 or
 *  constant value 0.0. Ctrl>2.73 output=NODE_90 else output=0
 *
 ***********************************************************************
 *
 * DISCRETE_TRANSFORMn - Node arithmatic logic (postfix arithmatic)
 *     (n=2,3,4,5)
 *                        .------------.
 *                        |            |
 *    INPUT0     -0------>|            |
 *                        |            |
 *    INPUT1     -1------>|  Postfix   |
 *                        |   stack    |----> Netlist node
 *    INPUT2     -2------>|   maths    |
 *                        |            |
 *    INPUT3     -3------>|            |
 *                        |            |
 *    INPUT4     -4------>|            |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_TRANSFORMn(name of node,
 *                         input0 node or static value,
 *                         input1 node or static value,
 *                         input2 node or static value,  [optional]
 *                         input3 node or static value,  [optional]
 *                         input4 node or static value,  [optional]
 *                         maths string)
 *
 *  Example config line
 *
 *  DISCRETE_TRANSFORM4(NODE_12,NODE_22,50.0,120.0,33.33,"01*2+3/")
 *
 *  Arithmetic uses stack based arithmetic similar to Forth, the maths
 *  has 5 registers 0-4 and various arithmetic operations. The math
 *  string is processed from left to right in the following manner:
 *   0 - Push input 0 to stack
 *   1 - Push input 1 to stack
 *   2 - Push input 2 to stack
 *   3 - Push input 3 to stack
 *   4 - Push input 4 to stack
 *   - - Pop two values from stack, subtract and push result to stack
 *   + - Pop two values from stack, add and push result to stack
 *   / - Pop two values from stack, divide and push result to stack
 *   * - Pop two values from stack, multiply and push result to stack
 *   a - Pop one value from stack, multiply -1 if less than 0 and push result to stack
 *   i - Pop one value from stack, multiply -1 and push result to stack
 *   ! - Pop one value from stack, logical invert, push result to stack
 *   = - Pop two values from stack, logical = and push result to stack
 *   > - Pop two values from stack, logical > and push result to stack
 *   < - Pop two values from stack, logical < and push result to stack
 *   & - Pop two values from stack, binary AND and push result to stack
 *   | - Pop two values from stack, binary OR and push result to stack
 *   ^ - Pop two values from stack, binary XOR and push result to stack
 *   P - Push a duplicate of the last stack value back on the stack
 *
 * EXAMPLES: see Polaris
 *
 ***********************************************************************
 =======================================================================
 * from from disc_mth.inc
 * Component specific modules
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_COMP_ADDER - Selectable parallel component adder.
 *                       The total netlist out will be the parallel sum of all
 *                       components with their corresponding data bit = 1.
 *                       Set cDefault to 0 if not used.
 *
 *         common >---cDefault---.
 *      data&0x01 >-----c[0]-----+
 *      data&0x02 >-----c[1]-----+
 *      data&0x04 >-----c[2]-----+
 *      data&0x08 >-----c[3]-----+-----> netlist node
 *      data&0x10 >-----c[4]-----+
 *      data&0x20 >-----c[5]-----+
 *      data&0x40 >-----c[6]-----+
 *      data&0x80 >-----c[7]-----'
 *
 *  Declaration syntax
 *
 *     DISCRETE_COMP_ADDER(name of node,
 *                         data node (static value is useless),
 *                         address of discrete_comp_adder_table structure)
 *
 *     discrete_comp_adder_table = {type, cDefault, length, c{}}
 *          note: length can be a maximum of 8
 *
 *  Circuit Types:
 *     DISC_COMP_P_CAPACITOR - parallel capacitors
 *     DISC_COMP_P_RESISTOR  - parallel resistors
 *
 * EXAMPLES: see Hit Me
 *
 ***********************************************************************
 *
 * DISCRETE_DAC_R1 - R1 ladder DAC with cap smoothing and external bias
 *
 *                             rBias
 * data&0x01 >--/\R[0]/\--+-----/\/\----< vBias
 * data&0x02 >--/\R[1]/\--|
 * data&0x04 >--/\R[2]/\--|
 * data&0x08 >--/\R[3]/\--|
 * data&0x10 >--/\R[4]/\--|
 * data&0x20 >--/\R[5]/\--|
 * data&0x40 >--/\R[6]/\--|
 * data&0x80 >--/\R[7]/\--+-------------+-----> Netlist node
 *                        |             |
 *                        Z            ---
 *                        Z rGnd       --- cFilter
 *                        |             |
 *                       gnd           gnd
 *
 * NOTES: rBias and vBias are used together.  If not needed they should
 *        be set to 0.  If used, they should both have valid values.
 *        rGnd and cFilter should be 0 if not needed.
 *        A resistor value should be properly set for each resistor
 *        up to the ladder length.  Remember 0 is a short circuit.
 *        The data node is bit mapped to the ladder. valid int 0-255.
 *        TTL logic 0 is actually 0.2V but 0V is used.  The other parts
 *        have a tolerance that more then makes up for this.
 *
 *  Declaration syntax
 *
 *     DISCRETE_DAC_R1(name of node,
 *                     data node (static value is useless),
 *                     vData static value (voltage when a bit is on ),
 *                     address of discrete_dac_r1_ladder structure)
 *
 *     discrete_dac_r1_ladder = {ladderLength, r{}, vBias, rBias, rGnd, cFilter}
 *
 *  Note: Resistors in the ladder that are set to 0, will be handled like they
 *        are out of circuit.  So the bit selecting them will have no effect
 *        on the DAC output voltage.
 *
 * x_time - this modules automatically handles any non-integer value
 *          on the data input as x_time.
 *
 * EXAMPLES: see Fire Truck, Monte Carlo, Super Bug, Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_DIODE_MIXER - mixes inputs through diodes
 *
 *
 *    input 0 >----|>|---.
 *                       |
 *    input 1 >----|>|---+----------> Netlist Node
 *                       |
 *    input 2 >----|>|---+
 *                       |
 *    input 3 >----|>|---+--/\/\/\--.
 *                                  |
 *                                 gnd
 *
 *  Declaration syntax
 *
 *     DISCRETE_DIODE_MIXERx(name of node,
 *         (x = 2/3/4)       input 0 node,
 *                           input 1 node,
 *                           ...,
 *                           address of v_junction table)
 *
 *    v_junction table can be set to nullptr if you want all diodes to
 *                     default to a 0.5V drop.  Otherwise use a
 *                     table of doubles to specify junction voltages.
 *
 * EXAMPLES: see dkong
 *
 ***********************************************************************
 *
 * DISCRETE_INTEGRATE - Various Integration circuits
 *
 *  Declaration syntax
 *
 *     DISCRETE_INTEGRATE(name of node,
 *                        trigger 0 node or static value,
 *                        trigger 1 node or static value,
 *                        address of discrete_integrate_info)
 *
 *     discrete_integrate_info = {type, r1, r2, r3, c, v1, vP, f0, f1, f2}
 *
 * Note: Set all unused components to 0.
 *       These are all single supply circuits going from gnd(0V) to vP(B+),
 *       so be sure to specify the vP power source.
 *
 *  Types:
 *
 *     DISC_INTEGRATE_OP_AMP_1
 *
 *       v1 >----+-------.
 *               |       |           c
 *               Z       Z      .---||----.
 *               Z r1    Z r2   |         |
 *               Z       Z      |  |\     |
 *               |       |      |  | \    |
 *               +--------------+--|- \   |
 *               |       |         |   >--+----> Netlist Node
 *              /        +---------|+ /
 *            |/         |         | /
 *   Trig0 >--| NPN      Z         |/
 *            |\         Z r3
 *              >        Z
 *               |       |
 *              gnd     gnd
 *
 *
 * EXAMPLES: see Tank8
 *
 *          --------------------------------------------------
 *
 *     DISC_INTEGRATE_OP_AMP_1 | DISC_OP_AMP_IS_NORTON
 *
 *                               c
 *                          .---||----.
 *                          |         |
 *                          |  |\     |
 *               r1         |  | \    |
 *      v1 >----ZZZZ--------+--|- \   |
 *                             |   >--+----> Netlist Node
 *               r2         .--|+ /
 *   Trig0 >----ZZZZ--------'  | /
 *                             |/
 *
 * Note: Trig0 is voltage level, not logic.
 *       No functions are used so set them to 0, or DISC_OP_AMP_TRIGGER_FUNCTION_NONE.
 *       You can also use DISCRETE_OP_AMP with type DISC_OP_AMP_IS_NORTON to emulate this.
 *
 * EXAMPLES: see Double Play
 *
 *          --------------------------------------------------
 *
 *     DISC_INTEGRATE_OP_AMP_2 | DISC_OP_AMP_IS_NORTON
 *
 *                                       c
 *                                  .---||----.
 *            r1a                   |         |
 *   v1 >----ZZZZ---.               |  |\     |
 *          .----.  |   r1b   Diode |  | \    |
 *          | F0 |--+--ZZZZ----|>|--+--|- \   |
 *          '----'                     |   >--+----> Netlist Node
 *            r2a       r2b         .--|+ /
 *   v1 >----ZZZZ---+--ZZZZ---------+  | /
 *          .----.  |               |  |/
 *          | F1 |--'               |
 *          '----'                  |
 *            r3a       r3b   Diode |
 *   v1 >----ZZZZ---+--ZZZZ----|>|--'
 *          .----.  |
 *          | F2 |--'
 *          '----'
 *
 * Note: For an explanation of the functions and trigger inputs,
 *       see DISCRETE_OP_AMP_TRIG_VCA below.
 *
 * EXAMPLES: see Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_MIXER - Mixes multiple input signals.
 *
 *  Declaration syntax
 *
 *     DISCRETE_MIXERx(name of node,
 *      (x = 2 to 8)   enable node or static value,
 *                     input 0 node,
 *                     input 1 node,
 *                     input 2 node,  (if used)
 *                     input 3 node,  (if used)
 *                     input 4 node,  (if used)
 *                     input 5 node,  (if used)
 *                     input 6 node,  (if used)
 *                     input 7 node,  (if used)
 *                     address of discrete_mixer_info structure)
 *
 *     discrete_mixer_desc = {type, r{}, r_node{}, c{}, rI, rF, cF, cAmp, vRef, gain}
 *
 * Note: Set all unused components to 0.
 *       If an rNode is not used it should also be set to 0.
 *
 *  Types:
 *
 *     DISC_MIXER_IS_RESISTOR
 *
 *       rNode[0]   r[0]   c[0]
 *  IN0 >--zzzz-----zzzz----||---.
 *                               |
 *       rNode[1]   r[1]   c[1]  |
 *  IN1 >--zzzz-----zzzz----||---+--------.
 *   .      .        .      .    |        |      cAmp
 *   .      .        .      .    |        Z<------||---------> Netlist Node
 *   .      .        .      .    |        Z
 *   .   rNode[7]   r[7]   c[7]  |        Z rF
 *  IN7 >--zzzz-----zzzz----||---+        |
 *                               |        |
 *                              ---       |
 *                           cF ---       |
 *                               |        |
 *                              gnd      gnd
 *
 *  Note: The variable resistor is used in it's full volume position.
 *        MAME's built in volume is used for adjustment.
 *
 * EXAMPLES: see Polaris, Super Bug
 *
 *          --------------------------------------------------
 *
 *     DISC_MIXER_IS_OP_AMP
 *
 *                                               cF
 *                                          .----||---.
 *                                          |         |
 *        rNode[0]    r[0]   c[0]           |    rF   |
 *   IN0 >--zzzz------zzzz----||---.        +---ZZZZ--+
 *                                 |        |         |
 *        rNode[1]    r[1]   c[1]  |   rI   |  |\     |
 *   IN1 >--zzzz------zzzz----||---+--zzzz--+  | \    |
 *    .      .         .      .    |        '--|- \   |  cAmp
 *    .      .         .      .    |           |   >--+---||-----> Netlist Node
 *    .      .         .      .    |        .--|+ /
 *    .   rNode[7]    r[7]   c[7]  |        |  | /
 *   IN7 >--zzzz------zzzz----||---'        |  |/
 *                                          |
 *  vRef >----------------------------------'
 *
 * Note: rI is not always used and should then be 0.
 *
 * EXAMPLES: see Fire Truck, Monte Carlo
 *
 ***********************************************************************
 *
 * DISCRETE_OP_AMP - Various op-amp circuits
 *
 *  Declaration syntax
 *
 *     DISCRETE_OP_AMP(name of node,
 *                     enable node or static value,
 *                     input 0 node or static value,
 *                     input 1 node or static value,
 *                     address of discrete_op_amp_info structure)
 *
 *     discrete_op_amp_info = {type, r1, r2, r3, r4, c, vN, vP}
 *
 * Note: Set all unused components to 0.
 *
 *  Types:
 *
 *     DISC_OP_AMP_IS_NORTON
 *
 *                            c
 *                      .----||---.
 *                      |         |
 *             r3       |    r4   |       vP = B+
 *     vP >---ZZZZ------+---ZZZZ--+       vN = B-
 *                      |         |
 *             r1       |  |\     |       Note: r2 must always be used
 *    IN0 >---ZZZZ------+  | \    |
 *                      '--|- \   |
 *             r2          |   >--+-----> Netlist Node
 *    IN1 >---ZZZZ---------|+ /
 *                         | /
 *                         |/
 *
 * EXAMPLES: see Space Encounter
 *
 ***********************************************************************
 *
 * DISCRETE_OP_AMP_ONESHOT - Various op-amp one shot circuits
 *
 *  Declaration syntax
 *
 *     DISCRETE_OP_AMP_ONESHOT(name of node,
 *                             trigger node (voltage level),
 *                             address of discrete_op_amp_1sht_info structure)
 *
 *     discrete_op_amp_1sht_info = {type, r1, r2, r3, r4, r5, c1, c2, vN, vP}
 *
 *  Types:
 *
 *     DISC_OP_AMP_1SHT_1 | DISC_OP_AMP_IS_NORTON
 *
 *             c1       .---|>|---.
 *    gnd >----||---+---+         |
 *                  |   |    r4   |       vP = B+
 *                  Z   '---ZZZZ--+       vN = B-
 *                  Z r3          |
 *                  Z      |\     |       Note: all components must be used
 *             r1   |      | \    |             The oneshot is cancelled when TRIG goes low
 *     vP >---ZZZZ--+------|- \   |
 *                         |   >--+-----> Netlist Node
 *           c2    r2   .--|+ /   |
 *   TRIG >--||---ZZZZ--+  | /    |
 *                      |  |/     |
 *                      |    r5   |
 *                      '---ZZZZ--'
 *
 *
 * EXAMPLES: see Space Encounter
 *
 ***********************************************************************
 *
 * DISCRETE_OP_AMP_TRIG_VCA - Triggered Norton op amp voltage controlled amplifier.
 *                            This means the cap is rapidly charged through r5 when F2=1.
 *                            Then it discharges through r6+r7 when F2=0.
 *                            This voltage controls the amplitude.
 *                            While the diagram looks complex, usually only parts of it are used.
 *
 *  Declaration syntax
 *
 *     DISCRETE_OP_AMP_TRIG_VCA(name of node,
 *                              trigger 0 node or static value,
 *                              trigger 1 node or static value,
 *                              trigger 2 node or static value,
 *                              input 0 node or static value,
 *                              input 1 node or static value,
 *                              address of discrete_op_amp_tvca_info structure)
 *
 *     discrete_op_amp_tvca_info = { r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, c1, c2, c3, c4, v1, v2, v3, vP, f0, f1, f2, f3, f4, f5}
 *
 * Note: Set all unused components to 0.
 *       Set all unused functions to DISC_OP_AMP_TRIGGER_FUNCTION_NONE
 *       Set all unused nodes to NODE_NC.
 *       If function F3 is not used then set r6=0 and use only r7.
 *       r2 = r2a + r2b.  r3 = r3a + r3b.
 *       vP is the op-amp B+.
 *
 *             r2a
 *   IN0 >----ZZZZ-----.               r1         c4
 *           .----.    |     vP >------ZZZZ---+---||----.
 *           | F0 |----+                      |         |
 *           '----'    |                r2b   |    r4   |
 *             r3a     '---------------ZZZZ---+---ZZZZ--+
 *   IN1 >----ZZZZ---.                        |         |
 *           .----.  |                  r3b   |  |\     |
 *           | F1 |--+-----------------ZZZZ---+  | \    |
 *           '----'                           '--|- \   |
 *           .----.    diode     r6        r7    |   >--+----> Netlist Node
 *           | F2 |--+--|>|--+--ZZZZ---+--ZZZZ-+-|+ /
 *           '----'  |       |         |       | | /
 *                   |      ---      .----.    | |/
 *             r5    |      --- c1   | F3 |    |
 *    v1 >----ZZZZ---'       |       '----'    |
 *                          gnd                |
 *                                             |
 *           .----.    diode               r9  |
 *           | F4 |--+--|>|-----------+---ZZZZ-+
 *           '----'  |           c2   |        |
 *             r8    |   gnd >---||---'        |
 *    v2 >----ZZZZ---'                         |
 *           .----.    diode               r11 |
 *           | F5 |--+--|>|-----------+---ZZZZ-'
 *           '----'  |           c3   |
 *             r10   |   gnd >---||---'
 *    v3 >----ZZZZ---'
 *
 *  Function types:
 *
 *   Trigger 0, 1 and 2 are used for the functions F0 - F5.
 *   When the output of the function is 0, then the connection is held at 0V or gnd.
 *   When the output of the function is 1, then the function is an open circuit.
 *
 *   DISC_OP_AMP_TRIGGER_FUNCTION_NONE       - Not used, circuit open.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG0       - Gnd when trigger 0 is 0.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG0_INV   - Gnd when trigger 0 is 1.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG1       - Gnd when trigger 1 is 0.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG1_INV   - Gnd when trigger 1 is 1.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG2       - Gnd when trigger 2 is 0.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG2_INV   - Gnd when trigger 2 is 1.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG01_AND  - Gnd when trigger 0 or 1 are 0.
 *   DISC_OP_AMP_TRIGGER_FUNCTION_TRG01_NAND - Gnd when trigger 0 and 1 are 1.
 *
 * EXAMPLES: see Polaris
 *
 ***********************************************************************
 =======================================================================
 * from from disc_flt.inc
 * Generic modules
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_FILTER1
 *
 *  Declaration syntax
 *
 *     DISCRETE_FILTER1(name of node,
 *                      enable node or static value,
 *                      input node,
 *                      filter center frequency static value,
 *                      filter type static value)
 *
 *  Filter types: DISC_FILTER_LOWPASS,
 *                DISC_FILTER_HIGHPASS
 *                DISC_FILTER_BANDPASS
 *
 ***********************************************************************
 *
 * DISCRETE_FILTER2
 *
 *  Declaration syntax
 *
 *     DISCRETE_FILTER2(name of node,
 *                      enable node or static value,
 *                      input node,
 *                      filter center frequency static value,
 *                      damp static value,
 *                      filter type static value)
 *
 *  Filter types: DISC_FILTER_LOWPASS,
 *                DISC_FILTER_HIGHPASS
 *                DISC_FILTER_BANDPASS
 *
 * Note: Damp = 1/Q
 *
 ***********************************************************************
 =======================================================================
 * from from disc_flt.inc
 * Component specific modules
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_CRFILTER - Simple single pole CR filter network (vRef = 0)
 * DISCRETE_CRFILTER_VREF - Same but referenced to vRef not 0V
 *
 *                        .------------.
 *                        |            |
 *                        | CR FILTER  |
 *                        |            |
 *    INPUT1     -0------}| --| |-+--  |
 *                        |   C   |    |----}   Netlist node
 *    RVAL       -1------}|       Z    |
 *                        |       Z R  |
 *    CVAL       -2------}|       |    |
 *                        |      vRef  |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_CRFILTER(name of node,
 *                       input node (or value)
 *                       resistor node or static value in OHMS
 *                       capacitor node or static value in FARADS)
 *
 *     DISCRETE_CRFILTER_VREF(name of node,
 *                            input node (or value)
 *                            resistor value in OHMS
 *                            capacitor value in FARADS,
 *                            vRef node or static value)
 *
 *  Example config line
 *
 *     DISCRETE_CRFILTER(NODE_11,NODE_10,100,CAP_U(1))
 *
 *  Defines a CR filter with a 100R & 1uF network
 *  the input is fed from NODE_10.
 *
 *  This can be also thought of as a high pass filter with a 3dB cutoff
 *  at:
 *                                  1
 *            Fcuttoff =      --------------
 *                            2*Pi*RVAL*CVAL
 *
 *  (3dB cutoff is where the output power has dropped by 3dB ie Half)
 *
 ***********************************************************************
 *
 *  DISCRETE_OP_AMP_FILTER - Various Op Amp Filters.
 *
 *  Declaration syntax
 *
 *      DISCRETE_OP_AMP_FILTER(name of node,
 *                             enable node or static value,
 *                             input 1 node or static value,
 *                             input 2 node or static value,
 *                             type static value,
 *                             address of discrete_op_amp_filt_info)
 *
 *      discrete_op_amp_filt_info = {r1, r2, r3, r4, rF, c1, c2, c3, vRef, vP, vN}
 *
 * Note: Set all unused components to 0.
 *       vP and vN are the +/- op-amp power supplies.
 *       vRef is 0 if Gnd.
 *
 *  Types:
 *
 *     DISC_OP_AMP_FILTER_IS_LOW_PASS_1
 *          First Order Low Pass Filter
 *
 *                              c1
 *                      .-------||---------.
 *                      |                  |
 *          r1          |       rF         |
 *  IN0 >--ZZZZ--.      +------ZZZZ--------+
 *               |      |                  |
 *          r2   |      |           |\     |
 *  IN1 >--ZZZZ--+------+--------+  | \    |
 *               |               '--|- \   |
 *          r3   |                  |   >--+----------> Netlist Node
 * vRef >--ZZZZ--'               .--|+ /
 *                               |  | /
 *  vRef >-----------------------'  |/
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_FILTER_IS_LOW_PASS_1_A
 *          First Order Low Pass Filter
 *
 *                              c1
 *                      .-------||---------.
 *                      |                  |
 *          r1          |       rF         |
 *  IN0 >--ZZZZ--.      +------ZZZZ--------+
 *               |      |                  |
 *          r2   |      |           |\     |
 *  VP  >--ZZZZ--+------+--------+  | \    |
 *               |               '--|- \   |
 *          r3   |                  |   >--+----------> Netlist Node
 *  VN  >--ZZZZ--'               .--|+ /
 *                               |  | /
 *  IN1 >------------------------'  |/
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_FILTER_IS_HIGH_PASS_1
 *          First Order High Pass Filter
 *
 *          r1                  rF
 *  IN0 >--ZZZZ--.      .------ZZZZ--------.
 *               |      |                  |
 *          r2   |  c1  |           |\     |
 *  IN1 >--ZZZZ--+--||--+--------+  | \    |
 *               |               '--|- \   |
 *          r3   |                  |   >--+----------> Netlist Node
 * vRef >--ZZZZ--'               .--|+ /
 *                               |  | /
 *  vRef >-----------------------'  |/
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_FILTER_IS_BAND_PASS_1
 *          First Order Band Pass Filter
 *
 *                              c1
 *                      .-------||---------.
 *                      |                  |
 *          r1          |       rF         |
 *  IN0 >--ZZZZ--.      +------ZZZZ--------+
 *               |      |                  |
 *          r2   |  c2  |           |\     |
 *  IN1 >--ZZZZ--+--||--+--------+  | \    |
 *               |               '--|- \   |
 *          r3   |                  |   >--+----------> Netlist Node
 * vRef >--ZZZZ--'               .--|+ /
 *                               |  | /
 *  vRef >-----------------------'  |/
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_FILTER_IS_BAND_PASS_1M
 *          Single Pole Multiple Feedback Band Pass Filter
 *
 *                         c1
 *                      .--||----+---------.
 *                      |        |         |
 *          r1          |        Z         |
 *  IN0 >--ZZZZ--.      |        Z rF      |
 *               |      |        Z         |
 *          r2   |      |  c2    |  |\     |
 *  IN1 >--ZZZZ--+------+--||----+  | \    |
 *               |               '--|- \   |
 *          r3   |                  |   >--+----------> Netlist Node
 * vRef >--ZZZZ--'               .--|+ /
 *                               |  | /
 *  vRef >-----------------------'  |/
 *
 * EXAMPLES: see Tank 8, Atari Baseball, Monte Carlo
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_FILTER_IS_BAND_PASS_1M | DISC_OP_AMP_IS_NORTON
 *          Single Pole Multiple Feedback Band Pass Filter
 *
 *                         c1
 *                      .--||----+---------.
 *                      |        |         |
 *                      |        Z         |
 *                      |        Z rF      |
 *                      |        Z         |
 *          r1          |  c2    |  |\     |
 *  IN0 >--ZZZZ--+------+--||----+  | \    |
 *               |               '--|- \   |
 *          r2   |                  |   >--+----------> Netlist Node
 * vRef >--ZZZZ--'               .--|+ /
 *                    r3         |  | /
 *    vP >-----------ZZZZ--------'  |/
 *
 * EXAMPLES: see Space Encounter
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_FILTER_IS_HIGH_PASS_0 | DISC_OP_AMP_IS_NORTON
 *          Basic Norton High Pass Filter
 *
 *                                   rF
 *          r1 = r1a + r1b       .--ZZZZ---.
 *                               |         |
 *          r1a   c1    r1b      |  |\     |
 *  IN1 >--ZZZZ---||---ZZZZ------+  | \    |
 *                               '--|- \   |
 *                                  |   >--+----------> Netlist Node
 *                               .--|+ /
 *                     r4        |  | /
 *  vRef >------------ZZZZ-------'  |/
 *
 * EXAMPLES: see Polaris
 *
 *          --------------------------------------------------
 *
 *     DISC_OP_AMP_FILTER_IS_BAND_PASS_0 | DISC_OP_AMP_IS_NORTON
 *          Basic Norton Band Pass Filter
 *
 *                                                    rF
 *                             r3 = r3a + r3b     .--ZZZZ---.
 *                                                |         |
 *           r1       r2       r3a   c3     r3b   |  |\     |
 *  IN1 >---ZZZZ--+--ZZZZ--+--ZZZZ---||----ZZZZ---+  | \    |
 *                |        |                      '--|- \   |
 *               ---      ---                        |   >--+---> Netlist Node
 *               --- c1   --- c2                  .--|+ /
 *                |        |                      |  | /
 *               gnd      gnd                     |  |/
 *                                         r4     |
 *  vRef >--------------------------------ZZZZ----'
 *
 * EXAMPLES: see Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_SALLEN_KEY_FILTER - Sallen key low pass filter
 *
 *  Declaration syntax
 *
 *      DISCRETE_SALLEN_KEY_FILTER(name of node,
 *                                 enable node or static value,
 *                                 input node or static value,
 *                                 type static value,
 *                                 address of discrete_op_amp_filt_info)
 *
 *      discrete_op_amp_filt_info = {r1, r2, r3, r4, rF, c1, c2, c3, vRef, vP, vN}
 *
 * Note: Set all unused components to 0.
 *
 *  Types:
 *
 *     DISC_SALLEN_KEY_LOWPASS
 *
 *                              .---------.
 *                              |         |
 *                              |  |\     |
 *                              |  | \    |
 *                              `--|- \   |
 *            R1       R2          |   >--+----> Netlist Node
 *    IN >---ZZZZ--+--ZZZZ--+------|+ /   |
 *                 |        |      | /    |
 *                ---      ---     |/     |
 *                --- C1   --- C2         |
 *                 |        |             |
 *                 |       gnd            |
 *                 |                      |
 *                 `----------------------'
 *
 * EXAMPLES: see moon patrol, dkong
 *
 * References:
 *      http://www.t-linespeakers.org/tech/filters/Sallen-Key.html
 *      http://en.wikipedia.org/wiki/Sallen_Key_filter
 ***********************************************************************
 *
 * DISCRETE_RC_CIRCUIT_1 - RC charge/discharge circuit
 *
 *  Declaration syntax
 *
 *     DISCRETE_RC_CIRCUIT_1(name of node,
 *                           In0 (Logic) node,
 *                           In1 (Logic) node,
 *                           R static value,
 *                           C static value)
 *
 *              5V
 *               v
 *               |
 *           .-------.
 *           |  4066 |
 *   In0 >---|c      |
 *           '-------'
 *               |
 *               +------------.
 *               |            |
 *           .-------.       --- C
 *           |  4066 |       ---
 *   In1 >---|c      |        |
 *           '-------'       gnd
 *               |
 *               +----> Node Output
 *               |
 *               Z
 *               Z R
 *               Z
 *               |
 *              gnd
 *
 * EXAMPLES: see Sky Raider, Battlezone
 *
 ************************************************************************
 *
 * DISCRETE_RCDISC - Simple single pole RC discharge network
 *
 *                        .------------.
 *                        |            |
 *                        | RC         |
 *                        |            |
 *    INPUT1     -0------>| -ZZZZ-+--  |
 *                        |   R   |    |---->   Netlist node
 *    RVAL       -1------>|      ---   |
 *                        |      ---C  |
 *    CVAL       -2------>|       |    |
 *                        |      vref  |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCFILTER(name of node,
 *                       input node (or value),
 *                       resistor value in OHMS,
 *                       capacitor value in FARADS)
 *
 *  Example config line
 *
 *     DISCRETE_RCDISC(NODE_11,10,100,CAP_U(1))
 *
 *  C discharges from 10v as indicated by RC of 100R & 1uF.
 *
 ***********************************************************************
 *
 * DISCRETE_RCDISC2  - Switched input RC discharge network
 *
 *                        .------------.
 *                        |            |
 *    SWITCH     -0------>| IP0 | IP1  |
 *                        |            |
 *    INPUT0     -1------>| -ZZZZ-.    |
 *                        |   R0  |    |
 *    RVAL0      -2------>|       |    |
 *                        |       |    |
 *    INPUT1     -3------>| -ZZZZ-+--  |
 *                        |   R1  |    |---->   Netlist node
 *    RVAL1      -4------>|      ---   |
 *                        |      ---C  |
 *    CVAL       -5------>|       |    |
 *                        |            |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *      DISCRETE_RCDISC2(name of node,
 *                       switch,
 *                       input0 node (or value),
 *                       resistor0 value in OHMS,
 *                       input1 node (or value),
 *                       resistor1 value in OHMS,
 *                       capacitor value in FARADS)
 *
 *  Example config line
 *
 *     DISCRETE_RCDISC2(NODE_9,NODE_10,10.0,100,0.0,100,CAP_U(1))
 *
 *  When switched by NODE_10, C charges/discharges from 10v/0v
 *  as dictated by R0/C & R1/C combos respectively
 *  of 100R & 1uF.
 *
 ***********************************************************************
 *
 * DISCRETE_RCDISC3 - RC discharge network
 *
 * FIXME: Diode direction (for bzone)
 *
 *                        .-----------------.
 *                        |                 |
 *    ENAB       -0------>|                 |
 *                        |    diode  R2    |
 *    JV         -5------>| -+-|>|--ZZZZ-+- |---->   Netlist node (JV < 0)
 *                        |                 |
 *                        |    diode  R2    |
 *    INPUT1     -1------>| -+-|<|--ZZZZ-+- |---->   Netlist node (JV > 0)
 *                        |  |           |  |
 *    RVAL1      -2------>|  '-ZZZZ-+----'  |
 *                        |     R1  |       |
 *    RVAL2      -3------>|        ---      |
 *                        |        ---C     |
 *    CVAL       -4------>|         |       |
 *                        |        gnd      |
 *                        '-----------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCDISC3(name of node,
 *                      enable,
 *                      input node (or value),
 *                      R1 resistor value in OHMS,
 *                      R2 resistor value in OHMS,
 *                      capacitor value in FARADS,
 *                      diode junction voltage)
 *
 * The polarity of the diode junction voltage determines the polarity of the diode.
 *
 *  Example config line
 *
 *     DISCRETE_RCDISC3(NODE_11,NODE_10,10,100,220,CAP_U(1), 0.5)
 *
 *  When enabled by NODE_10, C charges from 10v as indicated by RC
 *  of 100R & 1uF.
 *
 * EXAMPLES: see Tank8, bzone
 *
 ***********************************************************************
 *
 * DISCRETE_RCDISC4 - RC discharge networks triggered by logic levels
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCDISC4(name of node,
 *                      enable,
 *                      logic input node,
 *                      R1 resistor static value in OHMS,
 *                      R2 resistor static value in OHMS,
 *                      R3 resistor static value in OHMS,
 *                      C1 capacitor static value in FARADS,
 *                      vP static value in VOLTS,
 *                      circuit type static value)
 *
 *  Type: 1
 *
 *                             vP >---.
 *                                    |              .------.
 *                                    Z              |      |
 *                                    Z R2           | |\   |
 *             O.C.                   Z              '-|-\  |
 *             |\    Diode      R1    |                |  >-+---> node
 *   Input >---| o----|<|------ZZZZ---+--------+-------|+/
 *             |/                     |        |       |/
 *                                   ---     -----
 *                                C1 ---      \ / Diode
 *                                    |        V
 *                                   gnd      ---
 *                                             |
 *                                             Z
 *                                             Z R3
 *                                             Z
 *                                             |
 *                                            gnd
 *
 * EXAMPLES: see Phoenix
 *
 *          --------------------------------------------------
 *
 *  Type: 2
 *
 *      5V >---.                                    .------.
 *             Z                                    |      |
 *             Z 1k                                 | |\   |
 *             Z                                    '-|-\  |
 *             |   R1     C1         Diode            |  >-+---> node
 *   Input >---+--ZZZZ----||----+-----|>|----+--------|+/
 *                              |            |        |/
 *                            -----          Z
 *                              ^            Z R2
 *                             / \ Diode     Z
 *                            -----          |
 *                              |           gnd
 *                             gnd
 *
 * EXAMPLES: see
 *
 *          --------------------------------------------------
 *
 *  Type: 3
 *
 *      5V >---.                                     .------.
 *             Z                                     |      |
 *             Z 1k                                  | |\   |
 *             Z                                     '-|-\  |
 *             |   R1     Diode                        |  >-+---> node
 *   Input >---+--ZZZZ-----|>|------+---------+--------|+/
 *                                  |         |        |/
 *                                 --- C1     Z
 *                                 ---        Z R2
 *                                  |         Z
 *                                 gnd        |
 *                                           gnd
 *
 *
 * EXAMPLES: see
 *
 ***********************************************************************
 *
 * DISCRETE_RCDISC5 - Diode in series with R//C
 *
 *                        .---------------------.
 *                        |                     |
 *    ENAB       -0------>| -----------.        |
 *                        |           --        |
 *    INPUT1     -1------>| -|>|--+--|SW|---+-  |---->   Netlist node
 *                        |       |   --    |   |
 *    RVAL       -2------>|      ---        Z   |
 *                        |     C---        Z R |
 *    CVAL       -3------>|       |         Z   |
 *                        |       -----+-----   |
 *                        |            |gnd     |
 *                        '---------------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCDISC5(name of node,
 *                      enable,
 *                      input node (or value),
 *                      resistor value in OHMS,
 *                      capacitor value in FARADS)
 *
 *  Example config line
 *
 *     DISCRETE_RCDISC5(NODE_11,NODE_10,10,100,CAP_U(1))
 *
 *  When enabled by NODE_10, C discharges from 10v as indicated by RC
 *  of 100R & 1uF. If not enabled, the capacitors keeps it load and may
 *  still be charged through input1. The switch is assumed to be a CD4066,
 *  thus if not enabled the output will be drawn by R to GND since
 *  the switch is in high impedance mode.
 *
 *  EXAMPLES: see Spiders, Galaxian
 *
 ***********************************************************************
 *
 * DISCRETE_RCDISC_MODULATED - RC triggered by logic and modulated
 *
 *           vP  >---.
 *                   |
 *                   Z
 *                   Z  R1
 *             O.C.  Z
 *             |\    |   R2   C1                R3
 *  INPUT1 >---| o---+--ZZZ---||------+----+---ZZZ------+---> node
 *             |/                     |    |           /
 *                                   / \   Z         |/
 *                            Diode -----  Z R4  .---| NPN
 *                                    |    Z     |   |\
 *                                    |    |     |     >
 *                                   gnd  gnd    |      |
 *                                               |     gnd
 *  INPUT2 >----------ZZZ------------------------.
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCDISC_MODULATED(name of node,
 *                      INPUT1 node (or value),
 *                      INPUT2 node (or value),
 *                      R1 value in OHMS (static value),
 *                      R2 value in OHMS (static value),
 *                      R3 value in OHMS (static value),
 *                      R4 value in OHMS (static value),
 *                      C1 value in FARADS (static value),
 *                      vP value in VOLTS)
 *
 * EXAMPLES: dkong
 *
 ***********************************************************************
 *
 * DISCRETE_RCFILTER - Simple single pole RC filter network (vRef = 0)
 * DISCRETE_RCFILTER_VREF - Same but referenced to vRef not 0V
 *
 *                        .------------.
 *                        |            |
 *    ENAB       -0------}| RC FILTER  |
 *                        |            |
 *    INPUT1     -1------}| -ZZZZ-+--  |
 *                        |   R   |    |----}   Netlist node
 *    RVAL       -2------}|      ---   |
 *                        |      ---C  |
 *    CVAL       -3------}|       |    |
 *                        |      vRef  |
 *                        '------------'
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCFILTER(name of node,
 *                       enable
 *                       input node (or value)
 *                       resistor value in OHMS
 *                       capacitor value in FARADS)
 *
 *     DISCRETE_RCFILTER_VREF(name of node,
 *                            enable
 *                            input node (or value)
 *                            resistor value in OHMS
 *                            capacitor value in FARADS,
 *                            vRef static value)
 *
 *  Example config line
 *
 *     DISCRETE_RCFILTER(NODE_11,1,NODE_10,100,CAP_U(1))
 *
 *  Defines an always enabled RC filter with a 100R & 1uF network
 *  the input is fed from NODE_10.
 *
 *  This can be also thought of as a low pass filter with a 3dB cutoff
 *  at:
 *                                  1
 *            Fcuttoff =      --------------
 *                            2*Pi*RVAL*CVAL
 *
 *  (3dB cutoff is where the output power has dropped by 3dB ie Half)
 *
 * EXAMPLES: see Polaris
 *
 ***********************************************************************
 *
 * DISCRETE_RCFILTER_SW - Multiple switchable RC filters
 *
 *                             R
 *    INPUT      >-----------ZZZZ-+-------+----......-----> Output
 *                                |       |
 *                               +-+     +-+
 *    SWITCH     > Bit 0 ---->F1 | |  F2 | |
 *                               '-'   ^ '-'
 *                 Bit 1 ---------|----'  |
 *                                |       |
 *                 Bit ...       ---     ---
 *                               --- C1  --- C2
 *                                |       |
 *                               GND     GND
 *
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCFILTER_SW(name of node,
 *                          enable,
 *                          input node (or value),
 *                          switch node (or value),
 *                          R in Ohms (static value),
 *                          C1 in Farads (static value),
 *                          C2 in Farads (static value),
 *                          C3 in Farads (static value),
 *                          C4 in Farads (static value))
 *
 *     This is a typical filter circuit in circusc or scramble.
 *     Switches are usually CD4066 with a "open" resistance of
 *     typical 470 Ohms at 5V.
 *     This circuit supports up to 4 filters.
 *
 * EXAMPLES: see circusc
 *
 ***********************************************************************
 *
 * DISCRETE_RCINTEGRATE - RC integration circuit/amplifier
 *
 *
 *  vP    >-------------------+
 *                            |
 *                            Z
 *                            Z R3
 *                            Z
 *                            |
 *                            +-----------------> node (Type 3)
 *                           /
 *                         |/
 *  INPUT  >---------------| NPN
 *                          \    .--------------> node (Type 2)
 *                           >   |  R1
 *                            +--+--ZZZ-+-------> node (Type 1)
 *                            |         |
 *                            Z        ---
 *                            Z R2    C---
 *                            Z         |
 *                            |         |
 *                           gnd       gnd
 *
 *  Declaration syntax
 *
 *     DISCRETE_RCINTEGRATE(name of node,
 *                          INPUT node (or value),
 *                          R1 value in OHMS,
 *                          R2 value in OHMS,
 *                          R3 value in OHMS,
 *                          C  value in FARADS,
 *                          vP node (or value in VOLTS)
 *                          TYPE)
 *
 * TYPE: RC_INTEGRATE_TYPE1, RC_INTEGRATE_TYPE2, RC_INTEGRATE_TYPE3
 *
 * Actually an amplifier as well. Primary reason for implementation was integration.
 * The integration configuration (TYPE3, R3=0) works quite well, the amplifying
 * configuration is missing a good, yet simple ( :-) ) transistor model. Around the
 * defined working point the amplifier delivers results.
 *
 * EXAMPLES: dkong
 *
 *
 ***********************************************************************
 =======================================================================
 * from from disc_dev.inc
 * Component specific modules
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_555_ASTABLE    - NE555 Chip simulation (astable mode).
 * DISCRETE_555_ASTABLE_CV - NE555 Chip simulation (astable mode) with CV control.
 *
 *                            v_charge     v_pos
 *                                 V         V
 *                                 |         |
 *                                 |         |
 *                                 |         |
 *                                 Z         |8
 *    _FAST_CHARGE_DIODE        R1 Z     .---------.
 *       (optional)                |    7|  Vcc    |
 *                    +--------->  +-----|Discharge|
 *                    |            |     |         |
 *                   ---           Z     |   555   |3
 *                   \ /        R2 Z     |      Out|---> Netlist Node
 *                    V            |    6|         |
 *                   ---           +-----|Threshold|
 *                    |            |     |         |
 *                    +--------->  +-----|Trigger  |
 *                                 |    2|         |---< Control Voltage
 *                                 |     |  Reset  |5
 *                                 |     '---------'
 *                                ---        4|
 *                              C ---         |
 *                                 |          ^
 *                                gnd       Reset
 *
 *  Declaration syntax
 *
 *     DISCRETE_555_ASTABLE(name of node,
 *                          reset node (or value),
 *                          R1 node (or value) in ohms,
 *                          R2 node (or value) in ohms,
 *                          C node (or value) in farads,
 *                          address of discrete_555_desc structure)
 *
 *     DISCRETE_555_ASTABLE_CV(name of node,
 *                            reset node (or value),
 *                            R1 node (or value) in ohms,
 *                            R2 node (or value) in ohms,
 *                            C node (or value) in farads,
 *                            Control Voltage node (or value),
 *                            address of discrete_555_desc structure)
 *
 *    discrete_555_desc =
 *    {
 *        options,        - bit mapped options
 *        v_pos,          - B+ voltage of 555
 *        v_charge,       - voltage (or node) to charge circuit  (Defaults to v_pos)
 *        v_out_high     - High output voltage of 555 (Defaults to v_pos - 1.2V)
 *    }
 *
 * The last 2 options of discrete_555_desc can use the following defaults:
 *     DEFAULT_555_CHARGE -  to connect v_charge to v_pos
 *     DEFAULT_555_HIGH   - to use the normal output voltage based on v_pos
 * or combine both as:
 *     DEFAULT_555_VALUES
 *
 * eg. {DISC_555_OUT_SQW | DISC_555_OUT_DC, 12, DEFAULT_555_VALUES}
 *
 *  Output Types: (only needed with DISC_555_OUT_SQW, DISC_555_OUT_CAP
 *                 and DISC_555_OUT_ENERGY)
 *     DISC_555_OUT_DC - Output is actual DC. (DEFAULT)
 *     DISC_555_OUT_AC - A cheat to make the waveform AC.
 *
 *  Waveform Types: (ORed with output types)
 *     DISC_555_OUT_SQW     - Output is Squarewave.  0 or v_out_high. (DEFAULT)
 *                            When the state changes from low to high (or high to low)
 *                            during a sample, the output will high (or low) for that
 *                            sample.  This can cause alaising effects.
 *     DISC_555_OUT_CAP     - Output is Timing Capacitor 'C' voltage.
 *     DISC_555_OUT_COUNT_F - If the 555 frequency is greater then half the sample
 *                            rate, then the output may change state more then once
 *                            during the sample.  Using this flag will cause
 *                            the output to be the number of falling edges that
 *                            happened during the sample.  This is useful to feed
 *                            to counter circuits.  The Output Type flag is ignored
 *                            when this flag is used.
 *     DISC_555_OUT_COUNT_R - Same as DISC_555_OUT_COUNT_F but with rising edges.
 *     DISC_555_OUT_ENERGY  - Same SQW, but will help reduce aliasing effects.
 *                            This should be used when the 555 squarewave output is used
 *                            as a final output and not as a clock source.
 *                            If the state changes from low to high 1/4 of the way
 *                            through the sample, then the output will be 75% of the
 *                            normal high value.
 *     DISC_555_OUT_LOGIC_X - This will output the 0/1 level of the flip-flop with
 *                            some eXtra info.  This x_time is in decimal remainder.
 *                            It lets you know the percent of sample time where the
 *                            flip-flop changed state.  If 0, the change did not happen
 *                            during the sample.  1.75 means the flip-flop is 1 and
 *                            switched over 1/4 of the way through the sample.
 *                            0.2 means the flip-flop is 0 and switched over 4/5 of
 *                            the way through the sample.
 *                            X modules can be used with counters to reduce alaising.
 *   DISC_555_OUT_COUNT_F_X - Same as DISC_555_OUT_COUNT_F but with x_time.
 *   DISC_555_OUT_COUNT_R_X - Same as DISC_555_OUT_COUNT_R but with x_time.
 *
 *  other options - DISCRETE_555_ASTABLE only:
 *     DISC_555_ASTABLE_HAS_FAST_CHARGE_DIODE - diode used to bypass rDischarge
 *                                              when charging for quicker charge.
 *
 * EXAMPLES: see Hit Me, Canyon Bomber, Sky Diver
 *
 ***********************************************************************
 *
 * DISCRETE_555_MSTABLE - NE555 Chip simulation (monostable mode)
 *                      - Triggered on falling edge.
 *
 *            v_charge     v_pos
 *                 V         V
 *                 |         |
 *                 |         |
 *                 |         |
 *                 Z         |
 *               R Z     .---------.
 *                 |     |  Vcc    |
 *                 +-----|Discharge|
 *                 |     |         |
 *                 |     |   555   |
 *                 |     |      Out|---> Netlist Node
 *                 |     |         |
 *                 +-----|Threshold|
 *                 |     |         |
 *                 |     |  Trigger|--------< Trigger
 *                 |     |       CV|---.
 *                 |     |  Reset  |   |
 *                 |     '---------'  --- not
 *                ---         |       --- needed
 *              C ---         |        |
 *                 |          ^       gnd
 *                gnd       Reset
 *
 *  Declaration syntax
 *
 *     DISCRETE_555_MSTABLE(name of node,
 *                          reset node (or value),
 *                          Trigger node,
 *                          R node (or value) in ohms,
 *                          C node (or value) in farads,
 *                          address of discrete_555_desc structure)
 *
 *    discrete_555_desc = See DISCRETE_555_ASTABLE for description.
 *      Note: v_charge can not be a node for this circuit.
 *
 *  Trigger Types
 *     DISC_555_TRIGGER_IS_LOGIC   - Input is (0 or !0) logic (DEFAULT)
 *     DISC_555_TRIGGER_IS_VOLTAGE - Input is actual voltage.
 *                                   Voltage must drop below
 *                                   trigger to activate.
 *     DISC_555_TRIGGER_IS_COUNT   - 1 when trigger, allows passing of x_time.
 *                                   Mainly connected with other module using
 *                                   a xxx_COUNT_F_X type.
 *     DISC_555_TRIGGER_DISCHARGES_CAP - some circuits connect an external
 *                                       device (transistor) to the cap to
 *                                       discharge it when the trigger is
 *                                       enabled.  Thereby allowing the one-shot
 *                                       to retrigger.
 *
 *  Output Types: (ORed with trigger types)
 *     DISC_555_OUT_DC - Output is actual DC. (DEFAULT)
 *     DISC_555_OUT_AC - A cheat to make the waveform AC.
 *
 *  Waveform Types: (ORed with trigger types)
 *     DISC_555_OUT_SQW     - Output is Squarewave.  0 or v_out_high. (DEFAULT)
 *     DISC_555_OUT_CAP     - Output is Timing Capacitor 'C' voltage.
 *     DISC_555_OUT_ENERGY  - see DISCRETE_555_MSTABLE.
 *
 * EXAMPLES: see Frogs, Sprint 8
 *
 ***********************************************************************
 *
 * DISCRETE_555_CC - Constant Current Controlled 555 Oscillator
 *                   Which works out to a VCO when R is fixed.
 *
 *       v_cc_source                     v_pos
 *           V                            V
 *           |     .----------------------+
 *           |     |                      |
 *           |     |                  .---------.
 *           |     |       rDischarge |  Vcc    |
 *           Z     Z        .---+-----|Discharge|
 *           Z R   Z rBias  |   |     |         |
 *           |     |        |   Z     |   555   |
 *           |     |        |   Z     |      Out|---> Netlist Node
 *         .----.  |      >-'   |     |         |
 *  Vin >--| CC |--+--> option  +-----|Threshold|
 *         '----'         >-----+     |         |
 *                              +-----|Trigger  |
 *                              |     |         |
 *                 .------+-----'     |  Reset  |
 *                 |      |           '---------'
 *                ---     Z                |
 *                --- C   Z rGnd           |
 *                 |      |                ^
 *                gnd    gnd             Reset
 *
 * Notes: R sets the current and should NEVER be 0 (short).
 *        The current follows the voltage I=Vin/R and charges C.
 *        rBias, rDischarge and rGnd should be 0 if not used.
 *        Reset is active low for the module.
 *
 *        Note that the CC source can be connected two different ways.
 *        See the option flags below for more info.
 *
 *        DISC_555_OUT_SQW mode only:
 *        When there is no rDischarge there is a very short discharge
 *        cycle (almost 0s), so the module triggers the output for 1
 *        sample. This does not effect the timing, just the duty cycle.
 *        But frequencies more the half the sample frequency will be
 *        limited to a max of half the sample frequency.
 *        This mode should be used to drive a counter for any real use.
 *        Just like the real thing.
 *
 *  Declaration syntax
 *
 *     DISCRETE_555_CC(name of node,
 *                     reset node or static value,
 *                     Vin node or static value,
 *                     R node or static value,
 *                     C node or static value,
 *                     rBias node or static value,
 *                     rGnd node or static value,
 *                     rDischarge node or static value,
 *                     address of discrete_555_cc_desc structure)
 *
 *     discrete_555_cc_desc =
 * {
 *         options;         - bit mapped options
 *         v_pos;           - B+ voltage of 555
 *         v_cc_source;     - Voltage of the Constant Current source
 *         v_out_high;      - High output voltage of 555 (Defaults to v_pos - 1.2V)
 *         v_cc_junction;   - The voltage drop of the Constant Current source transistor
 *                            (0 if Op Amp)
 *  }
 *
 * The last 2 options of discrete_555_desc can use the following defaults:
 *     DEFAULT_555_CC_SOURCE - to connect v_cc_source to v_pos
 *     DEFAULT_555_HIGH      - to use the normal output voltage based on v_pos
 * or combine both as:
 *     DEFAULT_555_VALUES
 *
 *  Output Types:
 *     See DISCRETE_555_ASTABLE for description.
 *
 *  Waveform Types: (ORed with output types)
 *     See DISCRETE_555_ASTABLE for description.
 *
 *  Other Flags:
 *     DISCRETE_555_CC_TO_DISCHARGE_PIN - The CC source connects to the
 *                                        discharge pin. (Default)
 *     DISCRETE_555_CC_TO_CAP           - The CC source connects to the
 *                                        threshold pin.  This is not fully
 *                                        implemented yet.  It only works properly
 *                                        when only rDischarge is defined.
 *
 * EXAMPLES: see Fire Truck, Monte Carlo, Super Bug
 *
 ***********************************************************************
 *
 * DISCRETE_555_VCO1    - Op-Amp based 555 VCO circuit.
 * DISCRETE_555_VCO1_CV - Op-Amp based 555 VCO circuit with CV control.
 *
 *                               c
 *  .------------------------+---||----+---------------------------> DISC_555_OUT_CAP
 *  |                        |         |
 *  |                        |   |\    |
 *  |              r1        |   | \   |      .------------.
 *  |  vIn1 >--+--ZZZZ-------+---|- \  |      |            |
 *  |          |                 |   >-+---+--|Threshold   |
 *  |          |   r2            |+ /      |  |         Out|------> DISC_555_OUT_xx
 *  Z          '--ZZZZ--+--------| /       '--|Trigger     |
 *  Z r4                |        |/           |            |
 *  Z                   Z                     |       Reset|------< Reset
 *  |                   Z r3          vIn2 >--|CV          |
 * .----.               Z                     |            |
 * |  En|<--------.     |                 .---|Discharge   |
 * '----'         |    gnd                |   '------------'
 *   |            |                       |
 *  gnd           '-----------------------+---ZZZZ------> v_charge (ignored)
 *                                             rX
 *
 *  Declaration syntax
 *
 *     DISCRETE_555_VCO1(name of node,
 *                       reset node or static value,
 *                       Vin1 node or static value,
 *                       address of discrete_555_vco1_desc structure)
 *
 *     DISCRETE_555_VCO1_CV(name of node,
 *                          reset node or static value,
 *                          Vin1 node or static value,
 *                          Vin2 (CV) node or static value,
 *                          address of discrete_555_vco1_desc structure)
 *
 *  discrete_555_vco1_desc =
 *  {
 *      options,            - bit mapped options
 *      r1, r2, r3, r4, c,
 *      v_pos,              - B+ voltage of 555
 *      v_out_high,         - High output voltage of 555 (Defaults to v_pos - 1.2V)
 *  }
 *
 * The last option of discrete_555_vco1_desc can use the following default:
 *     DEFAULT_555_HIGH      - to use the normal output voltage based on v_pos
 *
 * Notes: The value of resistor rX is not needed.  It is just a pull-up
 *        for the discharge output.
 *        The 'En' block can be a transistor or 4066 switch.  It connects
 *        r4 to ground when En is high.
 *
 ***********************************************************************
 *
 * DISCRETE_566 - NE566 VCO simulation.
 *
 *       v_charge        v_pos
 *           V             V
 *           |             |
 *           |             |
 *           |    R    .-------.
 *           '---/\/\--|6  8   |
 *                     |       |
 *   vMod >------------|5   3/4|---------> Netlist Node
 *                     |       |
 *                 .---|7  1   |
 *                 |   '-------'
 *                ---      |
 *                --- C    |
 *                 |       |
 *               v_neg   v_neg
 *
 * Note: There is usually a 0.001uF cap between pins 5 & 6.
 *       This is for circuit stability and can be ignored for simulation purposes.
 *
 *  Declaration syntax
 *
 *     DISCRETE_566(name of node,
 *                  vMod node or static value,
 *                  R node or static value in ohms,
 *                  C node or static value in Farads,
 *                  v_pos static value
 *                  v_neg static value
 *                  v_charge node or static value
 *                  options)
 *
 *  Output Types:
 *     DISC_566_OUT_DC - Output is actual DC. (DEFAULT)
 *     DISC_566_OUT_AC - A cheat to make the waveform AC.
 *
 *  Waveform Types:
 *     DISC_566_OUT_SQUARE   - Pin 3 Square Wave Output (DEFAULT)
 *     DISC_566_OUT_ENERGY   - Pin 3 anti-aliased Square Wave Output
 *     DISC_566_OUT_TRIANGLE - Pin 4 Triangle Wave Output
 *     DISC_566_OUT_LOGIC    - Internal Flip/Flop Output
 *     DISC_566_COUNT_F      - # of falling edges
 *     DISC_566_COUNT_R      - # of rising edges
 *     DISC_566_COUNT_F_X    - # of falling edges with x-time
 *     DISC_566_COUNT_R_X    - # of rising edges with x-time
 *
 * EXAMPLES: see Starship 1
 *
 ***********************************************************************
 *
 * DISCRETE_74LS624 - VCO.  1/2 of 74LS629.
 *
 * The datasheet gives no formulae. The implementation is based on
 * testing a 74LS629.
 *
 * For a LS628, use VRng = 3.2
 *
 *                                    V+
 *                                     |
 *                  R_rng_in     .---------.
 *   vRng >-----------ZZZZ-------|Rng  V+  |
 *           R_freq_in           |         |
 *   vMod >---ZZZZ-+-------------|Freq   Z |---------> Netlist Node
 *                 |             |         |
 *      C_freq_in ---        .---|CX1      |
 *                ---        |   |         |
 *                 |        ---  |         |
 *                 |      C ---  |         |
 *                Gnd        |   |         |
 *                           '---|CX2      |
 *                               '---------'
 *                                   |
 *                                  GND
 *
 *  Declaration syntax
 *
 *     DISCRETE_74LS624(name of node,(NODE,ENAB,VMOD,VRNG,C,R_FREQ_IN,C_FREQ_IN,R_RNG_IN,OUTTYPE)
 *                      enable node or static value,
 *                      vMod node or static value,
 *                      vRng static value,
 *                      C static value in Farads,
 *                      R_freq_in static value in Ohms,
 *                      C_freq_in static value in Farads,
 *                      R_rng_in static value in Ohms,
 *                     Type of output static value)
 *
 * Type of Output
 *      DISC_LS624_OUT_SQUARE      - 4.4V square wave
 *      DISC_LS624_OUT_ENERGY      - 4.4V anti-aliased square wave
 *      DISC_LS624_OUT_LOGIC       - Logic ( 0 or 1)
 *      DISC_LS624_OUT_LOGIC_X     - Logic ( 0 or 1) with x_time
 *      DISC_LS624_OUT_COUNT_F     - Number of Falling edges
 *      DISC_LS624_OUT_COUNT_F_X   - Number of Falling edges with x_time
 *      DISC_LS624_OUT_COUNT_R     - Number of Rising  edges
 *      DISC_LS624_OUT_COUNT_R_X   - Number of Rising  edges with x_time
 *
 *
 * EXAMPLES: see Donkey Kong Jr.; Mario Bros.
 *
 ***********************************************************************
 *
 * DISCRETE_CUSTOMx - Link to custom code
 *     where x = 1 to 9
 *
 *  Declaration syntax
 *
 *     DISCRETE_CUSTOMx(name of node,
 *                      input 0 node or static value, ...)
 *
 *     discrete_custom_info = {discrete_module, custom}
 *                             discrete_module  = discrete module definition
 *                             custom = address of specific initialization data
 *
 * In most case, you should be able to use
 *
 *     discrete_custom_info = {DISCRETE_CUSTOM_MODULE(basename, context type), custom}
 *
 * if you have used DISCRETE_STEP(basename) and DISCRETE_RESET(basename) to define
 * the step/reset procedures.
 *
 * EXAMPLES: see Sky Raider, Donkey Kong
 *
 ***********************************************************************
 =======================================================================
 * Debugging modules.
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_CSVLOGx - Dump n nodes into a csv (comma separated value) file
 *
 *  Declaration syntax
 *
 *     DISCRETE_CSVLOGx(node 1, ...)
 *         where x = 1 to 5
 *
 *  WARNING: This can rapidally use up a lot of hard drive space.
 *           48kHz sampling of 5 nodes used 217M after 80 seconds.
 *
 *  Use this to monitor nodes while debugging the driver.  You should
 *  remove these nodes from the final driver.  You can use up to a maximum
 *  DISCRETE_MAX_CSVLOGS.  Each file will be called discreteX_Y.csv,
 *  where X is the sound tag.  Y is 0-9, in the order the file is
 *  created in the driver.
 *
 *  This can be used to monitor how multiple nodes relate to each other.
 *  The resulting file can be imported to a spreadsheet.
 *
 ************************************************************************
 *
 * DISCRETE_WAVLOG - Dump nodes into a wav file
 *
 *  Declaration syntax
 *
 *     DISCRETE_WAVLOG1(node,
 *                       static gain for node)
 *
 *     DISCRETE_WAVLOG2(left node,
 *                       static gain for left node,
 *                       right node,
 *                       static gain for right node)
 *
 *  Use this to monitor nodes while debugging the driver.  You should
 *  remove these nodes from the final driver.  You can use up to a maximum
 *  of DISCRETE_MAX_WAVLOGS.  Each file will be called discreteX_Y.wav,
 *  where X is the sound tag.  Y is 0-9, in the order the file is
 *  created in the driver.
 *
 *  This can be used to monitor how a node's input affects it's output.
 *  Monitor the input trigger against the final effect, etc.  The resulting
 *  file can be played/viewed etc. by music player/editor software.
 *
 *  When logging nodes that are voltage levels, you may want to use a
 *  gain of 1000.  This will make the wav sample level reflect milli-volts.
 *
 ************************************************************************
 =======================================================================
 * Must be last module.
 =======================================================================
 ***********************************************************************
 *
 * DISCRETE_OUTPUT - Single output node to Mame mixer and output
 *
 *                            .----------.       .
 *                            |          |    .-/|
 *      Netlist node -------->| OUTPUT   |----|  | Sound Output
 *                            |          |    '-\|
 *                            '----------'       '
 *
 *  Declaration syntax
 *
 *     DISCRETE_OUTPUT(name of output node, gain)
 *
 *  Example config line
 *
 *     DISCRETE_OUTPUT(NODE_02, 1000)
 *
 *  Output stream will be generated from the NODE_02 output stream * 1000.
 *
 *  Multiple outputs can be used up to DISCRETE_MAX_OUTPUTS.
 *
 ************************************************************************/

/*************************************
 *
 *  macros
 *  see also: emu\machine\rescap.h
 *
 *************************************/

/* calculate charge exponent using discrete sample time */
#define RC_CHARGE_EXP(rc)                       (1.0 - exp(-this->sample_time() / (rc)))
/* calculate charge exponent using given sample time */
#define RC_CHARGE_EXP_DT(rc, dt)                (1.0 - exp(-(dt) / (rc)))
#define RC_CHARGE_NEG_EXP_DT(rc, dt)            (1.0 - exp((dt) / (rc)))

/* calculate discharge exponent using discrete sample time */
#define RC_DISCHARGE_EXP(rc)                    (exp(-this->sample_time() / (rc)))
/* calculate discharge exponent using given sample time */
#define RC_DISCHARGE_EXP_DT(rc, dt)             (exp(-(dt) / (rc)))
#define RC_DISCHARGE_NEG_EXP_DT(rc, dt)         (exp((dt) / (rc)))

#define FREQ_OF_555(_r1, _r2, _c)   (1.49 / ((_r1 + 2 * _r2) * _c))

/*************************************
 *
 *  Interface & Naming
 *
 *************************************/

#define DISCRETE_CLASS_FUNC(_class, _func)      DISCRETE_CLASS_NAME(_class) :: _func

#define DISCRETE_STEP(_class)                   void DISCRETE_CLASS_FUNC(_class, step)(void)
#define DISCRETE_RESET(_class)                  void DISCRETE_CLASS_FUNC(_class, reset)(void)
#define DISCRETE_START(_class)                  void DISCRETE_CLASS_FUNC(_class, start)(void)
#define DISCRETE_STOP(_class)                   void DISCRETE_CLASS_FUNC(_class, stop)(void)
#define DISCRETE_DECLARE_INFO(_name)            const _name *info = (const  _name *)this->custom_data();

//#define DISCRETE_INPUT(_num)                  (*(this->m_input[_num]))
#define DISCRETE_INPUT(_num)                    (input(_num))

/*************************************
 *
 *  Core constants
 *
 *************************************/

#define DISCRETE_MAX_NODES                  300
#define DISCRETE_MAX_INPUTS                 10
#define DISCRETE_MAX_OUTPUTS                8

#define DISCRETE_MAX_TASK_GROUPS            10


/*************************************
 *
 *  Node-specific constants
 *
 *************************************/

#define DEFAULT_TTL_V_LOGIC_1               3.4

#define DISC_LOGADJ                         1.0
#define DISC_LINADJ                         0.0

/* DISCRETE_COMP_ADDER types */
#define DISC_COMP_P_CAPACITOR               0x00
#define DISC_COMP_P_RESISTOR                0x01

/* clk types */
#define DISC_CLK_MASK                       0x03
#define DISC_CLK_ON_F_EDGE                  0x00
#define DISC_CLK_ON_R_EDGE                  0x01
#define DISC_CLK_BY_COUNT                   0x02
#define DISC_CLK_IS_FREQ                    0x03

#define DISC_COUNT_DOWN                     0
#define DISC_COUNT_UP                       1

#define DISC_COUNTER_IS_7492                0x08

#define DISC_OUT_MASK                       0x30
#define DISC_OUT_DEFAULT                    0x00
#define DISC_OUT_IS_ENERGY                  0x10
#define DISC_OUT_HAS_XTIME                  0x20

/* Function possibilities for the LFSR feedback nodes */
/* 2 inputs, one output                               */
#define DISC_LFSR_XOR                       0
#define DISC_LFSR_OR                        1
#define DISC_LFSR_AND                       2
#define DISC_LFSR_XNOR                      3
#define DISC_LFSR_NOR                       4
#define DISC_LFSR_NAND                      5
#define DISC_LFSR_IN0                       6
#define DISC_LFSR_IN1                       7
#define DISC_LFSR_NOT_IN0                   8
#define DISC_LFSR_NOT_IN1                   9
#define DISC_LFSR_REPLACE                   10
#define DISC_LFSR_XOR_INV_IN0               11
#define DISC_LFSR_XOR_INV_IN1               12

/* LFSR Flag Bits */
#define DISC_LFSR_FLAG_OUT_INVERT           0x01
#define DISC_LFSR_FLAG_RESET_TYPE_L         0x00
#define DISC_LFSR_FLAG_RESET_TYPE_H         0x02
#define DISC_LFSR_FLAG_OUTPUT_F0            0x04
#define DISC_LFSR_FLAG_OUTPUT_SR_SN1        0x08

/* Sample & Hold supported clock types */
#define DISC_SAMPHOLD_REDGE                 0
#define DISC_SAMPHOLD_FEDGE                 1
#define DISC_SAMPHOLD_HLATCH                2
#define DISC_SAMPHOLD_LLATCH                3

/* Shift options */
#define DISC_LOGIC_SHIFT__RESET_L           0x00
#define DISC_LOGIC_SHIFT__RESET_H           0x10
#define DISC_LOGIC_SHIFT__LEFT              0x00
#define DISC_LOGIC_SHIFT__RIGHT             0x20

/* Maximum number of resistors in ladder chain */
#define DISC_LADDER_MAXRES                  8

/* Filter types */
#define DISC_FILTER_LOWPASS                 0
#define DISC_FILTER_HIGHPASS                1
#define DISC_FILTER_BANDPASS                2

/* Mixer types */
#define DISC_MIXER_IS_RESISTOR              0
#define DISC_MIXER_IS_OP_AMP                1
#define DISC_MIXER_IS_OP_AMP_WITH_RI        2   /* Used only internally.  Use DISC_MIXER_IS_OP_AMP */

/* Triggered Op Amp Functions */
enum
{
	DISC_OP_AMP_TRIGGER_FUNCTION_NONE,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG0,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG0_INV,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG1,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG1_INV,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG2,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG2_INV,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG01_AND,
	DISC_OP_AMP_TRIGGER_FUNCTION_TRG01_NAND
};


/* Common Op Amp Flags and values */
#define DISC_OP_AMP_IS_NORTON               0x100
#define OP_AMP_NORTON_VBE                   0.5     // This is the norton junction voltage. Used only internally.
#define OP_AMP_VP_RAIL_OFFSET               1.5     // This is how close an op-amp can get to the vP rail. Used only internally.

/* Integrate options */
#define DISC_INTEGRATE_OP_AMP_1             0x00
#define DISC_INTEGRATE_OP_AMP_2             0x10

/* op amp 1 shot types */
#define DISC_OP_AMP_1SHT_1                  0x00

/* Op Amp Filter Options */
#define DISC_OP_AMP_FILTER_IS_LOW_PASS_1    0x00
#define DISC_OP_AMP_FILTER_IS_HIGH_PASS_1   0x10
#define DISC_OP_AMP_FILTER_IS_BAND_PASS_1   0x20
#define DISC_OP_AMP_FILTER_IS_BAND_PASS_1M  0x30
#define DISC_OP_AMP_FILTER_IS_HIGH_PASS_0   0x40
#define DISC_OP_AMP_FILTER_IS_BAND_PASS_0   0x50
#define DISC_OP_AMP_FILTER_IS_LOW_PASS_1_A  0x60

#define DISC_OP_AMP_FILTER_TYPE_MASK        (0xf0 | DISC_OP_AMP_IS_NORTON)  // Used only internally.

/* Sallen-Key filter Options */
#define DISC_SALLEN_KEY_LOW_PASS            0x01
#define DISC_SALLEN_KEY_HIGH_PASS           0x02


/* Op Amp Oscillator Flags */
#define DISC_OP_AMP_OSCILLATOR_TYPE_MASK    (0xf0 | DISC_OP_AMP_IS_NORTON)  // Used only internally.
#define DISC_OP_AMP_OSCILLATOR_1            0x00
#define DISC_OP_AMP_OSCILLATOR_2            0x10
#define DISC_OP_AMP_OSCILLATOR_VCO_1        0x20
#define DISC_OP_AMP_OSCILLATOR_VCO_2        0x30
#define DISC_OP_AMP_OSCILLATOR_VCO_3        0x40

#define DISC_OP_AMP_OSCILLATOR_OUT_MASK         0x07
#define DISC_OP_AMP_OSCILLATOR_OUT_CAP          0x00
#define DISC_OP_AMP_OSCILLATOR_OUT_SQW          0x01
#define DISC_OP_AMP_OSCILLATOR_OUT_ENERGY       0x02
#define DISC_OP_AMP_OSCILLATOR_OUT_LOGIC_X      0x03
#define DISC_OP_AMP_OSCILLATOR_OUT_COUNT_F_X    0x04
#define DISC_OP_AMP_OSCILLATOR_OUT_COUNT_R_X    0x05

/* Schmitt Oscillator Options */
#define DISC_SCHMITT_OSC_IN_IS_LOGIC        0x00
#define DISC_SCHMITT_OSC_IN_IS_VOLTAGE      0x01

#define DISC_SCHMITT_OSC_ENAB_IS_AND        0x00
#define DISC_SCHMITT_OSC_ENAB_IS_NAND       0x02
#define DISC_SCHMITT_OSC_ENAB_IS_OR         0x04
#define DISC_SCHMITT_OSC_ENAB_IS_NOR        0x06

#define DISC_SCHMITT_OSC_ENAB_MASK          0x06    /* Bits that define output enable type.
                                                     * Used only internally in module. */

/* 555 Common output flags */
#define DISC_555_OUT_DC                     0x00
#define DISC_555_OUT_AC                     0x10

#define DISC_555_TRIGGER_IS_LOGIC           0x00
#define DISC_555_TRIGGER_IS_VOLTAGE         0x20
#define DISC_555_TRIGGER_IS_COUNT           0x40
#define DSD_555_TRIGGER_TYPE_MASK           0x60
#define DISC_555_TRIGGER_DISCHARGES_CAP     0x80

#define DISC_555_OUT_SQW                    0x00    /* Squarewave */
#define DISC_555_OUT_CAP                    0x01    /* Cap charge waveform */
#define DISC_555_OUT_COUNT_F                0x02    /* Falling count */
#define DISC_555_OUT_COUNT_R                0x03    /* Rising count */
#define DISC_555_OUT_ENERGY                 0x04
#define DISC_555_OUT_LOGIC_X                0x05
#define DISC_555_OUT_COUNT_F_X              0x06
#define DISC_555_OUT_COUNT_R_X              0x07

#define DISC_555_OUT_MASK                   0x07    /* Bits that define output type.
                                                 * Used only internally in module. */

#define DISC_555_ASTABLE_HAS_FAST_CHARGE_DIODE      0x80
#define DISCRETE_555_CC_TO_DISCHARGE_PIN            0x00
#define DISCRETE_555_CC_TO_CAP                      0x80

/* 566 output flags */
#define DISC_566_OUT_DC                     0x00
#define DISC_566_OUT_AC                     0x10

#define DISC_566_OUT_SQUARE                 0x00    /* Squarewave */
#define DISC_566_OUT_ENERGY                 0x01    /* anti-aliased Squarewave */
#define DISC_566_OUT_TRIANGLE               0x02    /* Triangle waveform */
#define DISC_566_OUT_LOGIC                  0x03    /* 0/1 logic output */
#define DISC_566_OUT_COUNT_F                0x04
#define DISC_566_OUT_COUNT_R                0x05
#define DISC_566_OUT_COUNT_F_X              0x06
#define DISC_566_OUT_COUNT_R_X              0x07
#define DISC_566_OUT_MASK                   0x07    /* Bits that define output type.
                                                     * Used only internally in module. */

/* LS624 output flags */
#define DISC_LS624_OUT_SQUARE               0x01
#define DISC_LS624_OUT_ENERGY               0x02
#define DISC_LS624_OUT_LOGIC                0x03
#define DISC_LS624_OUT_LOGIC_X              0x04
#define DISC_LS624_OUT_COUNT_F              0x05
#define DISC_LS624_OUT_COUNT_R              0x06
#define DISC_LS624_OUT_COUNT_F_X            0x07
#define DISC_LS624_OUT_COUNT_R_X            0x08

/* Oneshot types */
#define DISC_ONESHOT_FEDGE                  0x00
#define DISC_ONESHOT_REDGE                  0x01

#define DISC_ONESHOT_NORETRIG               0x00
#define DISC_ONESHOT_RETRIG                 0x02

#define DISC_OUT_ACTIVE_LOW                 0x04
#define DISC_OUT_ACTIVE_HIGH                0x00

#define DISC_CD4066_THRESHOLD               2.75

/* Integrate */

#define DISC_RC_INTEGRATE_TYPE1             0x00
#define DISC_RC_INTEGRATE_TYPE2             0x01
#define DISC_RC_INTEGRATE_TYPE3             0x02

/*************************************
 *
 *  Classes and structs to handle
 *  linked lists.
 *
 *************************************/

/*
 * add and delete may be slow - the focus is on access!
 */

	// TODO: replace with vector from utils
template<class _ElementType> struct vector_t
{
public:
	vector_t(int initial) {
		m_count = 0;
		m_allocated = initial;
		m_arr = make_unique_clear<_ElementType[]>(m_allocated);
	}
	vector_t()  {
		m_count = 0;
		m_allocated = 16;
		m_arr = make_unique_clear<_ElementType[]>(m_allocated);
	}
	~vector_t() {
		m_arr = nullptr;
	}
	_ElementType& operator [] (unsigned int index) const // get array item
	{
		return m_arr[index];
	}

	vector_t(const vector_t &a)  // copy constructor
	{
		m_allocated = a.count();
		if (m_allocated < 16)
			m_allocated = 16;
		m_count = a.count();
		m_arr = make_unique_clear<_ElementType[]>(m_allocated);
		for (int i=0; i < m_count; i++)
			m_arr[i] = a[i];
	}
	vector_t& operator = (const vector_t &a) // assignment operator
	{
		if (this == &a) return *this;
		m_allocated = a.count();
		if (m_allocated < 16)
			m_allocated = 16;
		m_count = a.count();
		m_arr = make_unique_clear<_ElementType[]>(m_allocated);
		for (int i=0; i < m_count; i++)
			m_arr[i] = a[i];
		return *this;
	}

	inline _ElementType* add(_ElementType object)
	{
		if (m_count >= m_allocated)
		{
			auto oldarr = make_unique_clear<_ElementType[]>(m_allocated);
			for (int i = 0; i < m_count; i++)
				oldarr[i] = m_arr[i];

			m_allocated *= 2;
			m_arr = make_unique_clear<_ElementType[]>(m_allocated);
			for (int i = 0; i < m_count; i++)
				m_arr[i] = oldarr[i];
		}
		m_arr[m_count] = object;
		m_count++;
		return &m_arr[m_count-1];
	}
	inline void remove(int index)
	{
		for (int i=index+1; i < m_count; i++)
			m_arr[i-1] = m_arr[i];
		m_count--;
	}
	inline void clear(void) { m_count = 0;  }
	inline int count(void) const { return m_count; }
	inline _ElementType *begin_ptr(void) const { return m_arr.get(); }
	inline _ElementType *end_ptr(void) const { return m_arr.get() + (m_count - 1); }
private:
	std::unique_ptr<_ElementType[]> m_arr;
	int m_count;
	int m_allocated;
};

/*************************************
 *
 *  Node-specific struct types
 *
 *************************************/

struct discrete_lfsr_desc
{
	int clock_type;
	int bitlength;
	int reset_value;

	int feedback_bitsel0;
	int feedback_bitsel1;
	int feedback_function0;         /* Combines bitsel0 & bitsel1 */

	int feedback_function1;         /* Combines funct0 & infeed bit */

	int feedback_function2;         /* Combines funct1 & shifted register */
	int feedback_function2_mask;    /* Which bits are affected by function 2 */

	int flags;

	int output_bit;
};


struct discrete_op_amp_osc_info
{
	uint32_t  type;
	double  r1;
	double  r2;
	double  r3;
	double  r4;
	double  r5;
	double  r6;
	double  r7;
	double  r8;
	double  c;
	double  vP;     // Op amp B+
};


#define DEFAULT_7414_VALUES     1.7, 0.9, 3.4

#define DEFAULT_74LS14_VALUES   1.6, 0.8, 3.4

struct discrete_schmitt_osc_desc
{
	double  rIn;
	double  rFeedback;
	double  c;
	double  trshRise;   // voltage that triggers the gate input to go high (vGate) on rise
	double  trshFall;   // voltage that triggers the gate input to go low (0V) on fall
	double  vGate;      // the output high voltage of the gate that gets fedback through rFeedback
	int     options;    // bitmapped options
};


struct discrete_comp_adder_table
{
	int     type;
	double  cDefault;               // Default component.  0 if not used.
	int     length;
	double  c[DISC_LADDER_MAXRES];  // Component table
};


struct discrete_dac_r1_ladder
{
	int     ladderLength;       // 2 to DISC_LADDER_MAXRES.  1 would be useless.
	double  r[DISC_LADDER_MAXRES];  // Don't use 0 for valid resistors.  That is a short.
	double  vBias;          // Voltage Bias resistor is tied to (0 = not used)
	double  rBias;          // Additional resistor tied to vBias (0 = not used)
	double  rGnd;           // Resistor tied to ground (0 = not used)
	double  cFilter;        // Filtering cap (0 = not used)
};


struct discrete_integrate_info
{
	uint32_t  type;
	double  r1;     // r1a + r1b
	double  r2;     // r2a + r2b
	double  r3;     // r3a + r3b
	double  c;
	double  v1;
	double  vP;
	double  f0;
	double  f1;
	double  f2;
};


#define DISC_MAX_MIXER_INPUTS   8
struct discrete_mixer_desc
{
	int     type;
	double  r[DISC_MAX_MIXER_INPUTS];       /* static input resistance values.  These are in series with rNode, if used. */
	int     r_node[DISC_MAX_MIXER_INPUTS];  /* variable resistance nodes, if needed.  0 if not used. */
	double  c[DISC_MAX_MIXER_INPUTS];
	double  rI;
	double  rF;
	double  cF;
	double  cAmp;
	double  vRef;
	double  gain;               /* Scale value to get output close to +/- 32767 */
};


struct discrete_op_amp_info
{
	uint32_t  type;
	double  r1;
	double  r2;
	double  r3;
	double  r4;
	double  c;
	double  vN;     // Op amp B-
	double  vP;     // Op amp B+
};


struct discrete_op_amp_1sht_info
{
	uint32_t  type;
	double  r1;
	double  r2;
	double  r3;
	double  r4;
	double  r5;
	double  c1;
	double  c2;
	double  vN;     // Op amp B-
	double  vP;     // Op amp B+
};


struct discrete_op_amp_tvca_info
{
	double  r1;
	double  r2;     // r2a + r2b
	double  r3;     // r3a + r3b
	double  r4;
	double  r5;
	double  r6;
	double  r7;
	double  r8;
	double  r9;
	double  r10;
	double  r11;
	double  c1;
	double  c2;
	double  c3;
	double  c4;
	double  v1;
	double  v2;
	double  v3;
	double  vP;
	int     f0;
	int     f1;
	int     f2;
	int     f3;
	int     f4;
	int     f5;
};


struct discrete_op_amp_filt_info
{
	double  r1;
	double  r2;
	double  r3;
	double  r4;
	double  rF;
	double  c1;
	double  c2;
	double  c3;
	double  vRef;
	double  vP;
	double  vN;
};


#define DEFAULT_555_CHARGE      -1
#define DEFAULT_555_HIGH        -1
#define DEFAULT_555_VALUES      DEFAULT_555_CHARGE, DEFAULT_555_HIGH

struct discrete_555_desc
{
	int     options;    /* bit mapped options */
	double  v_pos;      /* B+ voltage of 555 */
	double  v_charge;   /* voltage to charge circuit  (Defaults to v_pos) */
	double  v_out_high; /* High output voltage of 555 (Defaults to v_pos - 1.2V) */
};

#define DEFAULT_555_CC_SOURCE   DEFAULT_555_CHARGE

struct discrete_555_cc_desc
{
	int     options;        /* bit mapped options */
	double  v_pos;          /* B+ voltage of 555 */
	double  v_cc_source;    /* Voltage of the Constant Current source */
	double  v_out_high;     /* High output voltage of 555 (Defaults to v_pos - 1.2V) */
	double  v_cc_junction;  /* The voltage drop of the Constant Current source transistor (0 if Op Amp) */
};


struct discrete_555_vco1_desc
{
	int    options;             /* bit mapped options */
	double r1, r2, r3, r4, c;
	double v_pos;               /* B+ voltage of 555 */
	double v_charge;            /* (ignored) */
	double v_out_high;          /* High output voltage of 555 (Defaults to v_pos - 1.2V) */
};


struct discrete_adsr
{
	double attack_time;  /* All times are in seconds */
	double attack_value;
	double decay_time;
	double decay_value;
	double sustain_time;
	double sustain_value;
	double release_time;
	double release_value;
};


/*************************************
 *
 *  The node numbers themselves
 *
 *************************************/

#define NODE0_DEF(_x) NODE_ ## 0 ## _x = (0x40000000 + (_x) * DISCRETE_MAX_OUTPUTS), \
	NODE_ ## 0 ## _x ## _00 = NODE_ ## 0 ## _x, NODE_ ## 0 ## _x ## _01, NODE_ ## 0 ## _x ## _02, NODE_ ## 0 ## _x ## _03, \
	NODE_ ## 0 ## _x ## _04, NODE_ ## 0 ## _x ## _05, NODE_ ## 0 ## _x ## _06, NODE_ ## 0 ## _x ## _07
#define NODE_DEF(_x) NODE_ ## _x = (0x40000000 + (_x) * DISCRETE_MAX_OUTPUTS), \
	NODE_ ## _x ## _00 = NODE_ ## _x, NODE_ ## _x ## _01, NODE_ ## _x ## _02, NODE_ ## _x ## _03, \
	NODE_ ## _x ## _04, NODE_ ## _x ## _05, NODE_ ## _x ## _06, NODE_ ## _x ## _07

enum {
	NODE0_DEF(0), NODE0_DEF(1), NODE0_DEF(2), NODE0_DEF(3), NODE0_DEF(4), NODE0_DEF(5), NODE0_DEF(6), NODE0_DEF(7), NODE0_DEF(8), NODE0_DEF(9),
	NODE_DEF(10), NODE_DEF(11), NODE_DEF(12), NODE_DEF(13), NODE_DEF(14), NODE_DEF(15), NODE_DEF(16), NODE_DEF(17), NODE_DEF(18), NODE_DEF(19),
	NODE_DEF(20), NODE_DEF(21), NODE_DEF(22), NODE_DEF(23), NODE_DEF(24), NODE_DEF(25), NODE_DEF(26), NODE_DEF(27), NODE_DEF(28), NODE_DEF(29),
	NODE_DEF(30), NODE_DEF(31), NODE_DEF(32), NODE_DEF(33), NODE_DEF(34), NODE_DEF(35), NODE_DEF(36), NODE_DEF(37), NODE_DEF(38), NODE_DEF(39),
	NODE_DEF(40), NODE_DEF(41), NODE_DEF(42), NODE_DEF(43), NODE_DEF(44), NODE_DEF(45), NODE_DEF(46), NODE_DEF(47), NODE_DEF(48), NODE_DEF(49),
	NODE_DEF(50), NODE_DEF(51), NODE_DEF(52), NODE_DEF(53), NODE_DEF(54), NODE_DEF(55), NODE_DEF(56), NODE_DEF(57), NODE_DEF(58), NODE_DEF(59),
	NODE_DEF(60), NODE_DEF(61), NODE_DEF(62), NODE_DEF(63), NODE_DEF(64), NODE_DEF(65), NODE_DEF(66), NODE_DEF(67), NODE_DEF(68), NODE_DEF(69),
	NODE_DEF(70), NODE_DEF(71), NODE_DEF(72), NODE_DEF(73), NODE_DEF(74), NODE_DEF(75), NODE_DEF(76), NODE_DEF(77), NODE_DEF(78), NODE_DEF(79),
	NODE_DEF(80), NODE_DEF(81), NODE_DEF(82), NODE_DEF(83), NODE_DEF(84), NODE_DEF(85), NODE_DEF(86), NODE_DEF(87), NODE_DEF(88), NODE_DEF(89),
	NODE_DEF(90), NODE_DEF(91), NODE_DEF(92), NODE_DEF(93), NODE_DEF(94), NODE_DEF(95), NODE_DEF(96), NODE_DEF(97), NODE_DEF(98), NODE_DEF(99),
	NODE_DEF(100),NODE_DEF(101),NODE_DEF(102),NODE_DEF(103),NODE_DEF(104),NODE_DEF(105),NODE_DEF(106),NODE_DEF(107),NODE_DEF(108),NODE_DEF(109),
	NODE_DEF(110),NODE_DEF(111),NODE_DEF(112),NODE_DEF(113),NODE_DEF(114),NODE_DEF(115),NODE_DEF(116),NODE_DEF(117),NODE_DEF(118),NODE_DEF(119),
	NODE_DEF(120),NODE_DEF(121),NODE_DEF(122),NODE_DEF(123),NODE_DEF(124),NODE_DEF(125),NODE_DEF(126),NODE_DEF(127),NODE_DEF(128),NODE_DEF(129),
	NODE_DEF(130),NODE_DEF(131),NODE_DEF(132),NODE_DEF(133),NODE_DEF(134),NODE_DEF(135),NODE_DEF(136),NODE_DEF(137),NODE_DEF(138),NODE_DEF(139),
	NODE_DEF(140),NODE_DEF(141),NODE_DEF(142),NODE_DEF(143),NODE_DEF(144),NODE_DEF(145),NODE_DEF(146),NODE_DEF(147),NODE_DEF(148),NODE_DEF(149),
	NODE_DEF(150),NODE_DEF(151),NODE_DEF(152),NODE_DEF(153),NODE_DEF(154),NODE_DEF(155),NODE_DEF(156),NODE_DEF(157),NODE_DEF(158),NODE_DEF(159),
	NODE_DEF(160),NODE_DEF(161),NODE_DEF(162),NODE_DEF(163),NODE_DEF(164),NODE_DEF(165),NODE_DEF(166),NODE_DEF(167),NODE_DEF(168),NODE_DEF(169),
	NODE_DEF(170),NODE_DEF(171),NODE_DEF(172),NODE_DEF(173),NODE_DEF(174),NODE_DEF(175),NODE_DEF(176),NODE_DEF(177),NODE_DEF(178),NODE_DEF(179),
	NODE_DEF(180),NODE_DEF(181),NODE_DEF(182),NODE_DEF(183),NODE_DEF(184),NODE_DEF(185),NODE_DEF(186),NODE_DEF(187),NODE_DEF(188),NODE_DEF(189),
	NODE_DEF(190),NODE_DEF(191),NODE_DEF(192),NODE_DEF(193),NODE_DEF(194),NODE_DEF(195),NODE_DEF(196),NODE_DEF(197),NODE_DEF(198),NODE_DEF(199),
	NODE_DEF(200),NODE_DEF(201),NODE_DEF(202),NODE_DEF(203),NODE_DEF(204),NODE_DEF(205),NODE_DEF(206),NODE_DEF(207),NODE_DEF(208),NODE_DEF(209),
	NODE_DEF(210),NODE_DEF(211),NODE_DEF(212),NODE_DEF(213),NODE_DEF(214),NODE_DEF(215),NODE_DEF(216),NODE_DEF(217),NODE_DEF(218),NODE_DEF(219),
	NODE_DEF(220),NODE_DEF(221),NODE_DEF(222),NODE_DEF(223),NODE_DEF(224),NODE_DEF(225),NODE_DEF(226),NODE_DEF(227),NODE_DEF(228),NODE_DEF(229),
	NODE_DEF(230),NODE_DEF(231),NODE_DEF(232),NODE_DEF(233),NODE_DEF(234),NODE_DEF(235),NODE_DEF(236),NODE_DEF(237),NODE_DEF(238),NODE_DEF(239),
	NODE_DEF(240),NODE_DEF(241),NODE_DEF(242),NODE_DEF(243),NODE_DEF(244),NODE_DEF(245),NODE_DEF(246),NODE_DEF(247),NODE_DEF(248),NODE_DEF(249),
	NODE_DEF(250),NODE_DEF(251),NODE_DEF(252),NODE_DEF(253),NODE_DEF(254),NODE_DEF(255),NODE_DEF(256),NODE_DEF(257),NODE_DEF(258),NODE_DEF(259),
	NODE_DEF(260),NODE_DEF(261),NODE_DEF(262),NODE_DEF(263),NODE_DEF(264),NODE_DEF(265),NODE_DEF(266),NODE_DEF(267),NODE_DEF(268),NODE_DEF(269),
	NODE_DEF(270),NODE_DEF(271),NODE_DEF(272),NODE_DEF(273),NODE_DEF(274),NODE_DEF(275),NODE_DEF(276),NODE_DEF(277),NODE_DEF(278),NODE_DEF(279),
	NODE_DEF(280),NODE_DEF(281),NODE_DEF(282),NODE_DEF(283),NODE_DEF(284),NODE_DEF(285),NODE_DEF(286),NODE_DEF(287),NODE_DEF(288),NODE_DEF(289),
	NODE_DEF(290),NODE_DEF(291),NODE_DEF(292),NODE_DEF(293),NODE_DEF(294),NODE_DEF(295),NODE_DEF(296),NODE_DEF(297),NODE_DEF(298),NODE_DEF(299)
};

/* Some Pre-defined nodes for convenience */

#define NODE(_x)    (NODE_00 + (_x) * DISCRETE_MAX_OUTPUTS)
#define NODE_SUB(_x, _y) ((_x) + (_y))

#if DISCRETE_MAX_OUTPUTS == 8
#define NODE_CHILD_NODE_NUM(_x)     ((int)(_x) & 7)
#define NODE_DEFAULT_NODE(_x)       ((int)(_x) & ~7)
#define NODE_INDEX(_x)              (((int)(_x) - NODE_START)>>3)
#else
#error "DISCRETE_MAX_OUTPUTS != 8"
#endif

#define NODE_RELATIVE(_x, _y) (NODE(NODE_INDEX(_x) + (_y)))

#define NODE_NC  NODE_00
#define NODE_SPECIAL  NODE(DISCRETE_MAX_NODES)

#define NODE_START  NODE_00
#define NODE_END    NODE_SPECIAL

#define IS_VALUE_A_NODE(val)    (((val) > NODE_START) && ((val) <= NODE_END))

// Optional node such as used in CR_FILTER
#define OPT_NODE(val)   (int) val
/*************************************
 *
 *  Enumerated values for Node types
 *  in the simulation
 *
 *      DSS - Discrete Sound Source
 *      DST - Discrete Sound Transform
 *      DSD - Discrete Sound Device
 *      DSO - Discrete Sound Output
 *
 *************************************/

enum discrete_node_type
{
	DSS_NULL,           /* Nothing, nill, zippo, only to be used as terminating node */
	DSS_NOP,            /* just do nothing, placeholder for potential DISCRETE_REPLACE in parent block */

	/* standard node */

	DSS_NODE,           /* a standard node */

	/* Custom */
	DST_CUSTOM,         /* whatever you want */

	/* Debugging */
	DSO_CSVLOG,         /* Dump nodes as csv file */
	DSO_WAVLOG,     /* Dump nodes as wav file */

	/* Parallel execution */
	DSO_TASK_START, /* start of parallel task */
	DSO_TASK_END,   /* end of parallel task */

	/* Output Node -- this must be the last entry in this enum! */
	DSO_OUTPUT,         /* The final output node */

	/* Import another blocklist */
	DSO_IMPORT,         /* import from another discrete block */
	DSO_REPLACE,        /* replace next node */
	DSO_DELETE,         /* delete nodes */

	/* Marks end of this enum -- must be last entry ! */
	DSO_LAST
};

/*************************************
 *
 *  Forward declarations
 *
 *************************************/

struct discrete_block;
class discrete_node_base_factory;
class discrete_task;
class discrete_base_node;
class discrete_dss_input_stream_node;
class discrete_device;
typedef vector_t<discrete_base_node *> node_list_t;
typedef vector_t<discrete_dss_input_stream_node *> istream_node_list_t;
typedef vector_t<discrete_task *> task_list_t;


/*************************************
 *
 *  Discrete module definition
 *
 *************************************/


/*************************************
 *
 *  The discrete sound blocks as
 *  defined in the drivers
 *
 *************************************/

struct discrete_block
{
	int             node;                           /* Output node number */
	discrete_base_node *(*factory)(discrete_device * pdev, const discrete_block *block);
	int             type;                           /* see defines below */
	int             active_inputs;                  /* Number of active inputs on this node type */
	int             input_node[DISCRETE_MAX_INPUTS];/* input/control nodes */
	double          initial[DISCRETE_MAX_INPUTS];   /* Initial values */
	const void *    custom;                         /* Custom function specific initialisation data */
	const char *    name;                           /* Node Name */
	const char *    mod_name;                       /* Module / class name */
};
typedef vector_t<const discrete_block *> sound_block_list_t;

/*************************************
 *
 *  Node interfaces
 *
 *************************************/

class discrete_step_interface
{
public:
	virtual ~discrete_step_interface() { }

	virtual void step(void) = 0;
	osd_ticks_t         run_time;
	discrete_base_node *    self;
};
typedef vector_t<discrete_step_interface *> node_step_list_t;

class discrete_input_interface
{
public:
	virtual ~discrete_input_interface() { }

	virtual void input_write(int sub_node, uint8_t data ) = 0;
};

class discrete_sound_output_interface
{
public:
	virtual ~discrete_sound_output_interface() { }

	virtual void set_output_ptr(stream_sample_t *ptr) = 0;
};

//**************************************************************************
//  INTERFACE CONFIGURATION MACROS
//**************************************************************************

#define MCFG_DISCRETE_INTF(_intf) \
		downcast<discrete_device &>(*device).set_intf(_intf);

//**************************************************************************
//  TYPE DEFINITIONS
//**************************************************************************

class discrete_sound_output_interface;
typedef vector_t<discrete_sound_output_interface *> node_output_list_t;


// ======================> discrete_device

class discrete_device : public device_t
{
	//friend class discrete_base_node;

protected:
	// construction/destruction
	discrete_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock);

public:
	// inline configuration helpers
	void set_intf(const discrete_block *intf) { m_intf = intf; }

	DECLARE_READ8_MEMBER(read);
	DECLARE_WRITE8_MEMBER(write);
	virtual ~discrete_device(void);

	template<int DiscreteInput>
	DECLARE_WRITE_LINE_MEMBER(write_line)
	{
		write(machine().dummy_space(), DiscreteInput, state ? 1 : 0);
	}

	/* --------------------------------- */

	virtual void update_to_current_time(void) const {  }

	/* process a number of samples */
	void process(int samples);

	/* access to the discrete_logging facility */
	void CLIB_DECL discrete_log(const char *text, ...) const ATTR_PRINTF(2,3);

	/* get pointer to a info struct node ref */
	const double *node_output_ptr(int onode);

	/* FIXME: this is used by csv and wav logs - going forward, identifiers should be explicitly passed */
	int same_module_index(const discrete_base_node &node);

	/* get node */
	discrete_base_node *discrete_find_node(int node);

	/* are we profiling */
	inline int profiling(void) { return m_profiling; }

	inline int sample_rate(void) { return m_sample_rate; }
	inline double sample_time(void) { return m_sample_time; }


protected:

	// device-level overrides
	virtual void device_start() override;
	virtual void device_reset() override;
	virtual void device_stop() override;

	// configuration state
	const discrete_block *m_intf;

	// internal state

	/* --------------------------------- */

	/* emulation info */
	int                 m_sample_rate;
	double              m_sample_time;
	double              m_neg_sample_time;

	/* list of all nodes */
	node_list_t             m_node_list;        /* node_description * */

private:
	void discrete_build_list(const discrete_block *intf, sound_block_list_t &block_list);
	void discrete_sanity_check(const sound_block_list_t &block_list);
	void display_profiling(void);
	void init_nodes(const sound_block_list_t &block_list);

	/* internal node tracking */
	discrete_base_node **   m_indexed_node;

	/* tasks */
	task_list_t             task_list;      /* discrete_task_context * */

	/* debugging statistics */
	FILE *                  m_disclogfile;

	/* parallel tasks */
	osd_work_queue *        m_queue;

	/* profiling */
	int                     m_profiling;
	uint64_t                  m_total_samples;
	uint64_t                  m_total_stream_updates;
};

// ======================> discrete_sound_device

class discrete_sound_device :   public discrete_device,
								public device_sound_interface
{
public:
	// construction/destruction
	discrete_sound_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock, const discrete_block *intf)
		: discrete_sound_device(mconfig, tag, owner, clock)
	{
		set_intf(intf);
	}
	discrete_sound_device(const machine_config &mconfig, const char *tag, device_t *owner, const discrete_block *intf)
		: discrete_sound_device(mconfig, tag, owner, uint32_t(0))
	{
		set_intf(intf);
	}
	discrete_sound_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock = 0);
	virtual ~discrete_sound_device(void) { };

	/* --------------------------------- */

	virtual void update_to_current_time(void) const override { m_stream->update(); }

	sound_stream *get_stream(void) { return m_stream; }
protected:

	// device-level overrides
	virtual void device_start() override;
	virtual void device_reset() override;

	// device_sound_interface overrides
	virtual void sound_stream_update(sound_stream &stream, stream_sample_t **inputs, stream_sample_t **outputs, int samples) override;

private:
	/* the output stream */
	sound_stream        *m_stream;

	/* the input streams */
	istream_node_list_t     m_input_stream_list;
	/* output node tracking */
	node_output_list_t      m_output_list;
};

// device type definition
DECLARE_DEVICE_TYPE(DISCRETE, discrete_sound_device)

/*************************************
 *
 *  Node class
 *
 *************************************/

class discrete_base_node
{
	friend class discrete_device;
	template <class C> friend class discrete_node_factory;
	friend class discrete_task;

public:

	virtual void reset(void) { }
	virtual void start(void) { }
	virtual void stop(void) { }
	virtual void save_state(void);

	virtual int max_output(void) { return 1; };

	inline bool interface(discrete_step_interface *&intf) const { intf = m_step_intf; return (intf != nullptr); }
	inline bool interface(discrete_input_interface *&intf) const { intf = m_input_intf; return (intf != nullptr); }
	inline bool interface(discrete_sound_output_interface *&intf) const { intf = m_output_intf; return (intf != nullptr); }

	/* get the input value from node #n */
	inline double input(int n) { return *(m_input[n]); }

	/* set an output */
	inline void set_output(int n, double val) { m_output[n] = val; }

	/* Return the node index, i.e. X from NODE(X) */
	inline int index(void) { return NODE_INDEX(m_block->node); }

	/* Return the node number, i.e. NODE(X) */
	inline int block_node(void) const { return m_block->node;  }

	/* Custom function specific initialisation data */
	inline const void *custom_data(void) { return m_custom; }

	inline int input_node(int inputnum) { return m_block->input_node[inputnum]; }

	/* Number of active inputs on this node type */
	inline int          active_inputs(void) { return m_active_inputs; }
	/* Bit Flags.  1 in bit location means input_is_node */
	inline int          input_is_node(void) { return m_input_is_node; }

	inline double       sample_time(void) { return m_device->sample_time(); }
	inline int          sample_rate(void) { return m_device->sample_rate(); }

	const char *        module_name(void) { return m_block->mod_name; }
	inline int          module_type(void) const { return m_block->type; }

protected:

	discrete_base_node();
	virtual ~discrete_base_node();

	/* finish node setup after allocation is complete */
	void init(discrete_device * pdev, const discrete_block *block);

	void resolve_input_nodes(void);

	double                          m_output[DISCRETE_MAX_OUTPUTS];     /* The node's last output value */
	const double *                  m_input[DISCRETE_MAX_INPUTS];       /* Addresses of Input values */
	discrete_device *               m_device;                           /* Points to the parent */

private:

	const discrete_block *  m_block;                            /* Points to the node's setup block. */
	int                             m_active_inputs;                    /* Number of active inputs on this node type */

	const void *                    m_custom;                           /* Custom function specific initialisation data */
	int                             m_input_is_node;

	discrete_step_interface *       m_step_intf;
	discrete_input_interface *      m_input_intf;
	discrete_sound_output_interface *       m_output_intf;
};

class discrete_node_base_factory
{
public:
	virtual discrete_base_node *Create(discrete_device * pdev, const discrete_block *block) = 0;
	virtual ~discrete_node_base_factory() {}
};

template <class C>
class discrete_node_factory : public discrete_node_base_factory
{
public:
	discrete_base_node *Create(discrete_device * pdev, const discrete_block *block) override;
};

template <class C>
discrete_base_node * discrete_node_factory<C>::Create(discrete_device * pdev, const discrete_block *block)
{
	discrete_base_node *r = auto_alloc_clear(pdev->machine(), <C>());

	r->init(pdev, block);
	return r;
}

/*************************************
 *
 *  Class definitions for nodes
 *
 *************************************/

#include "disc_cls.h"

/*************************************
 *
 *  Encapsulation macros for defining
 *  your simulation
 *
 *************************************/

template <class C>
discrete_base_node *discrete_create_node(discrete_device * pdev, const discrete_block *block)
{
	return discrete_node_factory< C >().Create(pdev, block);
}

#define DISCRETE_SOUND_EXTERN(name) extern const discrete_block name[]
#define DISCRETE_SOUND_START(name) const discrete_block name[] = {
//#define DSC_SND_ENTRY(_nod, _class, _dss, _num, _iact, _iinit, _custom, _name) { _nod,  new discrete_node_factory< DISCRETE_CLASS_NAME(_class) >, _dss, _num, _iact, _iinit, _custom, _name, # _class }
#define DSC_SND_ENTRY(_nod, _class, _dss, _num, _iact, _iinit, _custom, _name) { _nod,  &discrete_create_node< DISCRETE_CLASS_NAME(_class) >, _dss, _num, _iact, _iinit, _custom, _name, # _class }


#define DISCRETE_SOUND_END                                              DSC_SND_ENTRY( NODE_00, special, DSS_NULL     , 0, DSE( NODE_NC ), DSE( 0 ) ,nullptr  ,"DISCRETE_SOUND_END" )  };
#define DSE( ... ) { __VA_ARGS__ }

/*      Module Name                                                       out,  enum value,      #in,   {variable inputs},              {static inputs},    data pointer,   "name" */

/* from disc_inp.inc */
#define DISCRETE_ADJUSTMENT(NODE,MIN,MAX,LOGLIN,TAG)                    DSC_SND_ENTRY( NODE, dss_adjustment  , DSS_NODE        , 6, DSE( NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( MIN,MAX,LOGLIN,0   ,0   ,100  ), TAG   , "DISCRETE_ADJUSTMENT" ),
#define DISCRETE_ADJUSTMENTX(NODE,MIN,MAX,LOGLIN,TAG,PMIN,PMAX)         DSC_SND_ENTRY( NODE, dss_adjustment  , DSS_NODE        , 6, DSE( NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( MIN,MAX,LOGLIN,0   ,PMIN,PMAX ), TAG   , "DISCRETE_ADJUSTMENTX"  ),
#define DISCRETE_CONSTANT(NODE,CONST)                                   DSC_SND_ENTRY( NODE, dss_constant    , DSS_NODE        , 1, DSE( NODE_NC ), DSE( CONST ) ,nullptr  ,"DISCRETE_CONSTANT" ),
#define DISCRETE_INPUT_DATA(NODE)                                       DSC_SND_ENTRY( NODE, dss_input_data  , DSS_NODE        , 3, DSE( NODE_NC,NODE_NC,NODE_NC ), DSE( 1,0,0 ), nullptr, "DISCRETE_INPUT_DATA" ),
#define DISCRETE_INPUTX_DATA(NODE,GAIN,OFFSET,INIT)                     DSC_SND_ENTRY( NODE, dss_input_data  , DSS_NODE        , 3, DSE( NODE_NC,NODE_NC,NODE_NC ), DSE( GAIN,OFFSET,INIT ), nullptr, "DISCRETE_INPUTX_DATA" ),
#define DISCRETE_INPUT_LOGIC(NODE)                                      DSC_SND_ENTRY( NODE, dss_input_logic , DSS_NODE        , 3, DSE( NODE_NC,NODE_NC,NODE_NC ), DSE( 1,0,0 ), nullptr, "DISCRETE_INPUT_LOGIC" ),
#define DISCRETE_INPUTX_LOGIC(NODE,GAIN,OFFSET,INIT)                    DSC_SND_ENTRY( NODE, dss_input_logic , DSS_NODE        , 3, DSE( NODE_NC,NODE_NC,NODE_NC ), DSE( GAIN,OFFSET,INIT ), nullptr, "DISCRETE_INPUTX_LOGIC" ),
#define DISCRETE_INPUT_NOT(NODE)                                        DSC_SND_ENTRY( NODE, dss_input_not   , DSS_NODE        , 3, DSE( NODE_NC,NODE_NC,NODE_NC ), DSE( 1,0,0 ), nullptr, "DISCRETE_INPUT_NOT" ),
#define DISCRETE_INPUTX_NOT(NODE,GAIN,OFFSET,INIT)                      DSC_SND_ENTRY( NODE, dss_input_not   , DSS_NODE        , 3, DSE( NODE_NC,NODE_NC,NODE_NC ), DSE( GAIN,OFFSET,INIT ), nullptr, "DISCRETE_INPUTX_NOT" ),
#define DISCRETE_INPUT_PULSE(NODE,INIT)                                 DSC_SND_ENTRY( NODE, dss_input_pulse , DSS_NODE        , 3, DSE( NODE_NC,NODE_NC,NODE_NC ), DSE( 1,0,INIT ), nullptr, "DISCRETE_INPUT_PULSE" ),

#define DISCRETE_INPUT_STREAM(NODE, NUM)                                DSC_SND_ENTRY( NODE, dss_input_stream, DSS_NODE        , 3, DSE( static_cast<int>(NUM),NODE_NC,NODE_NC ), DSE( NUM,1,0 ), nullptr, "DISCRETE_INPUT_STREAM" ),
#define DISCRETE_INPUTX_STREAM(NODE, NUM, GAIN,OFFSET)                  DSC_SND_ENTRY( NODE, dss_input_stream, DSS_NODE        , 3, DSE( static_cast<int>(NUM),NODE_NC,NODE_NC ), DSE( NUM,GAIN,OFFSET ), nullptr, "DISCRETE_INPUTX_STREAM" ),

#define DISCRETE_INPUT_BUFFER(NODE, NUM)                                DSC_SND_ENTRY( NODE, dss_input_buffer, DSS_NODE        , 3, DSE( static_cast<int>(NUM),NODE_NC,NODE_NC ), DSE( NUM,1,0 ), nullptr, "DISCRETE_INPUT_BUFFER" ),

/* from disc_wav.inc */
/* generic modules */
#define DISCRETE_COUNTER(NODE,ENAB,RESET,CLK,MIN,MAX,DIR,INIT0,CLKTYPE) DSC_SND_ENTRY( NODE, dss_counter     , DSS_NODE        , 8, DSE( static_cast<int>(ENAB),static_cast<int>(RESET),static_cast<int>(CLK),NODE_NC,NODE_NC,static_cast<int>(DIR),static_cast<int>(INIT0),NODE_NC ), DSE( ENAB,RESET,CLK,MIN,MAX,DIR,INIT0,CLKTYPE ), nullptr, "DISCRETE_COUNTER" ),
#define DISCRETE_COUNTER_7492(NODE,ENAB,RESET,CLK,CLKTYPE)              DSC_SND_ENTRY( NODE, dss_counter     , DSS_NODE        , 8, DSE( static_cast<int>(ENAB),static_cast<int>(RESET),static_cast<int>(CLK),NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,RESET,CLK,CLKTYPE,0,1,0,DISC_COUNTER_IS_7492 ), nullptr, "DISCRETE_COUNTER_7492" ),
#define DISCRETE_LFSR_NOISE(NODE,ENAB,RESET,CLK,AMPL,FEED,BIAS,LFSRTB)  DSC_SND_ENTRY( NODE, dss_lfsr_noise  , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(RESET),static_cast<int>(CLK),static_cast<int>(AMPL),static_cast<int>(FEED),static_cast<int>(BIAS) ), DSE( ENAB,RESET,CLK,AMPL,FEED,BIAS ), LFSRTB, "DISCRETE_LFSR_NOISE" ),
#define DISCRETE_NOISE(NODE,ENAB,FREQ,AMPL,BIAS)                        DSC_SND_ENTRY( NODE, dss_noise       , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(FREQ),static_cast<int>(AMPL),static_cast<int>(BIAS) ), DSE( ENAB,FREQ,AMPL,BIAS ), nullptr, "DISCRETE_NOISE" ),
#define DISCRETE_NOTE(NODE,ENAB,CLK,DATA,MAX1,MAX2,CLKTYPE)             DSC_SND_ENTRY( NODE, dss_note        , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(CLK),static_cast<int>(DATA),NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,CLK,DATA,MAX1,MAX2,CLKTYPE ), nullptr, "DISCRETE_NOTE" ),
#define DISCRETE_SAWTOOTHWAVE(NODE,ENAB,FREQ,AMPL,BIAS,GRAD,PHASE)      DSC_SND_ENTRY( NODE, dss_sawtoothwave, DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(FREQ),static_cast<int>(AMPL),static_cast<int>(BIAS),NODE_NC,NODE_NC ), DSE( ENAB,FREQ,AMPL,BIAS,GRAD,PHASE ), nullptr, "DISCRETE_SAWTOOTHWAVE" ),
#define DISCRETE_SINEWAVE(NODE,ENAB,FREQ,AMPL,BIAS,PHASE)               DSC_SND_ENTRY( NODE, dss_sinewave    , DSS_NODE        , 5, DSE( static_cast<int>(ENAB),static_cast<int>(FREQ),static_cast<int>(AMPL),static_cast<int>(BIAS),NODE_NC ), DSE( ENAB,FREQ,AMPL,BIAS,PHASE ), nullptr, "DISCRETE_SINEWAVE" ),
#define DISCRETE_SQUAREWAVE(NODE,ENAB,FREQ,AMPL,DUTY,BIAS,PHASE)        DSC_SND_ENTRY( NODE, dss_squarewave  , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(FREQ),static_cast<int>(AMPL),static_cast<int>(DUTY),static_cast<int>(BIAS),NODE_NC ), DSE( ENAB,FREQ,AMPL,DUTY,BIAS,PHASE ), nullptr, "DISCRETE_SQUAREWAVE" ),
#define DISCRETE_SQUAREWFIX(NODE,ENAB,FREQ,AMPL,DUTY,BIAS,PHASE)        DSC_SND_ENTRY( NODE, dss_squarewfix  , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(FREQ),static_cast<int>(AMPL),static_cast<int>(DUTY),static_cast<int>(BIAS),NODE_NC ), DSE( ENAB,FREQ,AMPL,DUTY,BIAS,PHASE ), nullptr, "DISCRETE_SQUAREWFIX" ),
#define DISCRETE_SQUAREWAVE2(NODE,ENAB,AMPL,T_OFF,T_ON,BIAS,TSHIFT)     DSC_SND_ENTRY( NODE, dss_squarewave2 , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(AMPL),static_cast<int>(T_OFF),static_cast<int>(T_ON),static_cast<int>(BIAS),NODE_NC ), DSE( ENAB,AMPL,T_OFF,T_ON,BIAS,TSHIFT ), nullptr, "DISCRETE_SQUAREWAVE2" ),
#define DISCRETE_TRIANGLEWAVE(NODE,ENAB,FREQ,AMPL,BIAS,PHASE)           DSC_SND_ENTRY( NODE, dss_trianglewave, DSS_NODE        , 5, DSE( static_cast<int>(ENAB),static_cast<int>(FREQ),static_cast<int>(AMPL),static_cast<int>(BIAS),NODE_NC ), DSE( ENAB,FREQ,AMPL,BIAS,PHASE ), nullptr, "DISCRETE_TRIANGLEWAVE" ),
/* Component specific */
#define DISCRETE_INVERTER_OSC(NODE,ENAB,MOD,RCHARGE,RP,C,R2,INFO)       DSC_SND_ENTRY( NODE, dss_inverter_osc, DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(MOD),NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,MOD,RCHARGE,RP,C,R2 ), INFO, "DISCRETE_INVERTER_OSC" ),
#define DISCRETE_OP_AMP_OSCILLATOR(NODE,ENAB,INFO)                      DSC_SND_ENTRY( NODE, dss_op_amp_osc  , DSS_NODE        , 1, DSE( static_cast<int>(ENAB) ), DSE( ENAB ), INFO, "DISCRETE_OP_AMP_OSCILLATOR" ),
#define DISCRETE_OP_AMP_VCO1(NODE,ENAB,VMOD1,INFO)                      DSC_SND_ENTRY( NODE, dss_op_amp_osc  , DSS_NODE        , 2, DSE( static_cast<int>(ENAB),static_cast<int>(VMOD1) ), DSE( ENAB,VMOD1 ), INFO, "DISCRETE_OP_AMP_VCO1" ),
#define DISCRETE_OP_AMP_VCO2(NODE,ENAB,VMOD1,VMOD2,INFO)                DSC_SND_ENTRY( NODE, dss_op_amp_osc  , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(VMOD1),static_cast<int>(VMOD2) ), DSE( ENAB,VMOD1,VMOD2 ), INFO, "DISCRETE_OP_AMP_VCO2" ),
#define DISCRETE_SCHMITT_OSCILLATOR(NODE,ENAB,INP0,AMPL,TABLE)          DSC_SND_ENTRY( NODE, dss_schmitt_osc , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),static_cast<int>(AMPL) ), DSE( ENAB,INP0,AMPL ), TABLE, "DISCRETE_SCHMITT_OSCILLATOR" ),
/* Not yet implemented */
#define DISCRETE_ADSR_ENV(NODE,ENAB,TRIGGER,GAIN,ADSRTB)                DSC_SND_ENTRY( NODE, dss_adsr        , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(TRIGGER),static_cast<int>(GAIN) ), DSE( ENAB,TRIGGER,GAIN ), ADSRTB, "DISCRETE_ADSR_ENV" ),

/* from disc_mth.inc */
/* generic modules */
#define DISCRETE_ADDER2(NODE,ENAB,INP0,INP1)                            DSC_SND_ENTRY( NODE, dst_adder       , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),static_cast<int>(INP1) ), DSE( ENAB,INP0,INP1 ), nullptr, "DISCRETE_ADDER2" ),
#define DISCRETE_ADDER3(NODE,ENAB,INP0,INP1,INP2)                       DSC_SND_ENTRY( NODE, dst_adder       , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2) ), DSE( ENAB,INP0,INP1,INP2 ), nullptr, "DISCRETE_ADDER3" ),
#define DISCRETE_ADDER4(NODE,ENAB,INP0,INP1,INP2,INP3)                  DSC_SND_ENTRY( NODE, dst_adder       , DSS_NODE        , 5, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3) ), DSE( ENAB,INP0,INP1,INP2,INP3 ), nullptr, "DISCRETE_ADDER4" ),
#define DISCRETE_CLAMP(NODE,INP0,MIN,MAX)                               DSC_SND_ENTRY( NODE, dst_clamp       , DSS_NODE        , 3, DSE( static_cast<int>(INP0),static_cast<int>(MIN),static_cast<int>(MAX) ), DSE( INP0,MIN,MAX ), nullptr, "DISCRETE_CLAMP" ),
#define DISCRETE_DIVIDE(NODE,ENAB,INP0,INP1)                            DSC_SND_ENTRY( NODE, dst_divide      , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),static_cast<int>(INP1) ), DSE( ENAB,INP0,INP1 ), nullptr, "DISCRETE_DIVIDE" ),
#define DISCRETE_GAIN(NODE,INP0,GAIN)                                   DSC_SND_ENTRY( NODE, dst_gain        , DSS_NODE        , 3, DSE( static_cast<int>(INP0),NODE_NC,NODE_NC ), DSE( INP0,GAIN,0 ), nullptr, "DISCRETE_GAIN" ),
#define DISCRETE_INVERT(NODE,INP0)                                      DSC_SND_ENTRY( NODE, dst_gain        , DSS_NODE        , 3, DSE( static_cast<int>(INP0),NODE_NC,NODE_NC ), DSE( INP0,-1,0 ), nullptr, "DISCRETE_INVERT" ),
#define DISCRETE_LOGIC_INVERT(NODE,INP0)                                DSC_SND_ENTRY( NODE, dst_logic_inv   , DSS_NODE        , 1, DSE( static_cast<int>(INP0) ), DSE( INP0 ), nullptr, "DISCRETE_LOGIC_INVERT" ),

#define DISCRETE_BIT_DECODE(NODE, INP, BIT_N, VOUT)                     DSC_SND_ENTRY( NODE, dst_bits_decode , DSS_NODE        , 4, DSE( static_cast<int>(INP),NODE_NC,NODE_NC,NODE_NC ), DSE( INP,BIT_N,BIT_N,VOUT ), nullptr, "DISCRETE_BIT_DECODE" ),
#define DISCRETE_BITS_DECODE(NODE, INP, BIT_FROM, BIT_TO, VOUT)         DSC_SND_ENTRY( NODE, dst_bits_decode , DSS_NODE        , 4, DSE( static_cast<int>(INP),NODE_NC,NODE_NC,NODE_NC ), DSE( INP,BIT_FROM,BIT_TO,VOUT ), nullptr, "DISCRETE_BITS_DECODE" ),

#define DISCRETE_LOGIC_AND(NODE,INP0,INP1)                              DSC_SND_ENTRY( NODE, dst_logic_and   , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC,NODE_NC ), DSE( INP0,INP1,1.0,1.0 ), nullptr, "DISCRETE_LOGIC_AND" ),
#define DISCRETE_LOGIC_AND3(NODE,INP0,INP1,INP2)                        DSC_SND_ENTRY( NODE, dst_logic_and   , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),NODE_NC ), DSE( INP0,INP1,INP2,1.0 ), nullptr, "DISCRETE_LOGIC_AND3" ),
#define DISCRETE_LOGIC_AND4(NODE,INP0,INP1,INP2,INP3)                   DSC_SND_ENTRY( NODE, dst_logic_and   , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3) ), DSE( INP0,INP1,INP2,INP3 ) ,nullptr, "DISCRETE_LOGIC_AND4" ),
#define DISCRETE_LOGIC_NAND(NODE,INP0,INP1)                             DSC_SND_ENTRY( NODE, dst_logic_nand  , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC,NODE_NC ), DSE( INP0,INP1,1.0,1.0 ), nullptr, "DISCRETE_LOGIC_NAND" ),
#define DISCRETE_LOGIC_NAND3(NODE,INP0,INP1,INP2)                       DSC_SND_ENTRY( NODE, dst_logic_nand  , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),NODE_NC ), DSE( INP0,INP1,INP2,1.0 ), nullptr, "DISCRETE_LOGIC_NAND3" ),
#define DISCRETE_LOGIC_NAND4(NODE,INP0,INP1,INP2,INP3)                  DSC_SND_ENTRY( NODE, dst_logic_nand  , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3) ), DSE( INP0,INP1,INP2,INP3 ), nullptr, ")DISCRETE_LOGIC_NAND4" ),
#define DISCRETE_LOGIC_OR(NODE,INP0,INP1)                               DSC_SND_ENTRY( NODE, dst_logic_or    , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC,NODE_NC ), DSE( INP0,INP1,0.0,0.0 ), nullptr, "DISCRETE_LOGIC_OR" ),
#define DISCRETE_LOGIC_OR3(NODE,INP0,INP1,INP2)                         DSC_SND_ENTRY( NODE, dst_logic_or    , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),NODE_NC ), DSE( INP0,INP1,INP2,0.0 ), nullptr, "DISCRETE_LOGIC_OR3" ),
#define DISCRETE_LOGIC_OR4(NODE,INP0,INP1,INP2,INP3)                    DSC_SND_ENTRY( NODE, dst_logic_or    , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3) ), DSE( INP0,INP1,INP2,INP3 ), nullptr, "DISCRETE_LOGIC_OR4" ),
#define DISCRETE_LOGIC_NOR(NODE,INP0,INP1)                              DSC_SND_ENTRY( NODE, dst_logic_nor   , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC,NODE_NC ), DSE( INP0,INP1,0.0,0.0 ), nullptr, "DISCRETE_LOGIC_NOR" ),
#define DISCRETE_LOGIC_NOR3(NODE,INP0,INP1,INP2)                        DSC_SND_ENTRY( NODE, dst_logic_nor   , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),NODE_NC ), DSE( INP0,INP1,INP2,0.0 ), nullptr, "DISCRETE_LOGIC_NOR3" ),
#define DISCRETE_LOGIC_NOR4(NODE,INP0,INP1,INP2,INP3)                   DSC_SND_ENTRY( NODE, dst_logic_nor   , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3) ), DSE( INP0,INP1,INP2,INP3 ), nullptr, "DISCRETE_LOGIC_NOR4" ),
#define DISCRETE_LOGIC_XOR(NODE,INP0,INP1)                              DSC_SND_ENTRY( NODE, dst_logic_xor   , DSS_NODE        , 2, DSE( static_cast<int>(INP0),static_cast<int>(INP1) ), DSE( INP0,INP1 ), nullptr, "DISCRETE_LOGIC_XOR" ),
#define DISCRETE_LOGIC_XNOR(NODE,INP0,INP1)                             DSC_SND_ENTRY( NODE, dst_logic_nxor  , DSS_NODE        , 2, DSE( static_cast<int>(INP0),static_cast<int>(INP1) ), DSE( INP0,INP1 ), nullptr, "DISCRETE_LOGIC_XNOR" ),
#define DISCRETE_LOGIC_DFLIPFLOP(NODE,RESET,SET,CLK,INP)                DSC_SND_ENTRY( NODE, dst_logic_dff   , DSS_NODE        , 4, DSE( static_cast<int>(RESET),static_cast<int>(SET),static_cast<int>(CLK),static_cast<int>(INP) ), DSE( RESET,SET,CLK,INP ), nullptr, "DISCRETE_LOGIC_DFLIPFLOP" ),
#define DISCRETE_LOGIC_JKFLIPFLOP(NODE,RESET,SET,CLK,J,K)               DSC_SND_ENTRY( NODE, dst_logic_jkff  , DSS_NODE        , 5, DSE( static_cast<int>(RESET),static_cast<int>(SET),static_cast<int>(CLK),static_cast<int>(J),static_cast<int>(K) ), DSE( RESET,SET,CLK,J,K ), nullptr, "DISCRETE_LOGIC_JKFLIPFLOP" ),
#define DISCRETE_LOGIC_SHIFT(NODE,INP0,RESET,CLK,SIZE,OPTIONS)          DSC_SND_ENTRY( NODE, dst_logic_shift , DSS_NODE        , 5, DSE( static_cast<int>(INP0),static_cast<int>(RESET),static_cast<int>(CLK),NODE_NC,NODE_NC ), DSE( INP0,RESET,CLK,SIZE,OPTIONS ), nullptr, "DISCRETE_LOGIC_SHIFT" ),
#define DISCRETE_LOOKUP_TABLE(NODE,ADDR,SIZE,TABLE)                     DSC_SND_ENTRY( NODE, dst_lookup_table, DSS_NODE        , 2, DSE( static_cast<int>(ADDR),NODE_NC ), DSE( ADDR,SIZE ), TABLE, "DISCRETE_LOOKUP_TABLE" ),
#define DISCRETE_MULTIPLEX2(NODE,ADDR,INP0,INP1)                        DSC_SND_ENTRY( NODE, dst_multiplex   , DSS_NODE        , 3, DSE( static_cast<int>(ADDR),static_cast<int>(INP0),static_cast<int>(INP1) ), DSE( ADDR,INP0,INP1 ), nullptr, "DISCRETE_MULTIPLEX2" ),
#define DISCRETE_MULTIPLEX4(NODE,ADDR,INP0,INP1,INP2,INP3)              DSC_SND_ENTRY( NODE, dst_multiplex   , DSS_NODE        , 5, DSE( static_cast<int>(ADDR),static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3) ), DSE( ADDR,INP0,INP1,INP2,INP3 ), nullptr, "DISCRETE_MULTIPLEX4" ),
#define DISCRETE_MULTIPLEX8(NODE,ADDR,INP0,INP1,INP2,INP3,INP4,INP5,INP6,INP7) DSC_SND_ENTRY( NODE, dst_multiplex, DSS_NODE    , 9, DSE( static_cast<int>(ADDR),static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3),static_cast<int>(INP4),static_cast<int>(INP5),static_cast<int>(INP6),static_cast<int>(INP7) ), DSE( ADDR,INP0,INP1,INP2,INP3,INP4,INP5,INP6,INP7 ), nullptr, "DISCRETE_MULTIPLEX8" ),
#define DISCRETE_MULTIPLY(NODE,INP0,INP1)                               DSC_SND_ENTRY( NODE, dst_gain        , DSS_NODE        , 3, DSE( static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC ), DSE( INP0,INP1,0 ), nullptr, "DISCRETE_MULTIPLY" ),
#define DISCRETE_MULTADD(NODE,INP0,INP1,INP2)                           DSC_SND_ENTRY( NODE, dst_gain        , DSS_NODE        , 3, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2) ), DSE( INP0,INP1,INP2 ), nullptr, "DISCRETE_MULTADD" ),
#define DISCRETE_ONESHOT(NODE,TRIG,AMPL,WIDTH,TYPE)                     DSC_SND_ENTRY( NODE, dst_oneshot     , DSS_NODE        , 5, DSE( 0,static_cast<int>(TRIG),static_cast<int>(AMPL),static_cast<int>(WIDTH),NODE_NC ), DSE( 0,TRIG,AMPL,WIDTH,TYPE ), nullptr, "DISCRETE_ONESHOT" ),
#define DISCRETE_ONESHOTR(NODE,RESET,TRIG,AMPL,WIDTH,TYPE)              DSC_SND_ENTRY( NODE, dst_oneshot     , DSS_NODE        , 5, DSE( static_cast<int>(RESET),static_cast<int>(TRIG),static_cast<int>(AMPL),static_cast<int>(WIDTH),NODE_NC ), DSE( RESET,TRIG,AMPL,WIDTH,TYPE ), nullptr, "One Shot Resetable" ),
#define DISCRETE_ONOFF(NODE,ENAB,INP0)                                  DSC_SND_ENTRY( NODE, dst_gain        , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC ), DSE( 0,1,0 ), nullptr, "DISCRETE_ONOFF" ),
#define DISCRETE_RAMP(NODE,ENAB,RAMP,GRAD,START,END,CLAMP)              DSC_SND_ENTRY( NODE, dst_ramp        , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(RAMP),static_cast<int>(GRAD),static_cast<int>(START),static_cast<int>(END),static_cast<int>(CLAMP) ), DSE( ENAB,RAMP,GRAD,START,END,CLAMP ), nullptr, "DISCRETE_RAMP" ),
#define DISCRETE_SAMPLHOLD(NODE,INP0,CLOCK,CLKTYPE)                     DSC_SND_ENTRY( NODE, dst_samphold    , DSS_NODE        , 3, DSE( static_cast<int>(INP0),static_cast<int>(CLOCK),NODE_NC ), DSE( INP0,CLOCK,CLKTYPE ), nullptr, "DISCRETE_SAMPLHOLD" ),
#define DISCRETE_SWITCH(NODE,ENAB,SWITCH,INP0,INP1)                     DSC_SND_ENTRY( NODE, dst_switch      , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(SWITCH),static_cast<int>(INP0),static_cast<int>(INP1) ), DSE( ENAB,SWITCH,INP0,INP1 ), nullptr, "DISCRETE_SWITCH" ),
#define DISCRETE_ASWITCH(NODE,CTRL,INP,THRESHOLD)                       DSC_SND_ENTRY( NODE, dst_aswitch     , DSS_NODE        , 3, DSE( static_cast<int>(CTRL),static_cast<int>(INP),static_cast<int>(THRESHOLD) ), DSE( CTRL,INP, THRESHOLD), nullptr, "Analog Switch" ),
#define DISCRETE_TRANSFORM2(NODE,INP0,INP1,FUNCT)                       DSC_SND_ENTRY( NODE, dst_transform   , DSS_NODE        , 2, DSE( static_cast<int>(INP0),static_cast<int>(INP1) ), DSE( INP0,INP1 ), FUNCT, "DISCRETE_TRANSFORM2" ),
#define DISCRETE_TRANSFORM3(NODE,INP0,INP1,INP2,FUNCT)                  DSC_SND_ENTRY( NODE, dst_transform   , DSS_NODE        , 3, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2) ), DSE( INP0,INP1,INP2 ), FUNCT, "DISCRETE_TRANSFORM3" ),
#define DISCRETE_TRANSFORM4(NODE,INP0,INP1,INP2,INP3,FUNCT)             DSC_SND_ENTRY( NODE, dst_transform   , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3) ), DSE( INP0,INP1,INP2,INP3 ), FUNCT, "DISCRETE_TRANSFORM4" ),
#define DISCRETE_TRANSFORM5(NODE,INP0,INP1,INP2,INP3,INP4,FUNCT)        DSC_SND_ENTRY( NODE, dst_transform   , DSS_NODE        , 5, DSE( static_cast<int>(INP0),static_cast<int>(INP1),static_cast<int>(INP2),static_cast<int>(INP3),static_cast<int>(INP4) ), DSE( INP0,INP1,INP2,INP3,INP4 ), FUNCT, "DISCRETE_TRANSFORM5" ),
/* Component specific */
#define DISCRETE_COMP_ADDER(NODE,DATA,TABLE)                            DSC_SND_ENTRY( NODE, dst_comp_adder  , DSS_NODE        , 1, DSE( static_cast<int>(DATA) ), DSE( DATA ), TABLE, "DISCRETE_COMP_ADDER" ),
#define DISCRETE_DAC_R1(NODE,DATA,VDATA,LADDER)                         DSC_SND_ENTRY( NODE, dst_dac_r1      , DSS_NODE        , 2, DSE( static_cast<int>(DATA),NODE_NC ), DSE( DATA,VDATA ), LADDER, "DISCRETE_DAC_R1" ),
#define DISCRETE_DIODE_MIXER2(NODE,IN0,IN1,TABLE)                       DSC_SND_ENTRY( NODE, dst_diode_mix   , DSS_NODE        , 2, DSE( static_cast<int>(IN0),static_cast<int>(IN1) ), DSE( IN0,IN1 ), TABLE, "DISCRETE_DIODE_MIXER2" ),
#define DISCRETE_DIODE_MIXER3(NODE,IN0,IN1,IN2,TABLE)                   DSC_SND_ENTRY( NODE, dst_diode_mix   , DSS_NODE        , 3, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2) ), DSE( IN0,IN1,IN2 ), TABLE, "DISCRETE_DIODE_MIXER3" ),
#define DISCRETE_DIODE_MIXER4(NODE,IN0,IN1,IN2,IN3,TABLE)               DSC_SND_ENTRY( NODE, dst_diode_mix   , DSS_NODE        , 4, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3) ), DSE( IN0,IN1,IN2,IN3 ), TABLE, "DISCRETE_DIODE_MIXER4" ),
#define DISCRETE_INTEGRATE(NODE,TRG0,TRG1,INFO)                         DSC_SND_ENTRY( NODE, dst_integrate   , DSS_NODE        , 2, DSE( static_cast<int>(TRG0),static_cast<int>(TRG1) ), DSE( TRG0,TRG1 ), INFO, "DISCRETE_INTEGRATE" ),
#define DISCRETE_MIXER2(NODE,ENAB,IN0,IN1,INFO)                         DSC_SND_ENTRY( NODE, dst_mixer       , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1) ), DSE( ENAB,IN0,IN1 ), INFO, "DISCRETE_MIXER2" ),
#define DISCRETE_MIXER3(NODE,ENAB,IN0,IN1,IN2,INFO)                     DSC_SND_ENTRY( NODE, dst_mixer       , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2) ), DSE( ENAB,IN0,IN1,IN2 ), INFO, "DISCRETE_MIXER3" ),
#define DISCRETE_MIXER4(NODE,ENAB,IN0,IN1,IN2,IN3,INFO)                 DSC_SND_ENTRY( NODE, dst_mixer       , DSS_NODE        , 5, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3) ), DSE( ENAB,IN0,IN1,IN2,IN3 ), INFO, "DISCRETE_MIXER4" ),
#define DISCRETE_MIXER5(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,INFO)             DSC_SND_ENTRY( NODE, dst_mixer       , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4) ), DSE( ENAB,IN0,IN1,IN2,IN3,IN4 ), INFO, "DISCRETE_MIXER5" ),
#define DISCRETE_MIXER6(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,IN5,INFO)         DSC_SND_ENTRY( NODE, dst_mixer       , DSS_NODE        , 7, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4),static_cast<int>(IN5) ), DSE( ENAB,IN0,IN1,IN2,IN3,IN4,IN5 ), INFO, "DISCRETE_MIXER6" ),
#define DISCRETE_MIXER7(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,IN5,IN6,INFO)     DSC_SND_ENTRY( NODE, dst_mixer       , DSS_NODE        , 8, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4),static_cast<int>(IN5),static_cast<int>(IN6) ), DSE( ENAB,IN0,IN1,IN2,IN3,IN4,IN5,IN6 ), INFO, "DISCRETE_MIXER7" ),
#define DISCRETE_MIXER8(NODE,ENAB,IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7,INFO) DSC_SND_ENTRY( NODE, dst_mixer       , DSS_NODE        , 9, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4),static_cast<int>(IN5),static_cast<int>(IN6),static_cast<int>(IN7) ), DSE( ENAB,IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7 ), INFO, "DISCRETE_MIXER8" ),
#define DISCRETE_OP_AMP(NODE,ENAB,IN0,IN1,INFO)                         DSC_SND_ENTRY( NODE, dst_op_amp      , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(IN1) ), DSE( ENAB,IN0,IN1 ), INFO, "DISCRETE_OP_AMP" ),
#define DISCRETE_OP_AMP_ONESHOT(NODE,TRIG,INFO)                         DSC_SND_ENTRY( NODE, dst_op_amp_1sht , DSS_NODE        , 1, DSE( static_cast<int>(TRIG) ), DSE( TRIG ), INFO, "DISCRETE_OP_AMP_ONESHOT" ),
#define DISCRETE_OP_AMP_TRIG_VCA(NODE,TRG0,TRG1,TRG2,IN0,IN1,INFO)      DSC_SND_ENTRY( NODE, dst_tvca_op_amp , DSS_NODE        , 5, DSE( static_cast<int>(TRG0),static_cast<int>(TRG1),static_cast<int>(TRG2),static_cast<int>(IN0),static_cast<int>(IN1) ), DSE( TRG0,TRG1,TRG2,IN0,IN1 ), INFO, "DISCRETE_OP_AMP_TRIG_VCA" ),
#define DISCRETE_VCA(NODE,ENAB,IN0,CTRL,TYPE)                           DSC_SND_ENTRY( NODE, dst_vca         , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(IN0),static_cast<int>(CTRL),NODE_NC ), DSE( ENAB,IN0,CTRL,TYPE ), nullptr, "DISCRETE_VCA" ),
#define DISCRETE_XTIME_BUFFER(NODE,IN0,LOW,HIGH)                        DSC_SND_ENTRY( NODE, dst_xtime_buffer, DSS_NODE        , 4, DSE( static_cast<int>(IN0),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,LOW,HIGH,0 ), nullptr, "DISCRETE_XTIME_BUFFER" ),
#define DISCRETE_XTIME_INVERTER(NODE,IN0,LOW,HIGH)                      DSC_SND_ENTRY( NODE, dst_xtime_buffer, DSS_NODE        , 4, DSE( static_cast<int>(IN0),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,LOW,HIGH,1 ), nullptr, "DISCRETE_XTIME_INVERTER" ),
#define DISCRETE_XTIME_AND(NODE,IN0,IN1,LOW,HIGH)                       DSC_SND_ENTRY( NODE, dst_xtime_and   , DSS_NODE        , 5, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,IN1,LOW,HIGH,0 ), nullptr, "DISCRETE_XTIME_AND" ),
#define DISCRETE_XTIME_NAND(NODE,IN0,IN1,LOW,HIGH)                      DSC_SND_ENTRY( NODE, dst_xtime_and   , DSS_NODE        , 5, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,IN1,LOW,HIGH,1 ), nullptr, "DISCRETE_XTIME_NAND" ),
#define DISCRETE_XTIME_OR(NODE,IN0,IN1,LOW,HIGH)                        DSC_SND_ENTRY( NODE, dst_xtime_or    , DSS_NODE        , 5, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,IN1,LOW,HIGH,0 ), nullptr, "DISCRETE_XTIME_OR" ),
#define DISCRETE_XTIME_NOR(NODE,IN0,IN1,LOW,HIGH)                       DSC_SND_ENTRY( NODE, dst_xtime_or    , DSS_NODE        , 5, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,IN1,LOW,HIGH,1 ), nullptr, "DISCRETE_XTIME_NOR" ),
#define DISCRETE_XTIME_XOR(NODE,IN0,IN1,LOW,HIGH)                       DSC_SND_ENTRY( NODE, dst_xtime_xor   , DSS_NODE        , 5, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,IN1,LOW,HIGH,0 ), nullptr, "DISCRETE_XTIME_XOR" ),
#define DISCRETE_XTIME_XNOR(NODE,IN0,IN1,LOW,HIGH)                      DSC_SND_ENTRY( NODE, dst_xtime_xnor  , DSS_NODE        , 5, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(LOW),static_cast<int>(HIGH),NODE_NC ), DSE( IN0,IN1,LOW,HIGH,1 ), nullptr, "DISCRETE_XTIME_XNOR" ),

/* from disc_flt.inc */
/* generic modules */
#define DISCRETE_FILTER1(NODE,ENAB,INP0,FREQ,TYPE)                      DSC_SND_ENTRY( NODE, dst_filter1     , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC ), DSE( ENAB,INP0,FREQ,TYPE ), nullptr, "DISCRETE_FILTER1" ),
#define DISCRETE_FILTER2(NODE,ENAB,INP0,FREQ,DAMP,TYPE)                 DSC_SND_ENTRY( NODE, dst_filter2     , DSS_NODE        , 5, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,INP0,FREQ,DAMP,TYPE ), nullptr, "DISCRETE_FILTER2" ),
/* Component specific */
#define DISCRETE_SALLEN_KEY_FILTER(NODE,ENAB,INP0,TYPE,INFO)            DSC_SND_ENTRY( NODE, dst_sallen_key  , DSS_NODE        , 3, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC ), DSE( ENAB,INP0,TYPE ), INFO, "DISCRETE_SALLEN_KEY_FILTER" ),
#define DISCRETE_CRFILTER(NODE,INP0,RVAL,CVAL)                          DSC_SND_ENTRY( NODE, dst_crfilter    , DSS_NODE        , 3, DSE( static_cast<int>(INP0),static_cast<int>(OPT_NODE(RVAL)),static_cast<int>(OPT_NODE(CVAL)) ), DSE( INP0,RVAL,CVAL ), nullptr, "DISCRETE_CRFILTER" ),
#define DISCRETE_CRFILTER_VREF(NODE,INP0,RVAL,CVAL,VREF)                DSC_SND_ENTRY( NODE, dst_crfilter    , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(OPT_NODE(RVAL)),static_cast<int>(OPT_NODE(CVAL)),static_cast<int>(VREF) ), DSE( INP0,RVAL,CVAL,VREF ), nullptr, "DISCRETE_CRFILTER_VREF" ),
#define DISCRETE_OP_AMP_FILTER(NODE,ENAB,INP0,INP1,TYPE,INFO)           DSC_SND_ENTRY( NODE, dst_op_amp_filt , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC ), DSE( ENAB,INP0,INP1,TYPE ), INFO, "DISCRETE_OP_AMP_FILTER" ),
#define DISCRETE_RC_CIRCUIT_1(NODE,INP0,INP1,RVAL,CVAL)                 DSC_SND_ENTRY( NODE, dst_rc_circuit_1, DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC,NODE_NC ), DSE( INP0,INP1,RVAL,CVAL ), nullptr, "DISCRETE_RC_CIRCUIT_1" ),
#define DISCRETE_RCDISC(NODE,ENAB,INP0,RVAL,CVAL)                       DSC_SND_ENTRY( NODE, dst_rcdisc      , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC ), DSE( ENAB,INP0,RVAL,CVAL ), nullptr, "DISCRETE_RCDISC" ),
#define DISCRETE_RCDISC2(NODE,SWITCH,INP0,RVAL0,INP1,RVAL1,CVAL)        DSC_SND_ENTRY( NODE, dst_rcdisc2     , DSS_NODE        , 6, DSE( static_cast<int>(SWITCH),static_cast<int>(INP0),NODE_NC,static_cast<int>(INP1),NODE_NC,NODE_NC ), DSE( SWITCH,INP0,RVAL0,INP1,RVAL1,CVAL ), nullptr, "DISCRETE_RCDISC2" ),
#define DISCRETE_RCDISC3(NODE,ENAB,INP0,RVAL0,RVAL1,CVAL,DJV)           DSC_SND_ENTRY( NODE, dst_rcdisc3     , DSS_NODE        , 6, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,INP0,RVAL0,RVAL1,CVAL,DJV ), nullptr, "DISCRETE_RCDISC3" ),
#define DISCRETE_RCDISC4(NODE,ENAB,INP0,RVAL0,RVAL1,RVAL2,CVAL,VP,TYPE) DSC_SND_ENTRY( NODE, dst_rcdisc4     , DSS_NODE        , 8, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,INP0,RVAL0,RVAL1,RVAL2,CVAL,VP,TYPE ), nullptr, "DISCRETE_RCDISC4" ),
#define DISCRETE_RCDISC5(NODE,ENAB,INP0,RVAL,CVAL)                      DSC_SND_ENTRY( NODE, dst_rcdisc5     , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC ), DSE( ENAB,INP0,RVAL,CVAL ), nullptr, "DISCRETE_RCDISC5" ),
#define DISCRETE_RCDISC_MODULATED(NODE,INP0,INP1,RVAL0,RVAL1,RVAL2,RVAL3,CVAL,VP)   DSC_SND_ENTRY( NODE, dst_rcdisc_mod, DSS_NODE        , 8, DSE( static_cast<int>(INP0),static_cast<int>(INP1),NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( INP0,INP1,RVAL0,RVAL1,RVAL2,RVAL3,CVAL,VP ), nullptr, "DISCRETE_RCDISC_MODULATED" ),
#define DISCRETE_RCFILTER(NODE,INP0,RVAL,CVAL)                          DSC_SND_ENTRY( NODE, dst_rcfilter    , DSS_NODE        , 3, DSE( static_cast<int>(INP0),static_cast<int>(OPT_NODE(RVAL)),static_cast<int>(OPT_NODE(CVAL)) ), DSE( INP0,RVAL,CVAL ), nullptr, "DISCRETE_RCFILTER" ),
#define DISCRETE_RCFILTER_VREF(NODE,INP0,RVAL,CVAL,VREF)                DSC_SND_ENTRY( NODE, dst_rcfilter    , DSS_NODE        , 4, DSE( static_cast<int>(INP0),static_cast<int>(OPT_NODE(RVAL)),static_cast<int>(OPT_NODE(CVAL)),static_cast<int>(VREF) ), DSE( INP0,RVAL,CVAL,VREF ), nullptr, "DISCRETE_RCFILTER_VREF" ),
#define DISCRETE_RCFILTER_SW(NODE,ENAB,INP0,SW,RVAL,CVAL1,CVAL2,CVAL3,CVAL4) DSC_SND_ENTRY( NODE, dst_rcfilter_sw, DSS_NODE    , 8, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),static_cast<int>(SW),NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,INP0,SW,RVAL,CVAL1,CVAL2,CVAL3,CVAL4 ), nullptr, "DISCRETE_RCFILTER_SW" ),
#define DISCRETE_RCINTEGRATE(NODE,INP0,RVAL0,RVAL1,RVAL2,CVAL,vP,TYPE)  DSC_SND_ENTRY( NODE, dst_rcintegrate , DSS_NODE        , 7, DSE( static_cast<int>(INP0),NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( INP0,RVAL0,RVAL1,RVAL2,CVAL,vP,TYPE ), nullptr, "DISCRETE_RCINTEGRATE" ),
/* For testing - seem to be buggered.  Use versions not ending in N. */
#define DISCRETE_RCDISCN(NODE,ENAB,INP0,RVAL,CVAL)                      DSC_SND_ENTRY( NODE, dst_rcdiscn     , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC ), DSE( ENAB,INP0,RVAL,CVAL ), nullptr, "DISCRETE_RCDISCN" ),
#define DISCRETE_RCDISC2N(NODE,SWITCH,INP0,RVAL0,INP1,RVAL1,CVAL)       DSC_SND_ENTRY( NODE, dst_rcdisc2n    , DSS_NODE        , 6, DSE( static_cast<int>(SWITCH),static_cast<int>(INP0),NODE_NC,static_cast<int>(INP1),NODE_NC,NODE_NC ), DSE( SWITCH,INP0,RVAL0,INP1,RVAL1,CVAL ), nullptr, "DISCRETE_RCDISC2N" ),
#define DISCRETE_RCFILTERN(NODE,ENAB,INP0,RVAL,CVAL)                    DSC_SND_ENTRY( NODE, dst_rcfiltern   , DSS_NODE        , 4, DSE( static_cast<int>(ENAB),static_cast<int>(INP0),NODE_NC,NODE_NC ), DSE( ENAB,INP0,RVAL,CVAL ), nullptr, "DISCRETE_RCFILTERN" ),

/* from disc_dev.inc */
/* generic modules */
#define DISCRETE_CUSTOM1(NODE,CLASS,IN0,INFO)                                 DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 1, DSE( static_cast<int>(IN0) ), DSE( IN0 ), INFO, "DISCRETE_CUSTOM1" ),
#define DISCRETE_CUSTOM2(NODE,CLASS,IN0,IN1,INFO)                             DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 2, DSE( static_cast<int>(IN0),static_cast<int>(IN1) ), DSE( IN0,IN1 ), INFO, "DISCRETE_CUSTOM2" ),
#define DISCRETE_CUSTOM3(NODE,CLASS,IN0,IN1,IN2,INFO)                         DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 3, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2) ), DSE( IN0,IN1,IN2 ), INFO, "DISCRETE_CUSTOM3" ),
#define DISCRETE_CUSTOM4(NODE,CLASS,IN0,IN1,IN2,IN3,INFO)                     DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 4, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3) ), DSE( IN0,IN1,IN2,IN3 ), INFO, "DISCRETE_CUSTOM4" ),
#define DISCRETE_CUSTOM5(NODE,CLASS,IN0,IN1,IN2,IN3,IN4,INFO)                 DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 5, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4) ), DSE( IN0,IN1,IN2,IN3,IN4 ), INFO, "DISCRETE_CUSTOM5" ),
#define DISCRETE_CUSTOM6(NODE,CLASS,IN0,IN1,IN2,IN3,IN4,IN5,INFO)             DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 6, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4),static_cast<int>(IN5) ), DSE( IN0,IN1,IN2,IN3,IN4,IN5 ), INFO, "DISCRETE_CUSTOM6" ),
#define DISCRETE_CUSTOM7(NODE,CLASS,IN0,IN1,IN2,IN3,IN4,IN5,IN6,INFO)         DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 7, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4),static_cast<int>(IN5),static_cast<int>(IN6) ), DSE( IN0,IN1,IN2,IN3,IN4,IN5,IN6 ), INFO, "DISCRETE_CUSTOM7" ),
#define DISCRETE_CUSTOM8(NODE,CLASS,IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7,INFO)     DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 8, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4),static_cast<int>(IN5),static_cast<int>(IN6),static_cast<int>(IN7) ), DSE( IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7 ), INFO, "DISCRETE_CUSTOM8" ),
#define DISCRETE_CUSTOM9(NODE,CLASS,IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7,IN8,INFO) DSC_SND_ENTRY( NODE, CLASS, DST_CUSTOM      , 9, DSE( static_cast<int>(IN0),static_cast<int>(IN1),static_cast<int>(IN2),static_cast<int>(IN3),static_cast<int>(IN4),static_cast<int>(IN5),static_cast<int>(IN6),static_cast<int>(IN7),static_cast<int>(IN8) ), DSE( IN0,IN1,IN2,IN3,IN4,IN5,IN6,IN7,IN8 ), INFO, "DISCRETE_CUSTOM9" ),

/* Component specific */
#define DISCRETE_555_ASTABLE(NODE,RESET,R1,R2,C,OPTIONS)                DSC_SND_ENTRY( NODE, dsd_555_astbl   , DSS_NODE        , 5, DSE( static_cast<int>(RESET),static_cast<int>(R1),static_cast<int>(R2),static_cast<int>(C),NODE_NC ), DSE( RESET,R1,R2,C,-1 ), OPTIONS, "DISCRETE_555_ASTABLE" ),
#define DISCRETE_555_ASTABLE_CV(NODE,RESET,R1,R2,C,CTRLV,OPTIONS)       DSC_SND_ENTRY( NODE, dsd_555_astbl   , DSS_NODE        , 5, DSE( static_cast<int>(RESET),static_cast<int>(R1),static_cast<int>(R2),static_cast<int>(C),static_cast<int>(CTRLV) ), DSE( RESET,R1,R2,C,CTRLV ), OPTIONS, "DISCRETE_555_ASTABLE_CV" ),
#define DISCRETE_555_MSTABLE(NODE,RESET,TRIG,R,C,OPTIONS)               DSC_SND_ENTRY( NODE, dsd_555_mstbl   , DSS_NODE        , 4, DSE( static_cast<int>(RESET),static_cast<int>(TRIG),static_cast<int>(R),static_cast<int>(C) ), DSE( RESET,TRIG,R,C ), OPTIONS, "DISCRETE_555_MSTABLE" ),
#define DISCRETE_555_CC(NODE,RESET,VIN,R,C,RBIAS,RGND,RDIS,OPTIONS)     DSC_SND_ENTRY( NODE, dsd_555_cc      , DSS_NODE        , 7, DSE( static_cast<int>(RESET),static_cast<int>(VIN),static_cast<int>(R),static_cast<int>(C),static_cast<int>(RBIAS),static_cast<int>(RGND),static_cast<int>(RDIS) ), DSE( RESET,VIN,R,C,RBIAS,RGND,RDIS ), OPTIONS, "DISCRETE_555_CC" ),
#define DISCRETE_555_VCO1(NODE,RESET,VIN,OPTIONS)                       DSC_SND_ENTRY( NODE, dsd_555_vco1    , DSS_NODE        , 3, DSE( static_cast<int>(RESET),static_cast<int>(VIN),NODE_NC ), DSE( RESET,VIN,-1 ), OPTIONS, "DISCRETE_555_VCO1" ),
#define DISCRETE_555_VCO1_CV(NODE,RESET,VIN,CTRLV,OPTIONS)              DSC_SND_ENTRY( NODE, dsd_555_vco1    , DSS_NODE        , 3, DSE( static_cast<int>(RESET),static_cast<int>(VIN),static_cast<int>(CTRLV) ), DSE( RESET,VIN,CTRLV ), OPTIONS, "DISCRETE_555_VCO1_CV" ),
#define DISCRETE_566(NODE,VMOD,R,C,VPOS,VNEG,VCHARGE,OPTIONS)           DSC_SND_ENTRY( NODE, dsd_566         , DSS_NODE        , 7, DSE( static_cast<int>(VMOD),static_cast<int>(R),static_cast<int>(C),NODE_NC,NODE_NC,static_cast<int>(VCHARGE),NODE_NC ), DSE( VMOD,R,C,VPOS,VNEG,VCHARGE,OPTIONS ), nullptr, "DISCRETE_566" ),
#define DISCRETE_74LS624(NODE,ENAB,VMOD,VRNG,C,R_FREQ_IN,C_FREQ_IN,R_RNG_IN,OUTTYPE) DSC_SND_ENTRY( NODE, dsd_ls624   , DSS_NODE        , 8, DSE( static_cast<int>(ENAB),static_cast<int>(VMOD),NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC,NODE_NC ), DSE( ENAB,VMOD,VRNG,C,R_FREQ_IN,C_FREQ_IN,R_RNG_IN,OUTTYPE ), nullptr, "DISCRETE_74LS624" ),

/* NOP */
#define DISCRETE_NOP(NODE)                                              DSC_SND_ENTRY( NODE, dss_nop         , DSS_NOP         , 0, DSE( 0 ), DSE( 0 ), nullptr, "DISCRETE_NOP" ),

/* logging */
#define DISCRETE_CSVLOG1(NODE1)                                         DSC_SND_ENTRY( NODE_SPECIAL, dso_csvlog  , DSO_CSVLOG  , 1, DSE( static_cast<int>(NODE1) ), DSE( NODE1 ), nullptr, "DISCRETE_CSVLOG1" ),
#define DISCRETE_CSVLOG2(NODE1,NODE2)                                   DSC_SND_ENTRY( NODE_SPECIAL, dso_csvlog  , DSO_CSVLOG  , 2, DSE( static_cast<int>(NODE1),static_cast<int>(NODE2) ), DSE( NODE1,NODE2 ), nullptr, "DISCRETE_CSVLOG2" ),
#define DISCRETE_CSVLOG3(NODE1,NODE2,NODE3)                             DSC_SND_ENTRY( NODE_SPECIAL, dso_csvlog  , DSO_CSVLOG  , 3, DSE( static_cast<int>(NODE1),static_cast<int>(NODE2),static_cast<int>(NODE3) ), DSE( NODE1,NODE2,NODE3 ), nullptr, "DISCRETE_CSVLOG3" ),
#define DISCRETE_CSVLOG4(NODE1,NODE2,NODE3,NODE4)                       DSC_SND_ENTRY( NODE_SPECIAL, dso_csvlog  , DSO_CSVLOG  , 4, DSE( static_cast<int>(NODE1),static_cast<int>(NODE2),static_cast<int>(NODE3),static_cast<int>(NODE4) ), DSE( NODE1,NODE2,NODE3,NODE4 ), nullptr, "DISCRETE_CSVLOG4" ),
#define DISCRETE_CSVLOG5(NODE1,NODE2,NODE3,NODE4,NODE5)                 DSC_SND_ENTRY( NODE_SPECIAL, dso_csvlog  , DSO_CSVLOG  , 5, DSE( static_cast<int>(NODE1),static_cast<int>(NODE2),static_cast<int>(NODE3),static_cast<int>(NODE4),static_cast<int>(NODE5) ), DSE( NODE1,NODE2,NODE3,NODE4,NODE5 ), nullptr, "DISCRETE_CSVLOG5" ),
#define DISCRETE_WAVLOG1(NODE1,GAIN1)                                   DSC_SND_ENTRY( NODE_SPECIAL, dso_wavlog  , DSO_WAVLOG  , 2, DSE( static_cast<int>(NODE1),NODE_NC ), DSE( NODE1,GAIN1 ), nullptr, "DISCRETE_WAVLOG1" ),
#define DISCRETE_WAVLOG2(NODE1,GAIN1,NODE2,GAIN2)                       DSC_SND_ENTRY( NODE_SPECIAL, dso_wavlog  , DSO_WAVLOG  , 4, DSE( static_cast<int>(NODE1),NODE_NC,static_cast<int>(NODE2),NODE_NC ), DSE( NODE1,GAIN1,NODE2,GAIN2 ), nullptr, "DISCRETE_WAVLOG2" ),

/* import */
#define DISCRETE_IMPORT(INFO)                                           DSC_SND_ENTRY( NODE_SPECIAL, special     , DSO_IMPORT  , 0, DSE( 0 ), DSE( 0 ), &(INFO), "DISCRETE_IMPORT" ),
#define DISCRETE_DELETE(NODE_FROM, NODE_TO)                             DSC_SND_ENTRY( NODE_SPECIAL, special     , DSO_DELETE  , 2, DSE( static_cast<int>(NODE_FROM), static_cast<int>(NODE_TO) ), DSE( NODE_FROM, NODE_TO ), nullptr, "DISCRETE_DELETE" ),
#define DISCRETE_REPLACE                                                DSC_SND_ENTRY( NODE_SPECIAL, special     , DSO_REPLACE , 0, DSE( 0 ), DSE( 0 ), nullptr, "DISCRETE_REPLACE" ),

/* parallel tasks */

#define DISCRETE_TASK_START(TASK_GROUP)                                 DSC_SND_ENTRY( NODE_SPECIAL, special     , DSO_TASK_START, 2, DSE( NODE_NC, NODE_NC ), DSE( TASK_GROUP, 0 ), nullptr, "DISCRETE_TASK_START" ),
#define DISCRETE_TASK_END()                                             DSC_SND_ENTRY( NODE_SPECIAL, special     , DSO_TASK_END  , 0, DSE( 0 ), DSE( 0 ), nullptr, "DISCRETE_TASK_END" ),
//#define DISCRETE_TASK_SYNC()                                          DSC_SND_ENTRY( NODE_SPECIAL, special     , DSO_TASK_SYNC , 0, DSE( 0 ), DSE( 0 ), nullptr, "DISCRETE_TASK_SYNC" ),

/* output */
#define DISCRETE_OUTPUT(OPNODE,GAIN)                                   DSC_SND_ENTRY( NODE_SPECIAL, dso_output   , DSO_OUTPUT   ,2, DSE( static_cast<int>(OPNODE),NODE_NC ), DSE( 0,GAIN ), nullptr, "DISCRETE_OUTPUT" ),



#endif // MAME_SOUND_DISCRETE_H