summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/machine/vrc4373.cpp
blob: 50257a2d076366ed5f34725a7531a72b7ea05111 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
// license:BSD-3-Clause
// copyright-holders:Ted Green
#include "vrc4373.h"

#define LOG_NILE            (0)
#define LOG_NILE_MASTER     (0)
#define LOG_NILE_TARGET     (0)

const device_type VRC4373      = &device_creator<vrc4373_device>;

DEVICE_ADDRESS_MAP_START(config_map, 32, vrc4373_device)
	AM_RANGE(0x40, 0x43) AM_READWRITE  (pcictrl_r,  pcictrl_w)
	AM_INHERIT_FROM(pci_host_device::config_map)
ADDRESS_MAP_END

// cpu i/f map
DEVICE_ADDRESS_MAP_START(cpu_map, 32, vrc4373_device)
	AM_RANGE(0x00000000, 0x0000007b) AM_READWRITE(    cpu_if_r,          cpu_if_w)
ADDRESS_MAP_END

// Target Window 1 map
DEVICE_ADDRESS_MAP_START(target1_map, 32, vrc4373_device)
	AM_RANGE(0x00000000, 0xFFFFFFFF) AM_READWRITE(    target1_r,          target1_w)
ADDRESS_MAP_END

// Target Window 2 map
DEVICE_ADDRESS_MAP_START(target2_map, 32, vrc4373_device)
	AM_RANGE(0x00000000, 0xFFFFFFFF) AM_READWRITE(    target2_r,          target2_w)
ADDRESS_MAP_END

vrc4373_device::vrc4373_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
	: pci_host_device(mconfig, VRC4373, "NEC VRC4373 System Controller", tag, owner, clock, "vrc4373", __FILE__), m_cpu_space(nullptr), m_cpu(nullptr), cpu_tag(nullptr),
		m_mem_config("memory_space", ENDIANNESS_LITTLE, 32, 32),
		m_io_config("io_space", ENDIANNESS_LITTLE, 32, 32), m_ram_size(0), m_ram_base(0), m_simm_size(0), m_simm_base(0), m_pci1_laddr(0), m_pci2_laddr(0), m_pci_io_laddr(0), m_target1_laddr(0), m_target2_laddr(0),
		m_region(*this, DEVICE_SELF)
{
}

const address_space_config *vrc4373_device::memory_space_config(address_spacenum spacenum) const
{
	return (spacenum == AS_PROGRAM) ? pci_bridge_device::memory_space_config(spacenum) : (spacenum == AS_DATA) ? &m_mem_config : (spacenum == AS_IO) ? &m_io_config : nullptr;
}

void vrc4373_device::device_start()
{
	pci_host_device::device_start();
	m_cpu = machine().device<mips3_device>(cpu_tag);
	m_cpu_space = &m_cpu->space(AS_PROGRAM);
	memory_space = &space(AS_DATA);
	io_space = &space(AS_IO);

	memset(m_cpu_regs, 0, sizeof(m_cpu_regs));

	memory_window_start = 0;
	memory_window_end   = 0xffffffff;
	memory_offset       = 0;
	io_window_start = 0;
	io_window_end   = 0xffffffff;
	io_offset       = 0x00000000;
	status = 0x0280;
	m_ram_size = 1<<22;
	m_ram_base = 0;
	m_simm_size = 1<<21;
	m_simm_base = 0;

	// ROM size = 1 MB
	m_cpu_space->install_rom   (0x1fc00000, 0x1fcfffff, m_region->base());
	m_cpu_space->install_device(0x0f000000, 0x0f0000ff, *static_cast<vrc4373_device *>(this), &vrc4373_device::cpu_map);
	// PCI Configuration also mapped at 0x0f000100
	m_cpu_space->install_device(0x0f000100, 0x0f0001ff, *static_cast<vrc4373_device *>(this), &vrc4373_device::config_map);

	// MIPS drc
	m_cpu->add_fastram(0x1fc00000, 0x1fcfffff, TRUE, m_region->base());
}

void vrc4373_device::device_reset()
{
	pci_device::device_reset();
	memset(m_cpu_regs, 0, sizeof(m_cpu_regs));
	regenerate_config_mapping();
}

void vrc4373_device::map_cpu_space()
{
	UINT32 winStart, winEnd, winSize;

	// VRC4373 is at 0x0f000000 to 0x0f0001ff
	// ROM region starts at 0x1f000000
	m_cpu_space->unmap_readwrite(0x00000000, 0x0effffff);
	m_cpu_space->unmap_readwrite(0x0f000200, 0x1effffff);

	// Clear fastram regions in cpu after rom
	m_cpu->clear_fastram(1);

	if (m_cpu_regs[NREG_BMCR]&0x8) {
		m_cpu_space->install_ram(m_ram_base, m_ram_base+m_ram_size-1, &m_ram[0]);
		m_cpu->add_fastram(m_ram_base, m_ram_size-1, FALSE, &m_ram[0]);
		if (LOG_NILE)
			logerror("%s: map_cpu_space ram_size=%08X ram_base=%08X\n", tag(),m_ram_size,m_ram_base);
	}
	if (m_cpu_regs[NREG_SIMM1]&0x8) {
		m_cpu_space->install_ram(m_simm_base, m_simm_base+m_simm_size-1, &m_simm[0]);
		//m_cpu->add_fastram(m_simm_base, m_simm_size-1, FALSE, &m_simm[0]);
		if (LOG_NILE)
			logerror("%s: map_cpu_space simm_size=%08X simm_base=%08X\n", tag(),m_simm_size,m_simm_base);
	}

	// PCI Master Window 1
	if (m_cpu_regs[NREG_PCIMW1]&0x1000) {
		winStart = m_cpu_regs[NREG_PCIMW1]&0xff000000;
		winEnd = winStart | (~(0x80000000 | (((m_cpu_regs[NREG_PCIMW1]>>13)&0x7f)<<24)));
		winSize = winEnd - winStart + 1;
		m_cpu_space->install_read_handler(winStart, winEnd, 0, 0, read32_delegate(FUNC(vrc4373_device::master1_r), this));
		m_cpu_space->install_write_handler(winStart, winEnd, 0, 0, write32_delegate(FUNC(vrc4373_device::master1_w), this));
		if (LOG_NILE)
			logerror("%s: map_cpu_space Master Window 1 start=%08X end=%08X size=%08X laddr=%08X\n", tag(), winStart, winEnd, winSize,  m_pci1_laddr);
	}
	// PCI Master Window 2
	if (m_cpu_regs[NREG_PCIMW2]&0x1000) {
		winStart = m_cpu_regs[NREG_PCIMW2]&0xff000000;
		winEnd = winStart | (~(0x80000000 | (((m_cpu_regs[NREG_PCIMW2]>>13)&0x7f)<<24)));
		winSize = winEnd - winStart + 1;
		m_cpu_space->install_read_handler(winStart, winEnd, 0, 0, read32_delegate(FUNC(vrc4373_device::master2_r), this));
		m_cpu_space->install_write_handler(winStart, winEnd, 0, 0, write32_delegate(FUNC(vrc4373_device::master2_w), this));
		if (LOG_NILE)
			logerror("%s: map_cpu_space Master Window 2 start=%08X end=%08X size=%08X laddr=%08X\n", tag(), winStart, winEnd, winSize,  m_pci2_laddr);
	}
	// PCI IO Window
	if (m_cpu_regs[NREG_PCIMIOW]&0x1000) {
		winStart = m_cpu_regs[NREG_PCIMIOW]&0xff000000;
		winEnd = winStart | (~(0x80000000 | (((m_cpu_regs[NREG_PCIMIOW]>>13)&0x7f)<<24)));
		winSize = winEnd - winStart + 1;
		m_cpu_space->install_read_handler(winStart, winEnd, 0, 0, read32_delegate(FUNC(vrc4373_device::master_io_r), this));
		m_cpu_space->install_write_handler(winStart, winEnd, 0, 0, write32_delegate(FUNC(vrc4373_device::master_io_w), this));
		if (LOG_NILE)
			logerror("%s: map_cpu_space IO Window start=%08X end=%08X size=%08X laddr=%08X\n", tag(), winStart, winEnd, winSize,  m_pci_io_laddr);
	}
}

void vrc4373_device::map_extra(UINT64 memory_window_start, UINT64 memory_window_end, UINT64 memory_offset, address_space *memory_space,
									UINT64 io_window_start, UINT64 io_window_end, UINT64 io_offset, address_space *io_space)
{
	UINT32 winStart, winEnd, winSize;

	// PCI Target Window 1
	if (m_cpu_regs[NREG_PCITW1]&0x1000) {
		winStart = m_cpu_regs[NREG_PCITW1]&0xffe00000;
		winEnd = winStart | (~(0xf0000000 | (((m_cpu_regs[NREG_PCITW1]>>13)&0x7f)<<21)));
		winSize = winEnd - winStart + 1;
		memory_space->install_read_handler(winStart, winEnd, 0, 0, read32_delegate(FUNC(vrc4373_device::target1_r), this));
		memory_space->install_write_handler(winStart, winEnd, 0, 0, write32_delegate(FUNC(vrc4373_device::target1_w), this));
		if (LOG_NILE)
			logerror("%s: map_extra Target Window 1 start=%08X end=%08X size=%08X laddr=%08X\n", tag(), winStart, winEnd, winSize,  m_target1_laddr);
	}
	// PCI Target Window 2
	if (m_cpu_regs[NREG_PCITW2]&0x1000) {
		winStart = m_cpu_regs[NREG_PCITW2]&0xffe00000;
		winEnd = winStart | (~(0xf0000000 | (((m_cpu_regs[NREG_PCITW2]>>13)&0x7f)<<21)));
		winSize = winEnd - winStart + 1;
		memory_space->install_read_handler(winStart, winEnd, 0, 0, read32_delegate(FUNC(vrc4373_device::target2_r), this));
		memory_space->install_write_handler(winStart, winEnd, 0, 0, write32_delegate(FUNC(vrc4373_device::target2_w), this));
		if (LOG_NILE)
			logerror("%s: map_extra Target Window 2 start=%08X end=%08X size=%08X laddr=%08X\n", tag(), winStart, winEnd, winSize,  m_target2_laddr);
	}
}

void vrc4373_device::reset_all_mappings()
{
	pci_device::reset_all_mappings();
}

void vrc4373_device::set_cpu_tag(const char *_cpu_tag)
{
	if (LOG_NILE)
		logerror("%s: set_cpu_tag\n", tag());
	cpu_tag = _cpu_tag;
}
// PCI bus control
READ32_MEMBER (vrc4373_device::pcictrl_r)
{
	UINT32 result = 0;
	if (LOG_NILE)
		logerror("%06X:nile pcictrl_r from offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::pcictrl_w)
{
	if (LOG_NILE)
		logerror("%06X:nile pcictrl_w to offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, data, mem_mask);
}
// PCI Master Window 1
READ32_MEMBER (vrc4373_device::master1_r)
{
	UINT32 result = this->space(AS_DATA).read_dword(m_pci1_laddr | (offset*4), mem_mask);
	if (LOG_NILE_MASTER)
		logerror("%06X:nile master1 read from offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::master1_w)
{
	this->space(AS_DATA).write_dword(m_pci1_laddr | (offset*4), data, mem_mask);
	if (LOG_NILE_MASTER)
		logerror("%06X:nile master1 write to offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, data, mem_mask);
}

// PCI Master Window 2
READ32_MEMBER (vrc4373_device::master2_r)
{
	UINT32 result = this->space(AS_DATA).read_dword(m_pci2_laddr | (offset*4), mem_mask);
	if (LOG_NILE_MASTER)
		logerror("%06X:nile master2 read from offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::master2_w)
{
	this->space(AS_DATA).write_dword(m_pci2_laddr | (offset*4), data, mem_mask);
	if (LOG_NILE_MASTER)
		logerror("%06X:nile master2 write to offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, data, mem_mask);
}

// PCI Master IO Window
READ32_MEMBER (vrc4373_device::master_io_r)
{
	UINT32 result = this->space(AS_IO).read_dword(m_pci_io_laddr | (offset*4), mem_mask);
	if (LOG_NILE_MASTER)
		logerror("%06X:nile master io read from offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::master_io_w)
{
	this->space(AS_IO).write_dword(m_pci_io_laddr | (offset*4), data, mem_mask);
	if (LOG_NILE_MASTER)
		logerror("%06X:nile master io write to offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, data, mem_mask);
}

// PCI Target Window 1
READ32_MEMBER (vrc4373_device::target1_r)
{
	UINT32 result = m_cpu->space(AS_PROGRAM).read_dword(m_target1_laddr | (offset*4), mem_mask);
	if (LOG_NILE_TARGET)
		logerror("%08X:nile target1 read from offset %02X = %08X & %08X\n", m_cpu->device_t::safe_pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::target1_w)
{
	m_cpu->space(AS_PROGRAM).write_dword(m_target1_laddr | (offset*4), data, mem_mask);
	if (LOG_NILE_TARGET)
		logerror("%08X:nile target1 write to offset %02X = %08X & %08X\n", m_cpu->device_t::safe_pc(), offset*4, data, mem_mask);
}

// PCI Target Window 2
READ32_MEMBER (vrc4373_device::target2_r)
{
	UINT32 result = m_cpu->space(AS_PROGRAM).read_dword(m_target2_laddr | (offset*4), mem_mask);
	if (LOG_NILE_TARGET)
		logerror("%08X:nile target2 read from offset %02X = %08X & %08X\n", m_cpu->device_t::safe_pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::target2_w)
{
	m_cpu->space(AS_PROGRAM).write_dword(m_target2_laddr | (offset*4), data, mem_mask);
	if (LOG_NILE_TARGET)
		logerror("%08X:nile target2 write to offset %02X = %08X & %08X\n", m_cpu->device_t::safe_pc(), offset*4, data, mem_mask);
}

// DMA Transfer
void vrc4373_device::dma_transfer(int which)
{
	if (LOG_NILE)
		logerror("%08X:nile Start dma PCI: %08X MEM: %08X Words: %X\n", m_cpu->space(AS_PROGRAM).device().safe_pc(), m_cpu_regs[NREG_DMA_CPAR], m_cpu_regs[NREG_DMA_CMAR], m_cpu_regs[NREG_DMA_REM]);
	int pciSel = (m_cpu_regs[NREG_DMACR1+which*0xC] & DMA_MIO) ? AS_DATA : AS_IO;
	address_space *src, *dst;
	UINT32 srcAddr, dstAddr;

	if (m_cpu_regs[NREG_DMACR1+which*0xC]&DMA_RW) {
		// Read data from PCI and write to cpu
		src = &this->space(pciSel);
		dst = &m_cpu->space(AS_PROGRAM);
		srcAddr = m_cpu_regs[NREG_DMA_CPAR];
		dstAddr = m_cpu_regs[NREG_DMA_CMAR];
	} else {
		// Read data from cpu and write to PCI
		src = &m_cpu->space(AS_PROGRAM);
		dst = &this->space(pciSel);
		srcAddr = m_cpu_regs[NREG_DMA_CMAR];
		dstAddr = m_cpu_regs[NREG_DMA_CPAR];
	}
	int count = m_cpu_regs[NREG_DMA_REM];
	while (count>0) {
		dst->write_dword(dstAddr, src->read_dword(srcAddr));
		dstAddr += 0x4;
		srcAddr += 0x4;
		--count;
	}
	if (m_cpu_regs[NREG_DMACR1+which*0xC]&DMA_RW) {
		m_cpu_regs[NREG_DMA_CPAR] = srcAddr;
		m_cpu_regs[NREG_DMA_CMAR] = dstAddr;
	} else {
		m_cpu_regs[NREG_DMA_CMAR] = srcAddr;
		m_cpu_regs[NREG_DMA_CPAR] = dstAddr;
	}
	m_cpu_regs[NREG_DMA_REM] = 0;
}

// CPU I/F
READ32_MEMBER (vrc4373_device::cpu_if_r)
{
	UINT32 result = m_cpu_regs[offset];
	switch (offset) {
		case NREG_PCICAR:
			result = config_address_r(space, offset);
			break;
		case NREG_PCICDR:
			result = config_data_r(space, offset);
			break;
		case NREG_DMACR1:
		case NREG_DMACR2:
			// Clear busy and go on read
			if (m_cpu_regs[NREG_DMA_REM]==0) {
					int which = (offset-NREG_DMACR1)>>3;
					m_cpu_regs[NREG_DMACR1+which*0xc] &= ~DMA_BUSY;
					m_cpu_regs[NREG_DMACR1+which*0xc] &= ~DMA_GO;
			}
			break;
		default:
			break;
	}
	if (LOG_NILE)
		logerror("%06X:nile read from offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, result, mem_mask);
	return result;
}

WRITE32_MEMBER(vrc4373_device::cpu_if_w)
{
	if (LOG_NILE)
		logerror("%06X:nile write to offset %02X = %08X & %08X\n", space.device().safe_pc(), offset*4, data, mem_mask);

	UINT32 modData, oldData;
	oldData = m_cpu_regs[offset];
	COMBINE_DATA(&m_cpu_regs[offset]);
	switch (offset) {
		case NREG_PCIMW1:
				m_pci1_laddr = (data&0xff)<<24;
				map_cpu_space();
			break;
		case NREG_PCIMW2:
				m_pci2_laddr = (data&0xff)<<24;
				map_cpu_space();
			break;
		case NREG_PCIMIOW:
				m_pci_io_laddr = (data&0xff)<<24;
				map_cpu_space();
			break;
		case NREG_PCITW1:
				m_target1_laddr = 0x00000000 | ((data&0x7FF)<<21);
				remap_cb();
			break;
		case NREG_PCITW2:
				m_target2_laddr = 0x00000000 | ((data&0x7FF)<<21);
				remap_cb();
			break;
		case NREG_PCICAR:
			// Bits in reserved area are used for device selection of type 0 config transactions
			// Assuming 23:11 get mapped into device number for configuration
			if ((data&0x3) == 0x0) {
				// Type 0 transaction
				modData = 0;
				// Select the device based on one hot bit
				for (int i=11; i<24; i++) {
					if ((data>>i)&0x1) {
						// One hot encoding, bit 11 will mean device 1
						modData = i-10;
						break;
					}
				}
				// Re-organize into Type 1 transaction for bus 0 (local bus)
				modData = (modData<<11) | (data&0x7ff) | (0x80000000);
			} else {
				// Type 1 transaction, no modification needed
				modData = data;
			}
			pci_host_device::config_address_w(space, offset, modData);
			break;
		case NREG_PCICDR:
			pci_host_device::config_data_w(space, offset, data);
			break;
		case NREG_DMACR1:
		case NREG_DMACR2:
			// Start when DMA_GO bit is set
			if (!(oldData & DMA_GO) && (data & DMA_GO)) {
				int which = (offset-NREG_DMACR1)>>3;
				// Check to see DMA is not already started
				if (!(data&DMA_BUSY)) {
					// Set counts and address
					m_cpu_regs[NREG_DMA_CPAR] = m_cpu_regs[NREG_DMAPCI1+which*0xC];
					m_cpu_regs[NREG_DMA_CMAR] = m_cpu_regs[NREG_DMAMAR1+which*0xC];
					m_cpu_regs[NREG_DMA_REM] = (data & DMA_BLK_SIZE)>>2;
					m_cpu_regs[NREG_DMACR1+which*0xc] |= DMA_BUSY;
					// Start the transfer
					dma_transfer(which);
				}
			}
			break;
		case NREG_BMCR:
			if ((data>>3)&0x1) {
				m_ram_size = 1<<22;  // 4MB
				for (int i=14; i<=15; i++) {
					if (!((data>>i)&0x1)) m_ram_size<<=1;
					else break;
				}
				m_ram.resize(m_ram_size/4);
				m_ram_base = (data & 0x0fc00000);
			}
			map_cpu_space();
			break;
		case NREG_SIMM1:
			if ((data>>3)&0x1) {
				m_simm_size = 1<<21;  // 2MB
				for (int i=13; i<=17; i++) {
					if (!((data>>i)&0x1)) m_simm_size<<=1;
					else break;
				}
				m_simm.resize(m_simm_size/4);
				m_simm_base = (data & 0x0fe00000);
			}
			map_cpu_space();
			break;
		default:
			break;
	}

}