summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/machine/vrc4373.cpp
blob: 992bfc355ef6b45d27683e8c4f1a0a7d9833cbe8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
// license:BSD-3-Clause
// copyright-holders:Ted Green
#include "emu.h"
#include "vrc4373.h"

#define LOG_GENERAL         (1U << 0)
#define LOG_NILE            (1U << 1)
#define LOG_NILE_MASTER     (1U << 2)
#define LOG_NILE_TARGET     (1U << 3)

//#define VERBOSE (LOG_NILE | LOG_NILE_MASTER | LOG_NILE_TARGET)
#include "logmacro.h"

#define LOGNILE(...)        LOGMASKED(LOG_NILE, __VA_ARGS__)
#define LOGNILEMASTER(...)  LOGMASKED(LOG_NILE_MASTER, __VA_ARGS__)
#define LOGNILETARGET(...)  LOGMASKED(LOG_NILE_TARGET, __VA_ARGS__)


#define VRC4373_PAGESHIFT 12

/* NILE 3 registers 0x000-0x0ff */
#define NREG_BMCR           (0x000/4)
#define NREG_SIMM1          (0x004/4)
#define NREG_SIMM2          (0x008/4)
#define NREG_SIMM3          (0x00C/4)
#define NREG_SIMM4          (0x010/4)
#define NREG_PCIMW1         (0x014/4)
#define NREG_PCIMW2         (0x018/4)
#define NREG_PCITW1         (0x01C/4)
#define NREG_PCITW2         (0x020/4)
#define NREG_PCIMIOW        (0x024/4)
#define NREG_PCICDR         (0x028/4)
#define NREG_PCICAR         (0x02C/4)
#define NREG_PCIMB1         (0x030/4)
#define NREG_PCIMB2         (0x034/4)
#define NREG_DMACR1         (0x038/4)
#define NREG_DMAMAR1        (0x03C/4)
#define NREG_DMAPCI1        (0x040/4)
#define NREG_DMACR2         (0x044/4)
#define NREG_DMAMAR2        (0x048/4)
#define NREG_DMAPCI2        (0x04C/4)

#define NREG_BESR           (0x050/4)
#define NREG_ICSR           (0x054/4)
#define NREG_DRAMRCR        (0x058/4)
#define NREG_BOOTWP         (0x05C/4)
#define NREG_PCIEAR         (0x060/4)
#define NREG_DMA_REM        (0x064/4)
#define NREG_DMA_CMAR       (0x068/4)
#define NREG_DMA_CPAR       (0x06C/4)
#define NREG_PCIRC          (0x070/4)
#define NREG_PCIEN          (0x074/4)
#define NREG_PMIR           (0x078/4)

#define PCI_BUS_CLOCK       33000000
// Number of dma words to transfer at a time, real hardware bursts 8
#define DMA_BURST_SIZE      128
#define DMA_TIMER_PERIOD    attotime::from_hz(PCI_BUS_CLOCK / 32)

#define DMA_BUSY            0x80000000
#define DMA_INT_EN          0x40000000
#define DMA_RW              0x20000000
#define DMA_GO              0x10000000
#define DMA_SUS             0x08000000
#define DMA_INC             0x04000000
#define DMA_MIO             0x02000000
#define DMA_RST             0x01000000
#define DMA_BLK_SIZE        0x000fffff


DEFINE_DEVICE_TYPE(VRC4373, vrc4373_device, "vrc4373", "NEC VRC4373 System Controller")

void vrc4373_device::config_map(address_map &map)
{
	pci_bridge_device::config_map(map);
	map(0x40, 0x43).rw(FUNC(vrc4373_device::pcictrl_r), FUNC(vrc4373_device::pcictrl_w));
}

// cpu i/f map
void vrc4373_device::cpu_map(address_map &map)
{
	map(0x00000000, 0x0000007b).rw(FUNC(vrc4373_device::cpu_if_r), FUNC(vrc4373_device::cpu_if_w));
}

// Target Window 1 map
void vrc4373_device::target1_map(address_map &map)
{
	map(0x00000000, 0xFFFFFFFF).rw(FUNC(vrc4373_device::target1_r), FUNC(vrc4373_device::target1_w));
}

// Target Window 2 map
void vrc4373_device::target2_map(address_map &map)
{
	map(0x00000000, 0xFFFFFFFF).rw(FUNC(vrc4373_device::target2_r), FUNC(vrc4373_device::target2_w));
}

vrc4373_device::vrc4373_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: pci_host_device(mconfig, VRC4373, tag, owner, clock)
	, m_cpu_space(nullptr), m_irq_cb(*this), m_cpu(*this, finder_base::DUMMY_TAG), m_ram_size(0x0), m_simm0_size(0x0)
	, m_mem_config("memory_space", ENDIANNESS_LITTLE, 32, 32)
	, m_io_config("io_space", ENDIANNESS_LITTLE, 32, 32), m_pci1_laddr(0), m_pci2_laddr(0), m_pci_io_laddr(0), m_target1_laddr(0), m_target2_laddr(0)
	, m_romRegion(*this, "rom")
{
	set_ids_host(0x1033005B, 0x00, 0x00000000);
}

device_memory_interface::space_config_vector vrc4373_device::memory_space_config() const
{
	auto r = pci_bridge_device::memory_space_config();
	r.emplace_back(std::make_pair(AS_PCI_MEM, &m_mem_config));
	r.emplace_back(std::make_pair(AS_PCI_IO, &m_io_config));
	return r;
}

void vrc4373_device::device_start()
{
	pci_host_device::device_start();

	m_cpu_space = &m_cpu->space(AS_PCI_CONFIG);
	memory_space = &space(AS_PCI_MEM);
	io_space = &space(AS_PCI_IO);
	is_multifunction_device = false;

	std::fill(std::begin(m_cpu_regs), std::end(m_cpu_regs), 0);

	memory_window_start = 0;
	memory_window_end   = 0xffffffff;
	memory_offset       = 0;
	io_window_start = 0;
	io_window_end   = 0xffffffff;
	io_offset       = 0x00000000;
	status = 0x0280;

	m_irq_cb.resolve();

	// Reserve 8M for ram
	m_ram.reserve(0x00800000 / 4);
	m_ram.resize(m_ram_size);
	// Reserve 32M for simm[0]
	m_simm[0].reserve(0x02000000 / 4);
	m_simm[0].resize(m_simm0_size / 4);
	// ROM
	uint32_t romSize = m_romRegion->bytes();
	m_cpu_space->install_rom(0x1fc00000, 0x1fc00000 + romSize - 1, m_romRegion->base());
	// Nile register mapppings
	m_cpu_space->install_device(0x0f000000, 0x0f0000ff, *static_cast<vrc4373_device *>(this), &vrc4373_device::cpu_map);
	// PCI Configuration also mapped at 0x0f000100
	m_cpu_space->install_device(0x0f000100, 0x0f0001ff, *static_cast<vrc4373_device *>(this), &vrc4373_device::config_map);

	// MIPS drc
	m_cpu->add_fastram(0x1fc00000, 0x1fcfffff, true, m_romRegion->base());

	// DMA timer
	m_dma_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(vrc4373_device::dma_transfer), this));
	// Leave the timer disabled.
	m_dma_timer->adjust(attotime::never, 0, DMA_TIMER_PERIOD);

	// Save states
	// m_ram
	save_item(NAME(m_ram));
	// m_simm
	save_item(NAME(m_simm[0]));
	save_item(NAME(m_cpu_regs));
	save_item(NAME(m_pci1_laddr));
	save_item(NAME(m_pci2_laddr));
	save_item(NAME(m_pci_io_laddr));
	save_item(NAME(m_target1_laddr));
	save_item(NAME(m_target2_laddr));
}

void vrc4373_device::device_post_load()
{
	map_cpu_space();
	//remap_cb();
}

void vrc4373_device::device_reset()
{
	pci_device::device_reset();
	memset(m_cpu_regs, 0, sizeof(m_cpu_regs));
	regenerate_config_mapping();
	m_dma_timer->adjust(attotime::never);
}

void vrc4373_device::map_cpu_space()
{
	uint32_t winStart, winEnd, winSize;
	uint32_t regConfig;

	// VRC4373 is at 0x0f000000 to 0x0f0001ff
	// ROM region starts at 0x1f000000
	m_cpu_space->unmap_readwrite(0x00000000, 0x0effffff);
	m_cpu_space->unmap_readwrite(0x0f000200, 0x1effffff);

	// Clear fastram regions in cpu after rom
	m_cpu->clear_fastram(1);

	regConfig = m_cpu_regs[NREG_BMCR];
	if (regConfig & 0x8) {
		winSize = 1 << 22;  // 4MB
		for (int i = 14; i <= 15; i++) {
			if (!((regConfig >> i) & 0x1)) winSize <<= 1;
			else break;
		}
		winStart = (regConfig & 0x0fc00000);
		winEnd = winStart + winSize - 1;

		m_ram.resize(winSize / 4);
		m_cpu_space->install_ram(winStart, winEnd, m_ram.data());
		m_cpu->add_fastram(winStart, winEnd, false, m_ram.data());
		LOGNILE("map_cpu_space ram_size=%08X ram_base=%08X\n", winSize, winStart);
	}

	// Map SIMMs
	for (int simIndex = 0; simIndex < 4; simIndex++) {
		regConfig = m_cpu_regs[NREG_SIMM1 + simIndex];
		if (regConfig & 0x8) {
			winSize = 1 << 21;  // 2MB
			for (int i = 13; i <= 17; i++) {
				if (!((regConfig >> i) & 0x1)) winSize <<= 1;
				else break;
			}
			winStart = (regConfig & 0x0fe00000);
			winEnd = winStart + winSize - 1;

			m_simm[simIndex].resize(winSize / 4);
			m_cpu_space->install_ram(winStart, winEnd, m_simm[simIndex].data());
			m_cpu->add_fastram(winStart, winEnd, false, m_simm[simIndex].data());
			LOGNILE("map_cpu_space simm_size[%i]=%08X simm_base=%08X\n", simIndex, winSize, winStart);
		}
	}

	// PCI Master Window 1
	if (m_cpu_regs[NREG_PCIMW1]&0x1000) {
		winStart = m_cpu_regs[NREG_PCIMW1]&0xff000000;
		winEnd = winStart | (~(0x80000000 | (((m_cpu_regs[NREG_PCIMW1]>>13)&0x7f)<<24)));
		winSize = winEnd - winStart + 1;
		m_cpu_space->install_read_handler(winStart, winEnd, read32_delegate(*this, FUNC(vrc4373_device::master1_r)));
		m_cpu_space->install_write_handler(winStart, winEnd, write32_delegate(*this, FUNC(vrc4373_device::master1_w)));
		LOGNILE("map_cpu_space Master Window 1 start=%08X end=%08X size=%08X laddr=%08X\n", winStart, winEnd, winSize,  m_pci1_laddr);
	}
	// PCI Master Window 2
	if (m_cpu_regs[NREG_PCIMW2]&0x1000) {
		winStart = m_cpu_regs[NREG_PCIMW2]&0xff000000;
		winEnd = winStart | (~(0x80000000 | (((m_cpu_regs[NREG_PCIMW2]>>13)&0x7f)<<24)));
		winSize = winEnd - winStart + 1;
		m_cpu_space->install_read_handler(winStart, winEnd, read32_delegate(*this, FUNC(vrc4373_device::master2_r)));
		m_cpu_space->install_write_handler(winStart, winEnd, write32_delegate(*this, FUNC(vrc4373_device::master2_w)));
		LOGNILE("map_cpu_space Master Window 2 start=%08X end=%08X size=%08X laddr=%08X\n", winStart, winEnd, winSize,  m_pci2_laddr);
	}
	// PCI IO Window
	if (m_cpu_regs[NREG_PCIMIOW]&0x1000) {
		winStart = m_cpu_regs[NREG_PCIMIOW]&0xff000000;
		winEnd = winStart | (~(0x80000000 | (((m_cpu_regs[NREG_PCIMIOW]>>13)&0x7f)<<24)));
		winSize = winEnd - winStart + 1;
		m_cpu_space->install_read_handler(winStart, winEnd, read32_delegate(*this, FUNC(vrc4373_device::master_io_r)));
		m_cpu_space->install_write_handler(winStart, winEnd, write32_delegate(*this, FUNC(vrc4373_device::master_io_w)));
		LOGNILE("map_cpu_space IO Window start=%08X end=%08X size=%08X laddr=%08X\n", tag(), winStart, winEnd, winSize,  m_pci_io_laddr);
	}
}

void vrc4373_device::map_extra(uint64_t memory_window_start, uint64_t memory_window_end, uint64_t memory_offset, address_space *memory_space,
									uint64_t io_window_start, uint64_t io_window_end, uint64_t io_offset, address_space *io_space)
{
	uint32_t winStart, winEnd, winSize;

	// PCI Target Window 1
	if (m_cpu_regs[NREG_PCITW1]&0x1000) {
		winStart = m_cpu_regs[NREG_PCITW1]&0xffe00000;
		winEnd = winStart | (~(0xf0000000 | (((m_cpu_regs[NREG_PCITW1]>>13)&0x7f)<<21)));
		winSize = winEnd - winStart + 1;
		memory_space->install_read_handler(winStart, winEnd, read32_delegate(*this, FUNC(vrc4373_device::target1_r)));
		memory_space->install_write_handler(winStart, winEnd, write32_delegate(*this, FUNC(vrc4373_device::target1_w)));
		LOGNILE("map_extra Target Window 1 start=%08X end=%08X size=%08X laddr=%08X\n", winStart, winEnd, winSize,  m_target1_laddr);
	}
	// PCI Target Window 2
	if (m_cpu_regs[NREG_PCITW2]&0x1000) {
		winStart = m_cpu_regs[NREG_PCITW2]&0xffe00000;
		winEnd = winStart | (~(0xf0000000 | (((m_cpu_regs[NREG_PCITW2]>>13)&0x7f)<<21)));
		winSize = winEnd - winStart + 1;
		memory_space->install_read_handler(winStart, winEnd, read32_delegate(*this, FUNC(vrc4373_device::target2_r)));
		memory_space->install_write_handler(winStart, winEnd, write32_delegate(*this, FUNC(vrc4373_device::target2_w)));
		LOGNILE("map_extra Target Window 2 start=%08X end=%08X size=%08X laddr=%08X\n", winStart, winEnd, winSize,  m_target2_laddr);
	}
}

void vrc4373_device::reset_all_mappings()
{
	pci_device::reset_all_mappings();
}

// PCI bus control
READ32_MEMBER (vrc4373_device::pcictrl_r)
{
	uint32_t result = 0;
	LOGNILE("%s nile pcictrl_r from offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::pcictrl_w)
{
	LOGNILE("%s nile pcictrl_w to offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, data, mem_mask);
}
// PCI Master Window 1
READ32_MEMBER (vrc4373_device::master1_r)
{
	uint32_t result = this->space(AS_PCI_MEM).read_dword(m_pci1_laddr | (offset*4), mem_mask);
	LOGNILEMASTER("%s nile master1 read from offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::master1_w)
{
	this->space(AS_PCI_MEM).write_dword(m_pci1_laddr | (offset*4), data, mem_mask);
	LOGNILEMASTER("%s nile master1 write to offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, data, mem_mask);
}

// PCI Master Window 2
READ32_MEMBER (vrc4373_device::master2_r)
{
	uint32_t result = this->space(AS_PCI_MEM).read_dword(m_pci2_laddr | (offset*4), mem_mask);
	LOGNILEMASTER("%s nile master2 read from offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::master2_w)
{
	this->space(AS_PCI_MEM).write_dword(m_pci2_laddr | (offset*4), data, mem_mask);
	LOGNILEMASTER("%s nile master2 write to offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, data, mem_mask);
}

// PCI Master IO Window
READ32_MEMBER (vrc4373_device::master_io_r)
{
	uint32_t result = this->space(AS_PCI_IO).read_dword(m_pci_io_laddr | (offset*4), mem_mask);
	LOGNILEMASTER("%s nile master io read from offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::master_io_w)
{
	this->space(AS_PCI_IO).write_dword(m_pci_io_laddr | (offset*4), data, mem_mask);
	LOGNILEMASTER("%s nile master io write to offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, data, mem_mask);
}

// PCI Target Window 1
READ32_MEMBER (vrc4373_device::target1_r)
{
	uint32_t result = m_cpu->space(AS_PCI_CONFIG).read_dword(m_target1_laddr | (offset*4), mem_mask);
	LOGNILETARGET("%08X:nile target1 read from offset %02X = %08X & %08X\n", m_cpu->pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::target1_w)
{
	m_cpu->space(AS_PCI_CONFIG).write_dword(m_target1_laddr | (offset*4), data, mem_mask);
	LOGNILETARGET("%08X:nile target1 write to offset %02X = %08X & %08X\n", m_cpu->pc(), offset*4, data, mem_mask);
}

// PCI Target Window 2
READ32_MEMBER (vrc4373_device::target2_r)
{
	uint32_t result = m_cpu->space(AS_PCI_CONFIG).read_dword(m_target2_laddr | (offset*4), mem_mask);
	LOGNILETARGET("%08X:nile target2 read from offset %02X = %08X & %08X\n", m_cpu->pc(), offset*4, result, mem_mask);
	return result;
}
WRITE32_MEMBER (vrc4373_device::target2_w)
{
	m_cpu->space(AS_PCI_CONFIG).write_dword(m_target2_laddr | (offset*4), data, mem_mask);
	LOGNILETARGET("%08X:nile target2 write to offset %02X = %08X & %08X\n", m_cpu->pc(), offset*4, data, mem_mask);
}

// DMA Transfer
TIMER_CALLBACK_MEMBER (vrc4373_device::dma_transfer)
{
	int which = param;

	// Check for dma suspension
	if (m_cpu_regs[NREG_DMACR1 + which * 0xc] & DMA_SUS) {
		LOGNILE("%08X:nile DMA Suspended PCI: %08X MEM: %08X Words: %X\n", m_cpu->pc(), m_cpu_regs[NREG_DMA_CPAR], m_cpu_regs[NREG_DMA_CMAR], m_cpu_regs[NREG_DMA_REM]);
		return;
	}

	int pciSel = (m_cpu_regs[NREG_DMACR1+which*0xC] & DMA_MIO) ? AS_PCI_MEM : AS_PCI_IO;
	address_space *src, *dst;
	uint32_t srcAddr, dstAddr;

	if (m_cpu_regs[NREG_DMACR1+which*0xC]&DMA_RW) {
		// Read data from PCI and write to cpu
		src = &this->space(pciSel);
		dst = &m_cpu->space(AS_PCI_CONFIG);
		srcAddr = m_cpu_regs[NREG_DMA_CPAR];
		dstAddr = m_cpu_regs[NREG_DMA_CMAR];
	} else {
		// Read data from cpu and write to PCI
		src = &m_cpu->space(AS_PCI_CONFIG);
		dst = &this->space(pciSel);
		srcAddr = m_cpu_regs[NREG_DMA_CMAR];
		dstAddr = m_cpu_regs[NREG_DMA_CPAR];
	}
	int dataCount = m_cpu_regs[NREG_DMA_REM];
	int burstCount = DMA_BURST_SIZE;
	while (dataCount>0 && burstCount>0) {
		dst->write_dword(dstAddr, src->read_dword(srcAddr));
		dstAddr += 0x4;
		srcAddr += 0x4;
		--dataCount;
		--burstCount;
	}
	if (m_cpu_regs[NREG_DMACR1+which*0xC]&DMA_RW) {
		m_cpu_regs[NREG_DMA_CPAR] = srcAddr;
		m_cpu_regs[NREG_DMA_CMAR] = dstAddr;
	} else {
		m_cpu_regs[NREG_DMA_CMAR] = srcAddr;
		m_cpu_regs[NREG_DMA_CPAR] = dstAddr;
	}
	m_cpu_regs[NREG_DMA_REM] = dataCount;
	// Check for end of DMA
	if (dataCount == 0) {
		// Clear the busy and go flags
		m_cpu_regs[NREG_DMACR1 + which * 0xc] &= ~DMA_BUSY;
		m_cpu_regs[NREG_DMACR1 + which * 0xc] &= ~DMA_GO;
		// Set the interrupt
		if (m_cpu_regs[NREG_DMACR1 + which * 0xc] & DMA_INT_EN) {
			if (!m_irq_cb.isnull()) {
				m_irq_cb(ASSERT_LINE);
			} else {
				logerror("vrc4373_device::dma_transfer Error: DMA configured to trigger interrupt but no interrupt line configured\n");
			}
		}
		// Turn off the timer
		m_dma_timer->adjust(attotime::never);
	}
}

// CPU I/F
READ32_MEMBER (vrc4373_device::cpu_if_r)
{
	uint32_t result = m_cpu_regs[offset];
	switch (offset) {
		case NREG_PCICAR:
			result = config_address_r(space, offset);
			break;
		case NREG_PCICDR:
			result = config_data_r(space, offset);
			break;
		case NREG_ICSR:
			// Top 16 bits always read as zero
			result &= 0xffff;
			break;
		default:
			break;
	}
	LOGNILE("%s nile read from offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, result, mem_mask);
	return result;
}

WRITE32_MEMBER(vrc4373_device::cpu_if_w)
{
	LOGNILE("%s nile write to offset %02X = %08X & %08X\n", machine().describe_context(), offset*4, data, mem_mask);

	uint32_t modData, oldData;
	oldData = m_cpu_regs[offset];
	COMBINE_DATA(&m_cpu_regs[offset]);
	switch (offset) {
		case NREG_PCIMW1:
				m_pci1_laddr = (data&0xff)<<24;
				map_cpu_space();
			break;
		case NREG_PCIMW2:
				m_pci2_laddr = (data&0xff)<<24;
				map_cpu_space();
			break;
		case NREG_PCIMIOW:
				m_pci_io_laddr = (data&0xff)<<24;
				map_cpu_space();
			break;
		case NREG_PCITW1:
				m_target1_laddr = 0x00000000 | ((data&0x7FF)<<21);
				remap_cb();
			break;
		case NREG_PCITW2:
				m_target2_laddr = 0x00000000 | ((data&0x7FF)<<21);
				remap_cb();
			break;
		case NREG_PCICAR:
			// Bits in reserved area are used for device selection of type 0 config transactions
			// Assuming 23:11 get mapped into device number for configuration
			if ((data&0x3) == 0x0) {
				// Type 0 transaction
				modData = 0;
				// Select the device based on one hot bit
				for (int i=11; i<24; i++) {
					if ((data>>i)&0x1) {
						// One hot encoding, bit 11 will mean device 1
						modData = i-10;
						break;
					}
				}
				// Re-organize into Type 1 transaction for bus 0 (local bus)
				modData = (modData<<11) | (data&0x7ff) | (0x80000000);
			} else {
				// Type 1 transaction, no modification needed
				modData = data;
			}
			pci_host_device::config_address_w(space, offset, modData);
			break;
		case NREG_PCICDR:
			pci_host_device::config_data_w(space, offset, data);
			break;
		case NREG_DMACR1:
		case NREG_DMACR2:
			// Start when DMA_GO bit is set
			if (!(oldData & DMA_GO) && (data & DMA_GO)) {
				int which = (offset - NREG_DMACR1) >> 3;
				// Set counts and address
				m_cpu_regs[NREG_DMA_CPAR] = m_cpu_regs[NREG_DMAPCI1 + which * 0xC];
				m_cpu_regs[NREG_DMA_CMAR] = m_cpu_regs[NREG_DMAMAR1 + which * 0xC];
				// Set number of words remaining
				m_cpu_regs[NREG_DMA_REM] = (data & DMA_BLK_SIZE) >> 2;
				// Set busy flag
				m_cpu_regs[NREG_DMACR1 + which * 0xc] |= DMA_BUSY;
				// Start the transfer
				m_dma_timer->set_param(which);
				m_dma_timer->adjust(attotime::zero, 0, DMA_TIMER_PERIOD);
				LOGNILE("%08X:nile Start DMA Lane %i PCI: %08X MEM: %08X Words: %X\n", m_cpu->pc(), which, m_cpu_regs[NREG_DMA_CPAR], m_cpu_regs[NREG_DMA_CMAR], m_cpu_regs[NREG_DMA_REM]);
			}
			break;
		case NREG_ICSR:
			// TODO: Check and clear individual interrupts
			if (data & 0xff000000) {
				if (!m_irq_cb.isnull())
					m_irq_cb(CLEAR_LINE);
			}
			break;
		case NREG_BMCR:
		case NREG_SIMM1:
		case NREG_SIMM2:
		case NREG_SIMM3:
		case NREG_SIMM4:
			map_cpu_space();
			break;
		default:
			break;
	}

}