summaryrefslogtreecommitdiffstatshomepage
path: root/src/frontend/mame/ui/devctrl.h
diff options
context:
space:
mode:
author Miodrag Milanović <mmicko@gmail.com>2016-10-22 11:16:10 +0200
committer GitHub <noreply@github.com>2016-10-22 11:16:10 +0200
commit255bf78b316a9dc9e4c53a65143000471a6927d3 (patch)
tree5f58601975bcd1534c303d5634509590b630aac3 /src/frontend/mame/ui/devctrl.h
parenta44ecc354f6203ea589bac435563ce0642fba28b (diff)
parent4e5716fa5cf7a782224e5339640de579ed87a230 (diff)
Merge pull request #1541 from JoakimLarsson/scctxfifo
SCC improved Tx handling [Joakim Larsson]
Diffstat (limited to 'src/frontend/mame/ui/devctrl.h')
0 files changed, 0 insertions, 0 deletions
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************

    Curtis Electromusic Specialties CEM3394 µP-Controllable Synthesizer Voice

    This driver handles CEM-3394 analog synth chip.

***************************************************************************/

#include "emu.h"
#include "cem3394.h"

#include <algorithm>


// various filter implementations to play with; currently SVTRAP works best
#define FILTER_TYPE_NONE   (0)
#define FILTER_TYPE_SVTRAP (1)
#define FILTER_TYPE_ESQ1   (2)

#define FILTER_TYPE FILTER_TYPE_SVTRAP


// logging
#define LOG_CONTROL_CHANGES (0)


// use 0.25 as the base volume for pulses
static constexpr double PULSE_VOLUME = 0.25;

// sawtooth is 27% larger than pulses
static constexpr double SAWTOOTH_VOLUME = PULSE_VOLUME * 1.27f;

// triangle is 27% larger than sawtooth
static constexpr double TRIANGLE_VOLUME = SAWTOOTH_VOLUME * 1.27f;

// external input is unknown but let's make it the same as the pulse
static constexpr double EXTERNAL_VOLUME = PULSE_VOLUME;


// waveform generation parameters
#define ENABLE_PULSE        1
#define ENABLE_TRIANGLE     1
#define ENABLE_SAWTOOTH     1
#define ENABLE_EXTERNAL     1


// pulse shaping parameters
// examples:
//    hat trick - skidding ice sounds too loud if minimum width is too big
//    snake pit - melody during first level too soft if minimum width is too small
//    snake pit - bonus counter at the end of level
//    snacks'n jaxson - laugh at end of level is too soft if minimum width is too small

#define LIMIT_WIDTH         1
#define MINIMUM_WIDTH       0.2
#define MAXIMUM_WIDTH       0.8


/********************************************************************************

    From the datasheet:

    VCO_FREQUENCY:
        -4.0 ... +4.0
        -0.75 V/octave
        f = exp(V) * 431.894

    MODULATION_AMOUNT
         0.0 ... +3.5
         0.0 == 0.01 x frequency
         3.5 == 2.00 x frequency

    WAVE_SELECT
        -0.5 ... -0.2 == triangle
        +0.9 ... +1.5 == triangle + sawtooth
        +2.3 ... +3.9 == sawtooth

    PULSE_WIDTH
         0.0 ... +2.0
         0.0 ==   0% duty cycle
        +2.0 == 100% duty cycle

    MIXER_BALANCE
        -4.0 ... +4.0
         0.0 both at -6dB
         -20 dB/V

    FILTER_RESONANCE
         0.0 ... +2.5
         0.0 == no resonance
        +2.5 == oscillation

    FILTER_FREQENCY
        -3.0 ... +4.0
        -0.375 V/octave
         0.0 == 1300Hz

    FINAL_GAIN
         0.0 ... +4.0
         -20 dB/V
         0.0 == -90dB
         4.0 == 0dB

    Square wave output = 160 (average is constant regardless of duty cycle)
    Sawtooth output = 200
    Triangle output = 250
    Sawtooth + triangle output = 330
    Maximum output = 400

********************************************************************************/


// various waveforms
#define WAVE_TRIANGLE       1
#define WAVE_SAWTOOTH       2
#define WAVE_PULSE          4


// device type definition
DEFINE_DEVICE_TYPE(CEM3394, cem3394_device, "cem3394", "CEM3394 Synthesizer Voice")

//**************************************************************************
//  LIVE DEVICE
//**************************************************************************

//-------------------------------------------------
//  cem3394_device - constructor
//-------------------------------------------------

cem3394_device::cem3394_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock) :
	device_t(mconfig, CEM3394, tag, owner, clock),
	device_sound_interface(mconfig, *this),
	m_stream(nullptr),
	m_vco_zero_freq(500.0),
	m_filter_zero_freq(1300.0),
	m_values{0},
	m_wave_select(0),
	m_volume(0),
	m_mixer_internal(0),
	m_mixer_external(0),
	m_vco_position(0),
	m_vco_step(0),
	m_filter_frequency(1300),
	m_filter_modulation(0),
	m_filter_resonance(0),
	m_filter_in{0},
	m_filter_out{0},
	m_pulse_width(0),
	m_inv_sample_rate(1.0/48000.0)
{
	(void)m_filter_in;
}


//-------------------------------------------------
//  filter - apply the lowpass filter at the given
//  cutoff frequency
//-------------------------------------------------

#if (FILTER_TYPE == FILTER_TYPE_NONE)

double cem3394_device::filter(double input, double cutoff)
{
	return input;
}

#elif (FILTER_TYPE == FILTER_TYPE_SVTRAP)

double cem3394_device::filter(double input, double cutoff)
{
	// clamp cutoff to useful range, 50Hz-20kHz
	cutoff = std::min(std::max(cutoff, 50.0), 20000.0);

	// clamp resonance to below 1.0 to prevent runaway behavior; when clamping,
	// also apply an (arbitrary) scale factor to the output since we're close
	// to resonance and the datasheet indicates there is an amplitude correction
	// in this case
	double outscale = 1.0;
	double res = m_filter_resonance;
	if (res > 0.99)
		res = 0.99, outscale = 0.5;

	// core filter implementation
	double g = tan(M_PI * cutoff * m_inv_sample_rate);
	double k = 2.0 - 2.0 * res;
	double a1 = 1.0 / (1.0 + g * (g + k));
	double a2 = g * a1;
	double a3 = g * a2;
	double v3 = input - m_filter_out[1];
	double v1 = a1 * m_filter_out[0] + a2 * v3;
	double v2 = m_filter_out[1] + a2 * m_filter_out[0] + a3 * v3;
	m_filter_out[0] = 2 * v1 - m_filter_out[0];
	m_filter_out[1] = 2 * v2 - m_filter_out[1];

	// lowpass output is equal to v2
	double output = v2 * outscale;

	// catch any NaNs
	if (std::isnan(output))
	{
		logerror("NAN - vco: %6.0f cutoff: %6.0f res: %.5f output: %.5f\n", m_vco_step / m_inv_sample_rate, cutoff, m_filter_resonance, output);
		output = 0;
		m_filter_out[0] = m_filter_out[1] = 0;
	}

	// if we go out of range, scale down to 1.0 and also scale our
	// feedback terms to help us stay in control
	else if (fabs(output) > 1.0)
	{
		double scale = 1.0 / fabs(output);
		output *= scale;
		m_filter_out[0] *= scale;
		m_filter_out[1] *= scale;
	}
	return output;
}

#elif (FILTER_TYPE == FILTER_TYPE_ESQ1)

double cem3394_device::filter(double input, double cutoff)
{
	// clamp cutoff to useful range, 50Hz-20kHz
	cutoff = std::min(std::max(cutoff, 50.0), 20000.0);

	// clamp resonance to 0.95 to prevent infinite gain
	double r = 4.0 * std::min(res, 0.95);

	// core filter implementation
	double g = 2 * M_PI * cutoff;
	double zc = g / tan(g/2 * m_inv_sample_rate);
	double gzc = zc / g;
	double gzc2 = gzc * gzc;
	double gzc3 = gzc2 * gzc;
	double gzc4 = gzc3 * gzc;
	double r1 = 1 + r;
	double a0 = r1;
	double a1 = 4 * r1;
	double a2 = 6 * r1;
	double a3 = 4 * r1;
	double a4 = r1;
	double b0 =      r1 + 4 * gzc + 6 * gzc2 + 4 * gzc3 + gzc4;
	double b1 = 4 * (r1 + 2 * gzc            - 2 * gzc3 - gzc4);
	double b2 = 6 * (r1           - 2 * gzc2            + gzc4);
	double b3 = 4 * (r1 - 2 * gzc            + 2 * gzc3 - gzc4);
	double b4 =      r1 - 4 * gzc + 6 * gzc2 - 4 * gzc3 + gzc4;

	double output = (input * a0
					+  m_filter_in[0] * a1 +  m_filter_in[1] * a2 +  m_filter_in[2] * a3 +  m_filter_in[3] * a4
					- m_filter_out[0] * b1 - m_filter_out[1] * b2 - m_filter_out[2] * b3 - m_filter_out[3] * b4) / b0;

	// catch NaNs
	if (std::isnan(output))
	{
		logerror("NAN - vco: %6.0f cutoff: %6.0f res: %.5f output: %.5f\n", m_vco_step / m_inv_sample_rate, cutoff, m_filter_resonance, output);
		output = 0;
	}

	// if output goes significantly out of range, scale it down
	else if (fabs(output) > 10.0)
		output = 10.0;

	// update memories
	m_filter_in[3] = m_filter_in[2];
	m_filter_in[2] = m_filter_in[1];
	m_filter_in[1] = m_filter_in[0];
	m_filter_in[0] = input;

	m_filter_out[3] = m_filter_out[2];
	m_filter_out[2] = m_filter_out[1];
	m_filter_out[1] = m_filter_out[0];
	m_filter_out[0] = output;

	// clamp to range and return
	if (output < -1.0)
		output = -1.0;
	else if (output > 1.0)
		output = 1.0;
	return output;
}

#else

#error Unknown FILTER_TYPE

#endif


//-------------------------------------------------
//  sound_stream_update - generate sound to the mix
//  buffer in mono
//-------------------------------------------------

void cem3394_device::sound_stream_update(sound_stream &stream, std::vector<read_stream_view> const &inputs, std::vector<write_stream_view> &outputs)
{
	auto &external = inputs[0];
	auto &buffer = outputs[0];

	if (m_wave_select == 0 && m_mixer_external == 0)
		logerror("%f V didn't cut it\n", m_values[WAVE_SELECT]);

	// loop over samples
	for (int sampindex = 0; sampindex < buffer.samples(); sampindex++)
	{
		// get the current VCO position and step it forward
		double vco_position = m_vco_position;
		m_vco_position += m_vco_step;

		// clamp VCO position to a fraction
		if (m_vco_position >= 1.0)
			m_vco_position -= floor(m_vco_position);

		// handle the pulse component; might need some more thought here
		double result = 0;
		if (ENABLE_PULSE && (m_wave_select & WAVE_PULSE))
			if (vco_position < m_pulse_width)
				result += PULSE_VOLUME * m_mixer_internal;

		// handle the sawtooth component
		if (ENABLE_SAWTOOTH && (m_wave_select & WAVE_SAWTOOTH))
			result += SAWTOOTH_VOLUME * m_mixer_internal * vco_position;

		// always compute the triangle waveform which is also used for filter modulation
		double triangle = 2.0 * vco_position;
		if (triangle > 1.0)
			triangle = 2.0 - triangle;

		// handle the triangle component
		if (ENABLE_TRIANGLE && (m_wave_select & WAVE_TRIANGLE))
			result += TRIANGLE_VOLUME * m_mixer_internal * triangle;

		// compute extension input (for Bally/Sente this is the noise)
		if (ENABLE_EXTERNAL)
			result += EXTERNAL_VOLUME * m_mixer_external * external.get(sampindex);

		// compute the modulated filter frequency and apply the filter
		// modulation tracks the VCO triangle
		double filter_freq = m_filter_frequency * (1 + m_filter_modulation * (triangle - 0.5));
		result = filter(result, filter_freq);

		// write the sample
		buffer.put(sampindex, result * m_volume);
	}
}


//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void cem3394_device::device_start()
{
	// compute a sample rate
	// VCO can range up to pow(2, 4.0/.75) = ~40.3 * zero-voltage-freq (ZVF)
	int sample_rate = m_vco_zero_freq * pow(2, 4.0 / 0.75) * 5;
	m_inv_sample_rate = 1.0 / double(sample_rate);

	// allocate stream channels, 1 per chip, with one external input
	m_stream = stream_alloc(1, 1, sample_rate);

	save_item(NAME(m_values));
	save_item(NAME(m_wave_select));

	save_item(NAME(m_volume));
	save_item(NAME(m_mixer_internal));
	save_item(NAME(m_mixer_external));

	save_item(NAME(m_vco_position));
	save_item(NAME(m_vco_step));

	save_item(NAME(m_filter_frequency));
	save_item(NAME(m_filter_modulation));
	save_item(NAME(m_filter_resonance));

	save_item(NAME(m_pulse_width));
}


double cem3394_device::compute_db(double voltage)
{
	// assumes 0.0 == full off, 4.0 == full on, with linear taper, as described in the datasheet

	// above 4.0, maximum volume
	if (voltage >= 4.0)
		return 0.0;

	// below 0.0, minimum volume
	else if (voltage <= 0.0)
		return 90.0;

	// between 2.5 and 4.0, linear from 20dB to 0dB
	else if (voltage >= 2.5)
		return (4.0 - voltage) * (1.0 / 1.5) * 20.0;

	// between 0.0 and 2.5, exponential to 20dB
	else
	{
		double temp = 20.0 * pow(2.0, 2.5 - voltage);
		if (temp < 90.0) return 90.0;
		else return temp;
	}
}


stream_buffer::sample_t cem3394_device::compute_db_volume(double voltage)
{
	double temp;

	// assumes 0.0 == full off, 4.0 == full on, with linear taper, as described in the datasheet

	// above 4.0, maximum volume
	if (voltage >= 4.0)
		return 1.0;

	// below 0.0, minimum volume
	else if (voltage <= 0.0)
		return 0;

	// between 2.5 and 4.0, linear from 20dB to 0dB
	else if (voltage >= 2.5)
		temp = (4.0 - voltage) * (1.0 / 1.5) * 20.0;

	// between 0.0 and 2.5, exponential to 20dB
	else
	{
		temp = 20.0 * pow(2.0, 2.5 - voltage);
		if (temp < 50.0) return 0;
	}

	// convert from dB to volume and return
	return powf(0.891251f, temp);
}


void cem3394_device::set_voltage(int input, double voltage)
{
	double temp;

	// don't do anything if no change
	if (voltage == m_values[input])
		return;
	m_values[input] = voltage;

	// update the stream first
	m_stream->update();

	// switch off the input
	switch (input)
	{
		// frequency varies from -4.0 to +4.0, at 0.75V/octave
		case VCO_FREQUENCY:
			temp = m_vco_zero_freq * pow(2.0, -voltage * (1.0 / 0.75));
			m_vco_step = temp * m_inv_sample_rate;
			if (LOG_CONTROL_CHANGES) logerror("VCO_FREQ=%6.3fV -> freq=%f\n", voltage, temp);
			break;

		// wave select determines triangle/sawtooth enable
		case WAVE_SELECT:
			m_wave_select &= ~(WAVE_TRIANGLE | WAVE_SAWTOOTH);
			if (voltage >= -0.5 && voltage <= -0.2)
				m_wave_select |= WAVE_TRIANGLE;
			else if (voltage >=  0.9 && voltage <=  1.5)
				m_wave_select |= WAVE_TRIANGLE | WAVE_SAWTOOTH;
			else if (voltage >=  2.3 && voltage <=  3.9)
				m_wave_select |= WAVE_SAWTOOTH;
			if (LOG_CONTROL_CHANGES) logerror("WAVE_SEL=%6.3fV -> tri=%d saw=%d\n", voltage, (m_wave_select & WAVE_TRIANGLE) ? 1 : 0, (m_wave_select & WAVE_SAWTOOTH) ? 1 : 0);
			break;

		// pulse width determines duty cycle; 0.0 means 0%, 2.0 means 100%
		case PULSE_WIDTH:
			if (voltage < 0.0)
			{
				m_pulse_width = 0;
				m_wave_select &= ~WAVE_PULSE;
			}
			else
			{
				m_pulse_width = voltage * 0.5;
				if (LIMIT_WIDTH)
					m_pulse_width = MINIMUM_WIDTH + (MAXIMUM_WIDTH - MINIMUM_WIDTH) * m_pulse_width;
				m_wave_select |= WAVE_PULSE;
			}
			if (LOG_CONTROL_CHANGES) logerror("PULSE_WI=%6.3fV -> raw=%f adj=%f\n", voltage, voltage * 0.5, m_pulse_width);
			break;

		// final gain is pretty self-explanatory; 0.0 means ~90dB, 4.0 means 0dB
		case FINAL_GAIN:
			m_volume = compute_db_volume(voltage);
			if (LOG_CONTROL_CHANGES) logerror("TOT_GAIN=%6.3fV -> vol=%f\n", voltage, m_volume);
			break;

		// mixer balance is a pan between the external input and the internal input
		// 0.0 is equal parts of both; positive values favor external, negative favor internal
		case MIXER_BALANCE:
			if (voltage >= 0.0)
			{
				m_mixer_internal = compute_db_volume(3.55 - voltage);
				m_mixer_external = compute_db_volume(3.55 + 0.45 * (voltage * 0.25));
			}
			else
			{
				m_mixer_internal = compute_db_volume(3.55 - 0.45 * (voltage * 0.25));
				m_mixer_external = compute_db_volume(3.55 + voltage);
			}
			if (LOG_CONTROL_CHANGES) logerror(" BALANCE=%6.3fV -> int=%f ext=%f\n", voltage, m_mixer_internal, m_mixer_external);
			break;

		// filter frequency varies from -3.0 to +4.0, at 0.375V/octave
		case FILTER_FREQENCY:
			m_filter_frequency = m_filter_zero_freq * pow(2.0, -voltage * (1.0 / 0.375));
			if (LOG_CONTROL_CHANGES) logerror("FLT_FREQ=%6.3fV -> freq=%f\n", voltage, m_filter_frequency);
			break;

		// modulation depth is 0.01*freq at 0V and 2.0*freq at 3.5V
		case MODULATION_AMOUNT:
			if (voltage < 0.0)
				m_filter_modulation = 0.01;
			else if (voltage > 3.5)
				m_filter_modulation = 1.99;
			else
				m_filter_modulation = (voltage * (1.0 / 3.5)) * 1.98 + 0.01;
			if (LOG_CONTROL_CHANGES) logerror("FLT_MODU=%6.3fV -> mod=%f\n", voltage, m_filter_modulation);
			break;

		// this is not yet implemented
		case FILTER_RESONANCE:
			if (voltage < 0.0)
				m_filter_resonance = 0.0;
			else if (voltage > 2.5)
				m_filter_resonance = 1.0;
			else
				m_filter_resonance = voltage * (1.0 / 2.5);
			if (LOG_CONTROL_CHANGES) logerror("FLT_RESO=%6.3fV -> mod=%f\n", voltage, m_filter_resonance);
			break;
	}
}


double cem3394_device::get_parameter(int input)
{
	double voltage = m_values[input];

	switch (input)
	{
		case VCO_FREQUENCY:
			return m_vco_zero_freq * pow(2.0, -voltage * (1.0 / 0.75));

		case WAVE_SELECT:
			return voltage;

		case PULSE_WIDTH:
			if (voltage <= 0.0)
				return 0.0;
			else if (voltage >= 2.0)
				return 1.0;
			else
				return voltage * 0.5;

		case FINAL_GAIN:
			return compute_db(voltage);

		case MIXER_BALANCE:
			return voltage * 0.25;

		case MODULATION_AMOUNT:
			if (voltage < 0.0)
				return 0.01;
			else if (voltage > 3.5)
				return 1.99;
			else
				return (voltage * (1.0 / 3.5)) * 1.98 + 0.01;

		case FILTER_RESONANCE:
			if (voltage < 0.0)
				return 0.0;
			else if (voltage > 2.5)
				return 1.0;
			else
				return voltage * (1.0 / 2.5);

		case FILTER_FREQENCY:
			return m_filter_zero_freq * pow(2.0, -voltage * (1.0 / 0.375));
	}
	return 0.0;
}