summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/machine/wd33c9x.cpp
blob: 7c84c86f72df90056ae723611cc10559a71fe568 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
// license:BSD-3-Clause
// copyright-holders:Tyson Smith
/*
 * wd33c9x.c
 *
 * This is an NSCSI device implementation
 * of the Western Digital/AMD 33C9x SCSI
 * controllers used in many early
 * Silicon Graphics workstations.
 *
 * There are *many* things left to do, but
 * this starting point boots many low-level
 * programs from an NSCSI CDROM, on an
 * SGI driver.
 *
 */

#include "emu.h"
#include "wd33c9x.h"

#define LOG_READS       (1 << 0)
#define LOG_WRITES      (1 << 1)
#define LOG_COMMANDS    (1 << 2)
#define LOG_ERRORS      (1 << 3)
#define LOG_MISC        (1 << 4)
#define LOG_LINES       (1 << 5)
#define LOG_STATE       (1 << 6)
#define LOG_STEP        (1 << 7)
#define LOG_REGS        (LOG_READS | LOG_WRITES)
#define LOG_ALL         (LOG_REGS | LOG_COMMANDS | LOG_ERRORS | LOG_MISC | LOG_LINES | LOG_STATE | LOG_STEP)

#define VERBOSE         (0)
#include "logmacro.h"

enum register_addresses_e : uint8_t {
	OWN_ID               = 0x00, // Own ID Register                /CDB Size
	CONTROL              = 0x01, // Control Register
	TIMEOUT_PERIOD       = 0x02, // Timeout Period Register
	CDB_1                = 0x03, // Total Sectors Register         /CDB 1st
	CDB_2                = 0x04, // Total Headers Register         /CDB 2nd
	CDB_3                = 0x05, // Total Cylinders Register (MSB) /CDB 3rd
	CDB_4                = 0x06, // Total Cylinders Register (LSB) /CDB 4th
	CDB_5                = 0x07, // Logical Address (MSB)          /CDB 5th
	CDB_6                = 0x08, // Logical Address (2nd)          /CDB 6th
	CDB_7                = 0x09, // Logical Address (3rd)          /CDB 7th
	CDB_8                = 0x0a, // Logical Address (LSB)          /CDB 8th
	CDB_9                = 0x0b, // Sector Number Register         /CDB 9th
	CDB_10               = 0x0c, // Head Number Register           /CDB 10th
	CDB_11               = 0x0d, // Cylinder Number Register (MSB) /CDB 11th
	CDB_12               = 0x0e, // Cylinder Number Register (LSB) /CDB 12th
	TARGET_LUN           = 0x0f, // Target LUN Register
	COMMAND_PHASE        = 0x10, // Command Phase Register
	SYNCHRONOUS_TRANSFER = 0x11, // Synchronous Transfer Register
	TRANSFER_COUNT_MSB   = 0x12, // Transfer Count Register (MSB)
	TRANSFER_COUNT       = 0x13, // Transfer Count Register (2nd Byte)
	TRANSFER_COUNT_LSB   = 0x14, // Transfer Count Register (LSB)
	DESTINATION_ID       = 0x15, // Destination ID Register
	SOURCE_ID            = 0x16, // Source ID Register
	SCSI_STATUS          = 0x17, // SCSI Status Register
	COMMAND              = 0x18, // Command Register
	DATA                 = 0x19, // Data Register
	QUEUE_TAG            = 0x1a, // Queue Tag Register (33C93B only)
	INVALID_1B           = 0x1b,
	INVALID_1C           = 0x1c,
	INVALID_1D           = 0x1d,
	INVALID_1E           = 0x1e,
	AUXILIARY_STATUS     = 0x1f  // Auxiliary Status Register
};

// Own ID Register (0x00) fields and values
enum own_id_e : uint8_t {
	// Reset Command
	OWN_ID_SCSI_ID  = 0x07, // SCSI ID Bits
	OWN_ID_EAF      = 0x08, // Enable Advanced Features (33C93A and 33C93B only)
	OWN_ID_EHP      = 0x10, // Enable Host Parity (33C93A and 33C93B only)
	OWN_ID_RAF      = 0x20, // Really Advanced Features (33C93B only)
	OWN_ID_FS       = 0xc0, // Frequency Select (33C93A and 33C93B only)
	OWN_ID_FS_2     = 0x00, //   8-10MHz  -> clock divisor = 2
	OWN_ID_FS_3     = 0x40, //   12-15MHz -> clock divisor = 3
	OWN_ID_FS_4     = 0x80, //   16-20MHz -> clock divisor = 4

	// For other commands (when Advanced Features are enabled)
	OWN_ID_CDB_SIZE = 0x0f  // SCSI CDB Size
};

// Control Register (0x01) fields and values
enum control_e : uint8_t {
	CONTROL_HSP       = 0x01, // Halt on SCSI Parity Error
	CONTROL_HA        = 0x02, // Halt on Attention
	CONTROL_IDI       = 0x04, // Intermediate Disconnect (33C93A and 33C93B only)
	CONTROL_EDI       = 0x08, // Ending Disconnect Interrupt (33C93A and 33C93B only)
	CONTROL_HHP       = 0x10, // Halt on Host Parity Error (33C93A and 33C93B only)
	CONTROL_DM        = 0xe0, // DMA Mode Select
	CONTROL_DM_POLLED = 0x00, //   Polled I/O Mode or no DMA enabled
	CONTROL_DM_BURST  = 0x20, //   Burst Mode or demand-mode DMA (33C93A and 33C93B only)
	CONTROL_DM_BUS    = 0x40, //   WD-Bus Mode or Direct Buffer Access (DBA) mode
	CONTROL_DM_DMA    = 0x80, //   DMA MOOE or Single-byte DMA
};

// Target LUN Register (0x0f) fields and values
enum target_lun_e : uint8_t {
	TARGET_LUN_TL  = 0x07, // Target LUN
	TARGET_LUN_TRN = 0x20, // Target Routine Number
	TARGET_LUN_DOK = 0x40, // Disconnects OK
	TARGET_LUN_TLV = 0x80, // Target LUN Valid
};

// Command Phase Register (0x10) fields and values
enum command_phase_e : uint8_t {
	COMMAND_PHASE_ZERO                     = 0x00,
	COMMAND_PHASE_SELECTED                 = 0x10,
	COMMAND_PHASE_IDENTIFY_MESSAGE         = 0x20,
	COMMAND_PHASE_TAG_MESSAGE              = 0x21,
	COMMAND_PHASE_QUEUE_TAG                = 0x22,
	COMMAND_PHASE_CP_BYTES_0               = 0x30,
	COMMAND_PHASE_CP_BYTES_1               = 0x31,
	COMMAND_PHASE_CP_BYTES_2               = 0x32,
	COMMAND_PHASE_CP_BYTES_3               = 0x33,
	COMMAND_PHASE_CP_BYTES_4               = 0x34,
	COMMAND_PHASE_CP_BYTES_5               = 0x35,
	COMMAND_PHASE_CP_BYTES_6               = 0x36,
	COMMAND_PHASE_CP_BYTES_7               = 0x37,
	COMMAND_PHASE_CP_BYTES_8               = 0x38,
	COMMAND_PHASE_CP_BYTES_9               = 0x39,
	COMMAND_PHASE_CP_BYTES_A               = 0x3a,
	COMMAND_PHASE_CP_BYTES_B               = 0x3b,
	COMMAND_PHASE_CP_BYTES_C               = 0x3c,
	COMMAND_PHASE_SAVE_DATA_POINTER        = 0x41,
	COMMAND_PHASE_DISCONNECT_MESSAGE       = 0x42,
	COMMAND_PHASE_DISCONNECTED             = 0x43,
	COMMAND_PHASE_RESELECTED               = 0x44,
	COMMAND_PHASE_IDENTIFY_MATCH           = 0x45,
	COMMAND_PHASE_TRANSFER_COUNT           = 0x46,
	COMMAND_PHASE_RECEIVE_STATUS           = 0x47,
	COMMAND_PHASE_STATUS_RECEIVED          = 0x50,
	COMMAND_PHASE_COMMAND_COMPLETE         = 0x60,
	COMMAND_PHASE_LINKED_COMMAND_COMPLETE  = 0x61,
	COMMAND_PHASE_TARGET_LUN               = 0x70,
	COMMAND_PHASE_SIMPLE_QUEUE_TAG_MESSAGE = 0x71,
};

// Destination ID Register (0x15) fields and values
enum destination_id_e : uint8_t {
	DESTINATION_ID_DI     = 0x07, // Destination ID
	DESTINATION_ID_TG     = 0x18, // Tag Message
	DESTINATION_ID_TG_NM  = 0x00, //   No Message
	DESTINATION_ID_TG_SQT = 0x08, //   Simple Queue Tag
	DESTINATION_ID_TG_HQT = 0x10, //   Head of Queue Tag
	DESTINATION_ID_TG_OQT = 0x18, //   Ordered Queue Tag
	DESTINATION_ID_DF     = 0x20, // Disable Feature
	DESTINATION_ID_DPD    = 0x40, // Data Phase Direction
	DESTINATION_ID_SCC    = 0x80, // Select Command Chain
};

// Source ID Register (0x16) fields and values
enum source_id_e : uint8_t {
	SOURCE_ID_SI  = 0x07, // Source ID
	SOURCE_ID_SIV = 0x08, // Source ID Valid
	SOURCE_ID_DSP = 0x20, // Disable Select Parity
	SOURCE_ID_ES  = 0x40, // Enable Selection
	SOURCE_ID_ER  = 0x80, // Enable Reselection
};

// SCSI Status Register (0x17) fields and values
enum scsi_status_e : uint8_t {
	SCSI_STATUS_RESET                                 = 0x00,
	SCSI_STATUS_RESET_EAF                             = 0x01,

	SCSI_STATUS_RESELECT_SUCCESS                      = 0x10,
	SCSI_STATUS_SELECT_SUCCESS                        = 0x11,
	SCSI_STATUS_COMMAND_SUCCESS                       = 0x13,
	SCSI_STATUS_COMMAND_ATN_SUCCESS                   = 0x14,
	SCSI_STATUS_TRANSLATE_SUCCESS                     = 0x15,
	SCSI_STATUS_SELECT_TRANSFER_SUCCESS               = 0x16,
	SCSI_STATUS_TRANSFER_SUCCESS                      = 0x18,

	SCSI_STATUS_TRANSFER_INFO_MSG_IN                  = 0x20,
	SCSI_STATUS_SAVE_DATA_POINTERS                    = 0x21,
	SCSI_STATUS_SELECTION_ABORTED                     = 0x22,
	SCSI_STATUS_RECEIVE_SEND_ABORTED                  = 0x23,
	SCSI_STATUS_RECEIVE_SEND_ABORTED_ATN              = 0x24,
	SCSI_STATUS_ABORT_DURING_SELECTION                = 0x25,
	SCSI_STATUS_RESELECTED_DURING_SELECT_AND_TRANSFER = 0x27,
	SCSI_STATUS_TRANSFER_ABORTED                      = 0x28,

	SCSI_STATUS_INVALID_COMMAND                       = 0x40,
	SCSI_STATUS_UNEXPECTED_DISCONNECT                 = 0x41,
	SCSI_STATUS_SELECTION_TIMEOUT                     = 0x42,
	SCSI_STATUS_PARITY_ERROR                          = 0x43,
	SCSI_STATUS_PARITY_ERROR_ATN                      = 0x44,
	SCSI_STATUS_LOGICAL_ADDRESS_TOO_LARGE             = 0x45,
	SCSI_STATUS_RESELECTION_MISMATCH                  = 0x46,
	SCSI_STATUS_INCORRECT_STATUS_BYTE                 = 0x47,
	SCSI_STATUS_UNEXPECTED_PHASE                      = 0x48,

	SCSI_STATUS_RESELECTED                            = 0x80,
	SCSI_STATUS_RESELECTED_EAF                        = 0x81,
	SCSI_STATUS_SELECTED                              = 0x82,
	SCSI_STATUS_SELECTED_ATN                          = 0x83,
	SCSI_STATUS_ATN                                   = 0x84,
	SCSI_STATUS_DISCONNECT                            = 0x85,
	SCSI_STATUS_NEED_COMMAND_SIZE                     = 0x87,
	SCSI_STATUS_REQ                                   = 0x88
};

// Command Register (0x18) fields and values
enum command_e : uint8_t {
	COMMAND_CC                              = 0x7f,
	COMMAND_CC_RESET                        = 0x00,
	COMMAND_CC_ABORT                        = 0x01,
	COMMAND_CC_ASSERT_ATN                   = 0x02,
	COMMAND_CC_NEGATE_ACK                   = 0x03,
	COMMAND_CC_DISCONNECT                   = 0x04,
	COMMAND_CC_RESELECT                     = 0x05,
	COMMAND_CC_SELECT_ATN                   = 0x06,
	COMMAND_CC_SELECT                       = 0x07,
	COMMAND_CC_SELECT_ATN_TRANSFER          = 0x08,
	COMMAND_CC_SELECT_TRANSFER              = 0x09,
	COMMAND_CC_RESELECT_RECEIVE_DATA        = 0x0a,
	COMMAND_CC_RESELECT_SEND_DATA           = 0x0b,
	COMMAND_CC_WAIT_SELECT_RECEIVE_DATA     = 0x0c,
	COMMAND_CC_SEND_STATUS_COMMAND_COMPLETE = 0x0d,
	COMMAND_CC_SEND_DISCONNECT_MESSAGE      = 0x0e,
	COMMAND_CC_SET_IDI                      = 0x0f,
	COMMAND_CC_RECEIVE_COMMAND              = 0x10,
	COMMAND_CC_RECEIVE_DATA                 = 0x11,
	COMMAND_CC_RECEIVE_MESSAGE_OUT          = 0x12,
	COMMAND_CC_RECEIVE_UNSPECIFIED_INFO_OUT = 0x13,
	COMMAND_CC_SEND_STATUS                  = 0x14,
	COMMAND_CC_SEND_DATA                    = 0x15,
	COMMAND_CC_SEND_MESSAGE_IN              = 0x16,
	COMMAND_CC_SEND_UNSPECIFIED_INFO_IN     = 0x17,
	COMMAND_CC_TRANSLATE_ADDRESS            = 0x18,
	COMMAND_CC_TRANSFER_PAD                 = 0x19,
	COMMAND_CC_TRANSFER_INFO                = 0x20,
	COMMAND_SBT                             = 0x80,
};

// Auxiliary Status Register (0x1f) fields and values
enum auxiliary_status_e : uint8_t {
	AUXILIARY_STATUS_DBR = 0x01, // Data Buffer Ready
	AUXILIARY_STATUS_PE  = 0x02, // Parity Error
	AUXILIARY_STATUS_FFE = 0x04, // FIFO Full/Empty (33C93B only)
	AUXILIARY_STATUS_CIP = 0x10, // Command In Progress (33C93B only)
	AUXILIARY_STATUS_BSY = 0x20, // Busy
	AUXILIARY_STATUS_LCI = 0x40, // Last Command Ignored
	AUXILIARY_STATUS_INT = 0x80  // Interrupt Pending
};

// SCSI bus connection states (modes)
enum : uint8_t {
	MODE_D, // Disconnected
	MODE_T, // Target
	MODE_I  // Initiator
};

enum : uint16_t {
	IDLE = 1,
	FINISHED,

	// Disconnected state commands
	DISC_SEL_ARBITRATION,

	// Initiator commands
	INIT_MSG_WAIT_REQ,
	INIT_XFR,
	INIT_XFR_SEND_PAD_WAIT_REQ,
	INIT_XFR_SEND_PAD,
	INIT_XFR_RECV_PAD_WAIT_REQ,
	INIT_XFR_RECV_PAD,
	INIT_XFR_RECV_BYTE_ACK,
	INIT_XFR_RECV_BYTE_NACK,
	INIT_XFR_FUNCTION_COMPLETE,
	INIT_XFR_BUS_COMPLETE,
	INIT_XFR_WAIT_REQ,
	INIT_CPT_RECV_BYTE_ACK,
	INIT_CPT_RECV_WAIT_REQ,
	INIT_CPT_RECV_BYTE_NACK
};

const char *const wd33c9x_base_device::state_names[] = {
	"-",
	"IDLE",
	"FINISHED",
	"DISC_SEL_ARBITRATION",
	"INIT_MSG_WAIT_REQ",
	"INIT_XFR",
	"INIT_XFR_SEND_PAD_WAIT_REQ",
	"INIT_XFR_SEND_PAD",
	"INIT_XFR_RECV_PAD_WAIT_REQ",
	"INIT_XFR_RECV_PAD",
	"INIT_XFR_RECV_BYTE_ACK",
	"INIT_XFR_RECV_BYTE_NACK",
	"INIT_XFR_FUNCTION_COMPLETE",
	"INIT_XFR_BUS_COMPLETE",
	"INIT_XFR_WAIT_REQ",
	"INIT_CPT_RECV_BYTE_ACK",
	"INIT_CPT_RECV_WAIT_REQ",
	"INIT_CPT_RECV_BYTE_NACK",
};

enum : uint16_t {
	// Arbitration
	ARB_WAIT_BUS_FREE = 1,
	ARB_CHECK_FREE,
	ARB_EXAMINE_BUS,
	ARB_ASSERT_SEL,
	ARB_SET_DEST,
	ARB_RELEASE_BUSY,
	ARB_TIMEOUT_BUSY,
	ARB_TIMEOUT_ABORT,
	ARB_DESKEW_WAIT,

	// Send/receive byte
	SEND_WAIT_SETTLE,
	SEND_WAIT_REQ_0,
	RECV_WAIT_REQ_1,
	RECV_WAIT_SETTLE,
	RECV_WAIT_REQ_0
};

const char *const wd33c9x_base_device::substate_names[] = {
	"-",
	"ARB_WAIT_BUS_FREE",
	"ARB_CHECK_FREE",
	"ARB_EXAMINE_BUS",
	"ARB_ASSERT_SEL",
	"ARB_SET_DEST",
	"ARB_RELEASE_BUSY",
	"ARB_TIMEOUT_BUSY",
	"ARB_TIMEOUT_ABORT",
	"ARB_DESKEW_WAIT",
	"SEND_WAIT_SETTLE",
	"SEND_WAIT_REQ_0",
	"RECV_WAIT_REQ_1",
	"RECV_WAIT_SETTLE",
	"RECV_WAIT_REQ_0",
};

enum : uint16_t {
	STATE_MASK = 0x00ff,
	SUB_SHIFT  = 8,
	SUB_MASK   = 0xff00
};


//**************************************************************************
//  LIVE DEVICE
//**************************************************************************

DEFINE_DEVICE_TYPE(WD33C92,  wd33c92_device,  "wd33c92",  "Western Digital WD33C92 SCSI Controller")
DEFINE_DEVICE_TYPE(WD33C93,  wd33c93_device,  "wd33c93",  "Western Digital WD33C93 SCSI Controller")
DEFINE_DEVICE_TYPE(WD33C93A, wd33c93a_device, "wd33c93a", "Western Digital WD33C93A SCSI Controller")
DEFINE_DEVICE_TYPE(WD33C93B, wd33c93b_device, "wd33c93b", "Western Digital WD33C93B SCSI Controller")

//-------------------------------------------------
//  wd33c9x_base_device - constructor/destructor
//-------------------------------------------------

wd33c9x_base_device::wd33c9x_base_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock)
	: nscsi_device{ mconfig, type, tag, owner, clock }
	, nscsi_slot_card_interface(mconfig, *this, DEVICE_SELF)
	, m_addr{ 0 }
	, m_regs{ 0 }
	, m_command_length{ 0 }
	, m_last_message{ 0 }
	, m_scsi_state{ IDLE }
	, m_mode{ MODE_D }
	, m_xfr_phase{ 0 }
	, m_transfer_count{ 0 }
	, m_data_fifo{ 0 }
	, m_data_fifo_pos{ 0 }
	, m_data_fifo_size{ 0 }
	, m_irq_fifo{ 0 }
	, m_irq_fifo_pos{ 0 }
	, m_irq_fifo_size{ 0 }
	, m_irq_cb{ *this }
	, m_drq_cb{ *this }
	, m_drq_state{ false }
	, m_timer{ nullptr }
{
}


//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void wd33c9x_base_device::device_start()
{
	m_irq_cb.resolve_safe();
	m_drq_cb.resolve_safe();
	m_timer = timer_alloc(0);
	save_item(NAME(m_addr));
	save_item(NAME(m_regs));
	save_item(NAME(m_command_length));
	save_item(NAME(m_last_message));
	save_item(NAME(m_mode));
	save_item(NAME(m_scsi_state));
	save_item(NAME(m_xfr_phase));
	save_item(NAME(m_transfer_count));
	save_item(NAME(m_data_fifo));
	save_item(NAME(m_data_fifo_pos));
	save_item(NAME(m_data_fifo_size));
	save_item(NAME(m_irq_fifo));
	save_item(NAME(m_irq_fifo_pos));
	save_item(NAME(m_irq_fifo_size));
	save_item(NAME(m_drq_state));
}


//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void wd33c9x_base_device::device_reset()
{
	// This is a hardware reset.  Software reset is handled
	// under COMMAND_CC_RESET.
	scsi_bus->ctrl_w(scsi_refid, 0, S_ALL);
	scsi_bus->ctrl_wait(scsi_refid, S_SEL|S_BSY|S_RST, S_ALL);
	m_addr = 0;
	for (uint8_t reg = 0; reg < NUM_REGS; ++reg) {
		// FIXME - QUEUE_TAG is a valid register for 93B only
		m_regs[reg] = (QUEUE_TAG <= reg && reg <= INVALID_1E) ? 0xff : 0;
	}
	m_command_length = 0;
	m_last_message = 0;
	set_scsi_state(IDLE);
	m_mode = MODE_D;
	m_xfr_phase = 0;
	m_transfer_count = 0;
	data_fifo_reset();
	irq_fifo_reset();
	m_irq_cb(CLEAR_LINE);
	m_drq_cb(CLEAR_LINE);
	m_drq_state = false;

	// Hardware reset triggers a SCSI_STATUS_RESET interrupt.
	irq_fifo_push(SCSI_STATUS_RESET);
	update_irq();
}


//-------------------------------------------------
//  device_timer - device-specific timer handler
//-------------------------------------------------

void wd33c9x_base_device::device_timer(emu_timer &timer, device_timer_id tid, int param, void *ptr)
{
	step(true);
}


//-------------------------------------------------
//  scsi_ctrl_changed - smart comment
//-------------------------------------------------

void wd33c9x_base_device::scsi_ctrl_changed()
{
	const uint32_t ctrl = scsi_bus->ctrl_r();
	if (ctrl & S_RST) {
		LOG("scsi bus reset\n");
		// FIXME - Do something...
		return;
	}
	step(false);
}


//**************************************************************************
//  MEMORY HANDLERS
//**************************************************************************


//-------------------------------------------------
//  dir_r
//-------------------------------------------------

uint8_t wd33c9x_base_device::dir_r(offs_t offset)
{
	m_addr = offset & REGS_MASK;
	return indir_reg_r();
}


//-------------------------------------------------
//  dir_w
//-------------------------------------------------

void wd33c9x_base_device::dir_w(offs_t offset, uint8_t data)
{
	m_addr = offset & REGS_MASK;
	indir_reg_w(data);
}


//-------------------------------------------------
//  indir_r
//-------------------------------------------------

uint8_t wd33c9x_base_device::indir_r(offs_t offset)
{
	switch (offset) {
	case 0:
		return indir_addr_r();
	case 1:
		return indir_reg_r();
	default:
		LOGMASKED(LOG_READS | LOG_ERRORS, "Read from invalid offset %d\n", offset);
		break;
	}
	return 0;
}


//-------------------------------------------------
//  indir_w
//-------------------------------------------------

void wd33c9x_base_device::indir_w(offs_t offset, uint8_t data)
{
	switch (offset) {
	case 0:
		indir_addr_w(data);
		break;
	case 1:
		indir_reg_w(data);
		break;
	default:
		LOGMASKED(LOG_WRITES | LOG_ERRORS, "Write to invalid offset %d (data=%02x)\n", offset, data);
		break;
	}
}


//-------------------------------------------------
//  indir_addr_r
//-------------------------------------------------

uint8_t wd33c9x_base_device::indir_addr_r()
{
	// Trick to push the interrupt flag after the fifo is empty to help cps3
	return m_regs[AUXILIARY_STATUS] & 0x01 ? m_regs[AUXILIARY_STATUS] & 0x7f : m_regs[AUXILIARY_STATUS];
}


//-------------------------------------------------
//  indir_addr_w
//-------------------------------------------------

void wd33c9x_base_device::indir_addr_w(uint8_t data)
{
	m_addr = data & REGS_MASK;
}


//-------------------------------------------------
//  indir_reg_r
//-------------------------------------------------

uint8_t wd33c9x_base_device::indir_reg_r()
{
	uint8_t ret;
	switch (m_addr) {
	case DATA: {
		if (!(m_regs[AUXILIARY_STATUS] & AUXILIARY_STATUS_DBR)) {
			// The processor, except in one case, should only
			// access the Data Register when the DBR bit in the
			// Auxiliary Status Register is true. The exception
			// occurs when the 33C93B is reselected while operating
			// in advanced mode; the processor must retrieve
			// the Identify message from the target by reading the
			// Data Register.
			fatalerror("%s: The host should never access the data register without DBR set.\n", shortname());
		}
		bool was_full = data_fifo_full();
		ret = data_fifo_pop();
		if (data_fifo_empty())
			m_regs[AUXILIARY_STATUS] &= ~AUXILIARY_STATUS_DBR;
		if (was_full)
			step(false);
		break;
	}

	default:
		if (m_addr == OWN_ID) {
			ret = m_command_length;
		}
		else {
			ret = m_regs[m_addr];
		}

		// Clear IRQ when the SCSI Status Register is read
		if (m_addr == SCSI_STATUS) {
			update_irq();
		}

		// No address increment on accesses to Command, Data, and Auxiliary Status Registers
		if (m_addr != COMMAND && m_addr != AUXILIARY_STATUS) {
			m_addr = (m_addr + 1) & REGS_MASK;
		}
		break;
	}

	return ret;
}


//-------------------------------------------------
//  indir_reg_w
//-------------------------------------------------

void wd33c9x_base_device::indir_reg_w(uint8_t data)
{
	switch (m_addr) {
	case SCSI_STATUS:
	case QUEUE_TAG: // Only for 92/93 and 93A
	case INVALID_1B:
	case INVALID_1C:
	case INVALID_1D:
	case INVALID_1E:
	case AUXILIARY_STATUS:
		LOGMASKED(LOG_WRITES | LOG_ERRORS, "Write to read-only register address %d (data=%02x)\n", m_addr, data);
		break;

	case COMMAND: {
		if (m_regs[AUXILIARY_STATUS] & (AUXILIARY_STATUS_INT | AUXILIARY_STATUS_CIP)) {
			logerror("%s: The host should never write to the command register when INT or CIP are set.\n", shortname());
		}

		const uint8_t cc = (data & COMMAND_CC);
		if (cc == COMMAND_CC_SET_IDI) {
			m_regs[CONTROL] |= CONTROL_IDI;
			break;
		}

		if (cc > COMMAND_CC_DISCONNECT && (m_regs[AUXILIARY_STATUS] & AUXILIARY_STATUS_BSY)) {
			fatalerror("%s: The host should never issue a Level II command when BSY is set.\n", shortname());
		}

		m_regs[COMMAND] = data;
		start_command();
	} break;

	case DATA:
		if (!(m_regs[AUXILIARY_STATUS] & AUXILIARY_STATUS_DBR)) {
			fatalerror("%s: The host should never write the data register without DBR set.\n", shortname());
		}
		m_regs[AUXILIARY_STATUS] &= ~AUXILIARY_STATUS_DBR;
		data_fifo_push(data);
		decrement_transfer_count();
		step(false);
		break;

	default:
		if (m_addr == OWN_ID) {
			m_command_length = data;
		}
		else {
			m_regs[m_addr] = data;
		}
		m_addr = (m_addr + 1) & REGS_MASK;
		break;
	}
}


//-------------------------------------------------
//  reset - Host reset line handler
//-------------------------------------------------

WRITE_LINE_MEMBER(wd33c9x_base_device::reset_w)
{
	if (state) {
		LOGMASKED(LOG_LINES, "Reset via MR line\n");
		device_reset();
	}
}


//-------------------------------------------------
//  dma_r - DMA read interface
//-------------------------------------------------

uint8_t wd33c9x_base_device::dma_r()
{
	const uint8_t ret = data_fifo_pop();
	decrement_transfer_count();
	clear_drq();
	return ret;
}


//-------------------------------------------------
//  dma_w - DMA write interface
//-------------------------------------------------

void wd33c9x_base_device::dma_w(const uint8_t data)
{
	data_fifo_push(data);
	decrement_transfer_count();
	clear_drq();
}


static const char * select_strings[4] = {
	"Select-w/Atn",
	"Select",
	"Select-w/Atn-and-Transfer",
	"Select-and-Transfer"
};


//-------------------------------------------------
//  start_command
//-------------------------------------------------

void wd33c9x_base_device::start_command()
{
	const uint8_t cc = m_regs[COMMAND] & COMMAND_CC;

	// Command In Progress
	//  The CIP flag being set only means that the WD33C9x is
	//  *interpreting* the contents of the Command Register.
	//  It shouldn't actually be set.
	//m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_CIP;
	if (cc > COMMAND_CC_DISCONNECT && cc != COMMAND_CC_SET_IDI) {
		m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_BSY;
	}

	switch (cc) {
	case COMMAND_CC_RESET:
		LOGMASKED(LOG_COMMANDS, "Reset Command\n");
		scsi_bus->ctrl_w(scsi_refid, 0, S_ALL);
		scsi_bus->ctrl_wait(scsi_refid, S_SEL|S_BSY|S_RST, S_ALL);
		m_regs[OWN_ID] = m_command_length;
		memset(&m_regs[CONTROL], 0, SOURCE_ID - CONTROL);
		m_regs[COMMAND] = 0;
		m_regs[AUXILIARY_STATUS] &= ~AUXILIARY_STATUS_DBR;
		m_mode = MODE_D;
		data_fifo_reset();
		irq_fifo_reset();
		update_irq();
		set_scsi_state(FINISHED);
		irq_fifo_push((m_regs[OWN_ID] & OWN_ID_EAF) ? SCSI_STATUS_RESET_EAF : SCSI_STATUS_RESET);
		scsi_id = (m_regs[OWN_ID] & OWN_ID_SCSI_ID);
		step(false);
		break;

	case COMMAND_CC_ABORT:
		LOGMASKED(LOG_COMMANDS, "Abort Command\n");
		set_scsi_state(FINISHED);
		// FIXME
		irq_fifo_push((m_regs[OWN_ID] & OWN_ID_EAF) ? SCSI_STATUS_RESET_EAF : SCSI_STATUS_RESET);
		break;

	case COMMAND_CC_ASSERT_ATN:
		LOGMASKED(LOG_COMMANDS, "Assert ATN Command\n");
		if (m_mode != MODE_I) {
			fatalerror("%s: ASSERT_ATN command only valid in the Initiator state.", shortname());
		}
		scsi_bus->ctrl_w(scsi_refid, S_ATN, S_ATN);
		return;

	case COMMAND_CC_NEGATE_ACK:
		LOGMASKED(LOG_COMMANDS, "Negate ACK Command\n");
		// FIXME - This is causing problems, so ignore for now.
		//if (m_mode != MODE_I) {
		//  fatalerror("NEGATE_ACK command only valid in the Initiator state.");
		//}
		scsi_bus->ctrl_w(scsi_refid, 0, S_ACK);
		return;

	case COMMAND_CC_DISCONNECT:
		LOGMASKED(LOG_COMMANDS, "Disconnect Command\n");
		scsi_bus->ctrl_w(scsi_refid, 0, S_ALL);
		scsi_bus->ctrl_wait(scsi_refid, S_SEL|S_BSY|S_RST, S_ALL);
		m_mode = MODE_D;
		set_scsi_state(IDLE);
		m_regs[AUXILIARY_STATUS] &= ~(AUXILIARY_STATUS_CIP | AUXILIARY_STATUS_BSY);
		break;

	case COMMAND_CC_SELECT:
	case COMMAND_CC_SELECT_ATN:
		LOGMASKED(LOG_COMMANDS, "%s Command\n", select_strings[cc - COMMAND_CC_SELECT_ATN]);
		if (m_mode != MODE_D) {
			fatalerror("Select commands only valid in the Disconnected state.");
		}
		set_scsi_state((ARB_WAIT_BUS_FREE << SUB_SHIFT) | DISC_SEL_ARBITRATION);
		step(false);
		break;

	case COMMAND_CC_SELECT_TRANSFER:
	case COMMAND_CC_SELECT_ATN_TRANSFER:
		LOGMASKED(LOG_COMMANDS, "%s Command\n", select_strings[cc - COMMAND_CC_SELECT_ATN]);
		if (m_mode == MODE_D) {
			set_scsi_state((ARB_WAIT_BUS_FREE << SUB_SHIFT) | DISC_SEL_ARBITRATION);
			m_regs[COMMAND_PHASE] = COMMAND_PHASE_ZERO;
		}
		else if (m_mode == MODE_I) {
			set_scsi_state(INIT_XFR);
		}
		else {
			fatalerror("%s: Select-and-Transfer commands only valid in the Disconnected and Initiator states.", shortname());
		}
		set_command_length(cc);
		load_transfer_count();
		step(false);
		break;

	case COMMAND_CC_TRANSFER_INFO:
		LOGMASKED(LOG_COMMANDS, "Transfer Info Command\n");
		if (m_mode != MODE_I) {
			fatalerror("%s: TRANSFER_INFO command only valid in the Initiator state.", shortname());
		}
		m_regs[AUXILIARY_STATUS] &= ~AUXILIARY_STATUS_DBR;
		set_scsi_state(INIT_XFR);
		set_command_length(COMMAND_CC_TRANSFER_INFO);
		load_transfer_count();
		m_xfr_phase = (scsi_bus->ctrl_r() & S_PHASE_MASK);
		step(false);
		return;

	default:
		fatalerror("%s: Unimplemented command: 0x%02x", shortname(), cc);
		break;
	}
}


static const char * phase_strings[8] = {
	"DATA_OUT",
	"DATA_IN",
	"COMMAND",
	"STATUS",
	"INVALID_4",
	"INVALID_5",
	"MSG_OUT",
	"MSG_IN",
};


//-------------------------------------------------
//  step - advance the SCSI state machine
//-------------------------------------------------

void wd33c9x_base_device::step(bool timeout)
{
	const uint8_t cc = (m_regs[COMMAND] & COMMAND_CC);
	const bool sat = (cc == COMMAND_CC_SELECT_TRANSFER || cc == COMMAND_CC_SELECT_ATN_TRANSFER);

	const uint32_t ctrl = scsi_bus->ctrl_r();
	const uint32_t data = scsi_bus->data_r();

	LOGMASKED(LOG_STEP,
			  "%s: step - PHASE:%s BSY:%x SEL:%x REQ:%x ACK:%x ATN:%x RST:%x DATA:%02x (%s.%s) %s\n",
			  shortname(),
			  phase_strings[ctrl & S_PHASE_MASK],
			  (ctrl & S_BSY) ? 1 : 0,
			  (ctrl & S_SEL) ? 1 : 0,
			  (ctrl & S_REQ) ? 1 : 0,
			  (ctrl & S_ACK) ? 1 : 0,
			  (ctrl & S_ATN) ? 1 : 0,
			  (ctrl & S_RST) ? 1 : 0,
			  data,
			  state_names[m_scsi_state & STATE_MASK], substate_names[m_scsi_state >> SUB_SHIFT],
			  (timeout) ? "timeout" : "change"
			  );

	if (m_mode == MODE_I) {
		if (ctrl & S_BSY) {
			if (ctrl & S_REQ) {
				uint8_t xfr_phase = (ctrl & S_PHASE_MASK);
				switch (m_scsi_state) {
				case DISC_SEL_ARBITRATION:
					m_xfr_phase = xfr_phase;
					break;

				case INIT_XFR_WAIT_REQ:
					break;

				default:
					if (m_xfr_phase != xfr_phase) {
						fatalerror("%s: Unexpected phase change during state.\n", shortname());
					}
					break;
				}
			}
		} else {
			LOGMASKED(LOG_STATE, "Target disconnected\n");
			if (sat) {
				switch (m_regs[COMMAND_PHASE]) {
				case COMMAND_PHASE_DISCONNECT_MESSAGE:
					set_scsi_state(FINISHED);
					m_regs[COMMAND_PHASE] = COMMAND_PHASE_DISCONNECTED;
					break;

				case COMMAND_PHASE_COMMAND_COMPLETE:
					if (m_regs[CONTROL] & CONTROL_EDI) {
						set_scsi_state(FINISHED);
						irq_fifo_push(SCSI_STATUS_SELECT_TRANSFER_SUCCESS);
					} else {
						// Makes very little sense, but the previous code did it and warzard seems to need it - XXX
						m_regs[CONTROL] |= CONTROL_EDI;
					}
					break;

				default:
					fatalerror("%s: Unhandled command phase during Select-and-Transfer disconnect.\n", shortname());
					break;
				}
			} else {
				set_scsi_state(FINISHED);
				irq_fifo_push(SCSI_STATUS_DISCONNECT);
			}
			m_mode = MODE_D;
			scsi_bus->ctrl_w(scsi_refid, 0, S_ALL);
			scsi_bus->ctrl_wait(scsi_refid, S_SEL|S_BSY|S_RST, S_ALL);
		}
	}

	switch (m_scsi_state & SUB_MASK ? m_scsi_state & SUB_MASK : m_scsi_state & STATE_MASK) {
	case IDLE:
		break;

	case FINISHED:
		set_scsi_state(IDLE);
		m_regs[AUXILIARY_STATUS] &= ~(AUXILIARY_STATUS_CIP | AUXILIARY_STATUS_BSY);
		update_irq();
		break;

	case ARB_WAIT_BUS_FREE << SUB_SHIFT:
		if (!(ctrl & (S_BSY | S_SEL))) {
			set_scsi_state_sub(ARB_CHECK_FREE);
			delay(1);
		}
		break;

	case ARB_CHECK_FREE << SUB_SHIFT:
		if (ctrl & (S_BSY | S_SEL)) {
			set_scsi_state_sub(ARB_CHECK_FREE);
			break;
		}
		if (timeout) {
			scsi_bus->data_w(scsi_refid, 1 << scsi_id);
			scsi_bus->ctrl_w(scsi_refid, S_BSY, S_BSY);
			set_scsi_state_sub(ARB_EXAMINE_BUS);
			delay(1);
		}
		break;

	case ARB_EXAMINE_BUS << SUB_SHIFT:
		if (timeout) {
			if (ctrl & S_SEL) {
				scsi_bus->ctrl_w(scsi_refid, 0, S_BSY);
				scsi_bus->data_w(scsi_refid, 0);
				set_scsi_state_sub(ARB_WAIT_BUS_FREE);
			} else {
				int win;
				for (win = 7; win >=0 && !(data & (1 << win)); win--);
				if (win == scsi_id) {
					scsi_bus->ctrl_w(scsi_refid, S_SEL, S_SEL);
					set_scsi_state_sub(ARB_ASSERT_SEL);
					delay(1);
				} else {
					scsi_bus->data_w(scsi_refid, 0);
					scsi_bus->ctrl_w(scsi_refid, 0, S_ALL);
					set_scsi_state_sub(ARB_CHECK_FREE);
				}
			}
		}
		break;

	case ARB_ASSERT_SEL << SUB_SHIFT:
		if (timeout) {
			scsi_bus->data_w(scsi_refid, (1 << scsi_id) | (1 << (m_regs[DESTINATION_ID] & DESTINATION_ID_DI)));
			set_scsi_state_sub(ARB_SET_DEST);
			delay(1);
		}
		break;

	case ARB_SET_DEST << SUB_SHIFT:
		if (timeout) {
			scsi_bus->ctrl_w(scsi_refid, (cc == COMMAND_CC_SELECT_ATN || cc == COMMAND_CC_SELECT_ATN_TRANSFER) ? S_ATN : 0, S_ATN | S_BSY);
			set_scsi_state_sub(ARB_RELEASE_BUSY);
			delay(1);
		}
		break;

	case ARB_RELEASE_BUSY << SUB_SHIFT:
		if (timeout) {
			if (ctrl & S_BSY) {
				set_scsi_state_sub(ARB_DESKEW_WAIT);
				if (cc == COMMAND_CC_RESELECT) {
					scsi_bus->ctrl_w(scsi_refid, S_BSY, S_BSY);
				}
				delay(1);
			} else {
				set_scsi_state_sub(ARB_TIMEOUT_BUSY);
				delay(1); // Should be the select timeout...
			}
		}
		break;

	case ARB_DESKEW_WAIT << SUB_SHIFT:
		if (timeout) {
			scsi_bus->data_w(scsi_refid, 0);
			scsi_bus->ctrl_w(scsi_refid, 0, S_SEL);
			m_mode = (cc == COMMAND_CC_RESELECT) ? MODE_T : MODE_I;
			set_scsi_state_sub(0);
			step(true);
		}
		break;

	case ARB_TIMEOUT_BUSY << SUB_SHIFT:
		if (timeout) {
			scsi_bus->data_w(scsi_refid, 0);
			set_scsi_state_sub(ARB_TIMEOUT_ABORT);
			delay(1000);
		} else if (ctrl & S_BSY) {
			set_scsi_state_sub(ARB_DESKEW_WAIT);
			if (cc == COMMAND_CC_RESELECT) {
				scsi_bus->ctrl_w(scsi_refid, S_BSY, S_BSY);
			}
			delay(1);
		}
		break;

	case ARB_TIMEOUT_ABORT << SUB_SHIFT:
		if (timeout) {
			if (ctrl & S_BSY) {
				set_scsi_state_sub(ARB_DESKEW_WAIT);
				if (cc == COMMAND_CC_RESELECT) {
					scsi_bus->ctrl_w(scsi_refid, S_BSY, S_BSY);
				}
				delay(1);
			} else {
				scsi_bus->ctrl_w(scsi_refid, 0, S_ALL);
				scsi_bus->ctrl_wait(scsi_refid, S_SEL|S_BSY|S_RST, S_ALL);
				m_regs[AUXILIARY_STATUS] &= ~(AUXILIARY_STATUS_CIP | AUXILIARY_STATUS_BSY);
				m_mode = MODE_D;
				set_scsi_state(IDLE);
				irq_fifo_push(SCSI_STATUS_SELECTION_TIMEOUT);
				update_irq();
			}
		}
		break;

	case SEND_WAIT_SETTLE << SUB_SHIFT:
		if (timeout) {
			set_scsi_state_sub(SEND_WAIT_REQ_0);
			step(false);
		}
		break;

	case SEND_WAIT_REQ_0 << SUB_SHIFT:
		if (!(ctrl & S_REQ)) {
			set_scsi_state_sub(0);
			scsi_bus->data_w(scsi_refid, 0);
			scsi_bus->ctrl_w(scsi_refid, 0, S_ACK);
			if (sat) {
				switch (m_xfr_phase) {
				case S_PHASE_COMMAND:
					++m_regs[COMMAND_PHASE];
					break;
				}
			}
			step(false);
		}
		break;

	case RECV_WAIT_REQ_1 << SUB_SHIFT:
		if (ctrl & S_REQ) {
			set_scsi_state_sub(RECV_WAIT_SETTLE);
			delay(1);
		}
		break;

	case RECV_WAIT_SETTLE << SUB_SHIFT:
		if (timeout) {
			if (sat) {
				switch (m_xfr_phase) {
				case S_PHASE_DATA_IN:
					data_fifo_push(data);
					if ((m_regs[CONTROL] & CONTROL_DM) != CONTROL_DM_POLLED) {
						set_drq();
					} else {
						decrement_transfer_count();
						m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_DBR;
					}
					break;

				case S_PHASE_STATUS:
					m_regs[TARGET_LUN] = data;
					m_regs[COMMAND_PHASE] = COMMAND_PHASE_STATUS_RECEIVED;
					break;

				case S_PHASE_MSG_IN:
					m_last_message = data;
					break;

				default:
					fatalerror("%s: Unexpected phase in RECV_WAIT_SETTLE.\n", shortname());
					break;
				}
			} else {
				data_fifo_push(data);
				if (m_xfr_phase == S_PHASE_DATA_IN && (m_regs[CONTROL] & CONTROL_DM) != CONTROL_DM_POLLED) {
					set_drq();
				} else {
					decrement_transfer_count();
					m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_DBR;
				}
			}
			set_scsi_state_sub(RECV_WAIT_REQ_0);
			scsi_bus->ctrl_w(scsi_refid, S_ACK, S_ACK);
			step(false);
		}
		break;

	case RECV_WAIT_REQ_0 << SUB_SHIFT:
		if (!(ctrl & S_REQ)) {
			set_scsi_state_sub(0);
			step(false);
		}
		break;

	case DISC_SEL_ARBITRATION:
		scsi_bus->ctrl_wait(scsi_refid, S_REQ, S_REQ);
		if (cc == COMMAND_CC_SELECT || cc == COMMAND_CC_SELECT_ATN) {
			set_scsi_state(FINISHED);
			irq_fifo_push(SCSI_STATUS_SELECT_SUCCESS);
			if (ctrl & S_REQ) {
				irq_fifo_push(SCSI_STATUS_REQ | m_xfr_phase);
			}
		} else {
			if(cc == COMMAND_CC_SELECT_TRANSFER) {
				m_regs[COMMAND_PHASE] = COMMAND_PHASE_CP_BYTES_0;
				std::string cmd;
				for (uint8_t i = 0; i < m_command_length; ++i) {
					const uint8_t command_byte = m_regs[CDB_1 + i];
					cmd += util::string_format(" %02x", command_byte);
					data_fifo_push(command_byte);
				}
				LOGMASKED(LOG_COMMANDS, "Sending command:%s (%d)\n", cmd, m_transfer_count);
			} else
				m_regs[COMMAND_PHASE] = COMMAND_PHASE_SELECTED;
			set_scsi_state(INIT_XFR);
		}
		step(false);
		break;

	case INIT_XFR:
		if (ctrl & S_REQ) {
			switch (m_xfr_phase) {
			case S_PHASE_DATA_OUT:
				if ((m_regs[CONTROL] & CONTROL_DM) != CONTROL_DM_POLLED) {
					if(!data_fifo_full() && m_transfer_count > 0)
						set_drq();
				}
				if (!data_fifo_empty()) {
					set_scsi_state(INIT_XFR_WAIT_REQ);
					delay(send_byte());
				} else if ((m_regs[CONTROL] & CONTROL_DM) == CONTROL_DM_POLLED) {
					m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_DBR;
				}
				break;

			case S_PHASE_COMMAND:
				if (!data_fifo_empty()) {
					uint32_t mask;
					if (sat) {
						mask = 0;
					} else {
						m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_DBR;
						mask = (m_transfer_count == 0 && m_data_fifo_size == 1) ? S_ATN : 0;
					}
					set_scsi_state(INIT_XFR_WAIT_REQ);
					delay(send_byte(0, mask));
				} else if (!sat) {
					m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_DBR;
				}
				break;

			case S_PHASE_MSG_OUT:
				if (sat) {
					data_fifo_push(get_msg_out());
				}
				if (!data_fifo_empty()) {
					uint32_t mask;
					if (sat) {
						mask = S_ATN;
					} else {
						m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_DBR;
						mask = (m_transfer_count == 0 && m_data_fifo_size == 1) ? S_ATN : 0;
					}
					set_scsi_state(INIT_XFR_WAIT_REQ);
					delay(send_byte(0, mask));
				} else if (!sat) {
					m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_DBR;
				}
				break;

			case S_PHASE_DATA_IN:
			case S_PHASE_STATUS:
			case S_PHASE_MSG_IN:
				if (!data_fifo_full()) {
					// if it's the last message byte, ACK remains asserted, terminate with function_complete()
					//state = (m_xfr_phase == S_PHASE_MSG_IN && (!dma_command || tcounter == 1)) ? INIT_XFR_RECV_BYTE_NACK : INIT_XFR_RECV_BYTE_ACK;
					scsi_bus->ctrl_wait(scsi_refid, S_REQ, S_REQ);
					set_scsi_state((RECV_WAIT_REQ_1 << SUB_SHIFT) | INIT_XFR_RECV_BYTE_ACK);
					step(false);
				}
				break;

			default:
				fatalerror("%s: Invalid phase during INIT_XFR.\n", shortname());
				break;
			}
		}
		break;

	case INIT_XFR_WAIT_REQ:
		if (ctrl & S_REQ) {
			uint16_t next_state = m_scsi_state;

			const uint8_t xfr_phase = (ctrl & S_PHASE_MASK);

			switch ((m_xfr_phase << 3) | xfr_phase) {
			case ((S_PHASE_MSG_OUT << 3) | S_PHASE_MSG_OUT):
			case ((S_PHASE_COMMAND << 3) | S_PHASE_COMMAND):
			case ((S_PHASE_MSG_IN  << 3) | S_PHASE_MSG_IN):
				next_state = INIT_XFR;
				break;

			case ((S_PHASE_DATA_IN  << 3) | S_PHASE_DATA_IN):
			case ((S_PHASE_DATA_OUT << 3) | S_PHASE_DATA_OUT):
				if (sat || cc == COMMAND_CC_TRANSFER_INFO) {
					if (m_transfer_count > 0 || (m_xfr_phase == S_PHASE_DATA_OUT && !data_fifo_empty())) {
						next_state = INIT_XFR;
					}
					else {
						next_state = FINISHED;
						uint8_t scsi_status;
						if (sat) {
							m_regs[COMMAND_PHASE] = COMMAND_PHASE_TRANSFER_COUNT;
							scsi_status = SCSI_STATUS_UNEXPECTED_PHASE;
						}
						else {
							scsi_status = SCSI_STATUS_TRANSFER_SUCCESS;
						}
						irq_fifo_push(scsi_status | m_xfr_phase);
					}
				}
				else {
					fatalerror("%s: Unhandled command in data phase.\n", shortname());
					next_state = FINISHED;
				}
				break;

			case ((S_PHASE_MSG_OUT  << 3) | S_PHASE_COMMAND):
			case ((S_PHASE_COMMAND  << 3) | S_PHASE_DATA_OUT):
			case ((S_PHASE_COMMAND  << 3) | S_PHASE_DATA_IN):
			case ((S_PHASE_COMMAND  << 3) | S_PHASE_STATUS):
			case ((S_PHASE_COMMAND  << 3) | S_PHASE_MSG_IN):
			case ((S_PHASE_DATA_OUT << 3) | S_PHASE_STATUS):
			case ((S_PHASE_DATA_IN  << 3) | S_PHASE_STATUS):
			case ((S_PHASE_STATUS   << 3) | S_PHASE_MSG_IN):
				if (!(m_xfr_phase & 1) && !data_fifo_empty()) {
					fatalerror("%s: Data FIFO is not empty on phase transition.\n", shortname());
				}

				if (sat) {
					switch (xfr_phase) {
					case S_PHASE_MSG_OUT:
						next_state = INIT_XFR;
						break;

					case S_PHASE_COMMAND: {
						next_state = INIT_XFR;
						m_regs[COMMAND_PHASE] = COMMAND_PHASE_CP_BYTES_0;
						std::string cmd;
						for (uint8_t i = 0; i < m_command_length; ++i) {
							const uint8_t command_byte = m_regs[CDB_1 + i];
							cmd += util::string_format(" %02x", command_byte);
							data_fifo_push(command_byte);
						}
						LOGMASKED(LOG_COMMANDS, "Sending command:%s (%d)\n", cmd, m_transfer_count);
						break;
					}

					case S_PHASE_DATA_OUT:
					case S_PHASE_DATA_IN:
						next_state = INIT_XFR;
						break;

					case S_PHASE_STATUS:
						next_state = INIT_XFR;
						m_regs[COMMAND_PHASE] = COMMAND_PHASE_RECEIVE_STATUS;
						break;

					case S_PHASE_MSG_IN:
						next_state = INIT_XFR;
						break;

					default:
						fatalerror("%s: Unhandled phase in Select-w/Atn-and-Transfer.\n", shortname());
						next_state = FINISHED;
						break;
					}
				}
				else if (cc == COMMAND_CC_TRANSFER_INFO) {
					next_state = FINISHED;
					irq_fifo_push(SCSI_STATUS_TRANSFER_SUCCESS | xfr_phase);
				}
				else {
					fatalerror("%s: Unhandled command in data phase.\n", shortname());
					next_state = FINISHED;
				}
				break;

			default:
				fatalerror("%s: Unhandled phase transition in INIT_XFR_WAIT_REQ.\n", shortname());
				next_state = FINISHED;
				break;
			}

			if (next_state != m_scsi_state) {
				set_scsi_state(next_state);
				m_xfr_phase = xfr_phase;
				step(false);
			}
		}
		break;

	case INIT_XFR_RECV_BYTE_ACK:
		if (sat && m_xfr_phase == S_PHASE_MSG_IN) {
			if (m_regs[COMMAND_PHASE] <= COMMAND_PHASE_CP_BYTES_C) {
				switch (m_last_message) {
				case SM_SAVE_DATA_PTR:
					set_scsi_state(FINISHED);
					irq_fifo_push(SCSI_STATUS_SAVE_DATA_POINTERS);
					m_regs[COMMAND_PHASE] = COMMAND_PHASE_SAVE_DATA_POINTER;
					break;

				case SM_DISCONNECT:
					m_regs[COMMAND_PHASE] = COMMAND_PHASE_DISCONNECT_MESSAGE;
					break;

				default:
					fatalerror("%s: Unhandled MSG_IN %02x.\n", shortname(), m_last_message);
					break;
				}
			} else if (m_regs[COMMAND_PHASE] < COMMAND_PHASE_COMMAND_COMPLETE) {
				switch (m_last_message) {
				case SM_COMMAND_COMPLETE:
					set_scsi_state(FINISHED);
					irq_fifo_push(SCSI_STATUS_SELECT_TRANSFER_SUCCESS);
					m_regs[COMMAND_PHASE] = COMMAND_PHASE_COMMAND_COMPLETE;
					break;
				default:
					fatalerror("%s: Unhandled MSG_IN %02x.\n", shortname(), m_last_message);
					break;
				}
			}
		} else {
			set_scsi_state(INIT_XFR_WAIT_REQ);
		}
		scsi_bus->ctrl_w(scsi_refid, 0, S_ACK);
		step(false);
		break;

	default:
		fatalerror("%s: Unhandled state in step.\n", shortname());
		break;
	}
}


//-------------------------------------------------
//  load_transfer_count
//-------------------------------------------------

void wd33c9x_base_device::load_transfer_count()
{
	if (m_regs[COMMAND] & COMMAND_SBT) {
		m_transfer_count = 1;
	}
	else {
		m_transfer_count = (
			(uint32_t(m_regs[TRANSFER_COUNT_MSB]) << 16) |
			(uint32_t(m_regs[TRANSFER_COUNT])     <<  8) |
			(uint32_t(m_regs[TRANSFER_COUNT_LSB]) <<  0)
		);
		if (m_transfer_count == 0) {
			m_transfer_count = 1;
		}
	}
	LOGMASKED(LOG_COMMANDS, "Transfer Count %d bytes\n", m_transfer_count);
}


//-------------------------------------------------
//  decrement_transfer_count
//-------------------------------------------------

bool wd33c9x_base_device::decrement_transfer_count()
{
	if (m_transfer_count == 0) {
		return true;
	}
	--m_transfer_count;
	if (m_transfer_count == 0) {
		// After the completion of any successful transfer,
		// including commands issued in Single Byte Transfer
		// mode, the Transfer Count Register will be zero.
		m_regs[TRANSFER_COUNT_MSB] = 0;
		m_regs[TRANSFER_COUNT] = 0;
		m_regs[TRANSFER_COUNT_LSB] = 0;
		return true;
	}
	return false;
}


//-------------------------------------------------
//  data_fifo_pop
//-------------------------------------------------

uint8_t wd33c9x_base_device::data_fifo_pop()
{
	if (data_fifo_empty()) {
		fatalerror("%s: Data FIFO underflow.\n", shortname());
	}
	--m_data_fifo_size;
	uint8_t ret = m_data_fifo[m_data_fifo_pos];
	m_data_fifo_pos = (m_data_fifo_pos + 1) % DATA_FIFO_SIZE;
	return ret;
}


//-------------------------------------------------
//  data_fifo_push
//-------------------------------------------------

void wd33c9x_base_device::data_fifo_push(const uint8_t data)
{
	if (data_fifo_full()) {
		fatalerror("%s: Data FIFO overflow.\n", shortname());
	}
	m_data_fifo[(m_data_fifo_pos + m_data_fifo_size) % DATA_FIFO_SIZE] = data;
	++m_data_fifo_size;
}


//-------------------------------------------------
//  data_fifo_empty
//-------------------------------------------------

bool wd33c9x_base_device::data_fifo_empty() const
{
	return m_data_fifo_size <= 0;
}


//-------------------------------------------------
//  data_fifo_full
//-------------------------------------------------

bool wd33c9x_base_device::data_fifo_full() const
{
	return m_data_fifo_size >= DATA_FIFO_SIZE;
}


//-------------------------------------------------
//  data_fifo_reset
//-------------------------------------------------

void wd33c9x_base_device::data_fifo_reset()
{
	memset(m_data_fifo, 0, sizeof(m_data_fifo));
	m_data_fifo_pos = 0;
	m_data_fifo_size = 0;
}


//-------------------------------------------------
//  send_byte
//-------------------------------------------------

uint32_t wd33c9x_base_device::send_byte(const uint32_t value, const uint32_t mask)
{
	set_scsi_state_sub(SEND_WAIT_SETTLE);
	scsi_bus->ctrl_wait(scsi_refid, S_REQ, S_REQ);
	scsi_bus->data_w(scsi_refid, data_fifo_pop());
	scsi_bus->ctrl_w(scsi_refid, S_ACK | value, S_ACK | mask);
	return 1;
}


//-------------------------------------------------
//  set_scsi_state - change SCSI state
//-------------------------------------------------

void wd33c9x_base_device::set_scsi_state(uint16_t state)
{
	LOGMASKED(LOG_STEP, "SCSI state change: %s.%s to %s.%s\n",
			  state_names[m_scsi_state & STATE_MASK], substate_names[m_scsi_state >> SUB_SHIFT],
			  state_names[state & STATE_MASK], substate_names[state >> SUB_SHIFT]);
	m_scsi_state = state;
}

//-------------------------------------------------
//  set_scsi_state_sub - change SCSI sub-state
//-------------------------------------------------

void wd33c9x_base_device::set_scsi_state_sub(uint8_t sub)
{
	set_scsi_state((m_scsi_state & STATE_MASK) | (uint16_t(sub) << SUB_SHIFT));
}


//-------------------------------------------------
//  irq_fifo_pop
//-------------------------------------------------

uint8_t wd33c9x_base_device::irq_fifo_pop()
{
	if (irq_fifo_empty()) {
		fatalerror("%s: IRQ FIFO underflow.\n", shortname());
	}
	--m_irq_fifo_size;
	uint8_t ret = m_irq_fifo[m_irq_fifo_pos];
	m_irq_fifo_pos = (m_irq_fifo_pos + 1) % IRQ_FIFO_SIZE;
	return ret;
}


//-------------------------------------------------
//  irq_fifo_push
//-------------------------------------------------

void wd33c9x_base_device::irq_fifo_push(const uint8_t status)
{
	if (irq_fifo_full()) {
		fatalerror("%s: IRQ FIFO overflow.\n", shortname());
	}
	// Kind of hacky, but don't push duplicate interrupt statuses.
	if (m_irq_fifo_size &&
		m_irq_fifo[(m_irq_fifo_pos + m_irq_fifo_size - 1) % IRQ_FIFO_SIZE] == status) {
		return;
	}
	m_irq_fifo[(m_irq_fifo_pos + m_irq_fifo_size) % IRQ_FIFO_SIZE] = status;
	++m_irq_fifo_size;
}


//-------------------------------------------------
//  irq_fifo_empty
//-------------------------------------------------

bool wd33c9x_base_device::irq_fifo_empty() const
{
	return m_irq_fifo_size <= 0;
}


//-------------------------------------------------
//  irq_fifo_full
//-------------------------------------------------

bool wd33c9x_base_device::irq_fifo_full() const
{
	return m_irq_fifo_size >= IRQ_FIFO_SIZE;
}


//-------------------------------------------------
//  irq_fifo_reset
//-------------------------------------------------

void wd33c9x_base_device::irq_fifo_reset()
{
	memset(m_irq_fifo, 0, sizeof(m_irq_fifo));
	m_irq_fifo_pos = 0;
	m_irq_fifo_size = 0;
}


//-------------------------------------------------
//  update_irq
//-------------------------------------------------

void wd33c9x_base_device::update_irq()
{
	if (m_regs[AUXILIARY_STATUS] & AUXILIARY_STATUS_INT) {
		m_regs[AUXILIARY_STATUS] &= ~AUXILIARY_STATUS_INT;
		LOGMASKED(LOG_LINES, "Clearing IRQ\n");
		m_irq_cb(CLEAR_LINE);
	}
	if (!irq_fifo_empty()) {
		m_regs[SCSI_STATUS] = irq_fifo_pop();
		m_regs[AUXILIARY_STATUS] |= AUXILIARY_STATUS_INT;

		const uint8_t cc = (m_regs[COMMAND] & COMMAND_CC);
		if (cc == COMMAND_CC_SELECT_TRANSFER || cc == COMMAND_CC_SELECT_ATN_TRANSFER) {
			switch (m_regs[SCSI_STATUS]) {
			case SCSI_STATUS_DISCONNECT:
				if (!(m_regs[CONTROL] & CONTROL_IDI)) {
					return;
				}
				break;

			case SCSI_STATUS_SELECT_TRANSFER_SUCCESS:
				if ((m_regs[CONTROL] & CONTROL_EDI) && m_mode != MODE_D) {
					return;
				}
				break;
			}
		}

		LOGMASKED(LOG_LINES, "Asserting IRQ - SCSI Status (%02x)\n", m_regs[SCSI_STATUS]);
		m_irq_cb(ASSERT_LINE);
	}
}


//-------------------------------------------------
//  set_drq
//-------------------------------------------------

void wd33c9x_base_device::set_drq()
{
	if (!m_drq_state) {
		LOGMASKED(LOG_LINES, "Asserting DRQ\n");
		m_drq_state = true;
		m_drq_cb(ASSERT_LINE);
	}
}


//-------------------------------------------------
//  clear_drq
//-------------------------------------------------

void wd33c9x_base_device::clear_drq()
{
	if (m_drq_state) {
		LOGMASKED(LOG_LINES, "Clearing DRQ\n");
		m_drq_state = false;
		m_drq_cb(CLEAR_LINE);
	}
}


//-------------------------------------------------
//  delay
//-------------------------------------------------

void wd33c9x_base_device::delay(uint32_t cycles)
{
	// FIXME - This should take Own ID Frequency Scale into account.
	delay_cycles(cycles);
}


//-------------------------------------------------
//  delay_cycles
//-------------------------------------------------

void wd33c9x_base_device::delay_cycles(uint32_t cycles)
{
	m_timer->adjust(clocks_to_attotime(cycles));
}


//-------------------------------------------------
//  set_command_length
//-------------------------------------------------

bool wd33c9x_base_device::set_command_length(const uint8_t cc)
{
	const bool eaf = ((m_regs[OWN_ID] & OWN_ID_EAF) != 0);
	bool ret;
	if (eaf && (cc == COMMAND_CC_SELECT_TRANSFER || cc == COMMAND_CC_SELECT_ATN_TRANSFER)) {
		m_command_length &= OWN_ID_CDB_SIZE;
		ret = true;
	} else if (eaf && cc == COMMAND_CC_WAIT_SELECT_RECEIVE_DATA) {
		m_command_length = 6;
		m_regs[COMMAND_PHASE] = COMMAND_PHASE_CP_BYTES_1;
		irq_fifo_push(SCSI_STATUS_NEED_COMMAND_SIZE);
		update_irq();
		ret = false;
	} else {
		switch (m_regs[CDB_1] >> 5) {
		default:
		case 0: m_command_length = 6;  break;
		case 1: m_command_length = 10; break;
		case 5: m_command_length = 12; break;
		}
		ret = true;
	}
	LOGMASKED(LOG_COMMANDS, "SCSI Command Length %d bytes\n", m_command_length);
	return ret;
}

//-------------------------------------------------
//  get_msg_out
//-------------------------------------------------

uint8_t wd33c9x_base_device::get_msg_out() const
{
	return 0x80 | ((m_regs[SOURCE_ID] & SOURCE_ID_ER) ? 0x40 : 0x00) | (m_regs[TARGET_LUN] & TARGET_LUN_TL);
}



wd33c92_device::wd33c92_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: wd33c9x_base_device(mconfig, WD33C92, tag, owner, clock)
{
}

wd33c93_device::wd33c93_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: wd33c9x_base_device(mconfig, WD33C93, tag, owner, clock)
{
}

wd33c93a_device::wd33c93a_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: wd33c9x_base_device(mconfig, WD33C93A, tag, owner, clock)
{
}

wd33c93b_device::wd33c93b_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: wd33c9x_base_device(mconfig, WD33C93B, tag, owner, clock)
{
}