summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/machine/phi.cpp
blob: a81c5bd4e4d738b762a596645c33b0adbe7fc66e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
// license:BSD-3-Clause
// copyright-holders:F. Ulivi
/*********************************************************************

    phi.h

    HP PHI (Processor-to-Hpib-Interface) (1AA6-6x04)

    PHI supports these features of HP-IB:
    * SH1
    * AH1
    * T1/TE1
    * L1/LE1
    * SR1
    * RL2
    * PP1
    * DC1
    * DT1
    * C1,C2,C3,C4,C5
    * HP non-standard IDENTIFY sequence

    Fun fact: PHI has no clock input, its FSMs are driven only by
    changes in input signals and by a few internal monostables

    Main reference for this ASIC:
    HP 12009-90001, sep 82, HP12009A HP-IB Interface Reference Manual

*********************************************************************/

#include "emu.h"
#include "phi.h"

// Debugging
#define VERBOSE 1
#define LOG(x)  do { if (VERBOSE) logerror x; } while (0)
#define VERBOSE_0 0
#define LOG_0(x)  do { if (VERBOSE_0) logerror x; } while (0)

// Macros to clear/set single bits
#define BIT_MASK(n) (1U << (n))
#define BIT_CLR(w , n)  ((w) &= ~BIT_MASK(n))
#define BIT_SET(w , n)  ((w) |= BIT_MASK(n))

// Timers
enum {
	SH_DELAY_TMR_ID,
	C_DELAY_TMR_ID
};

// Register addresses
enum {
	REG_R_INT_COND = 0, // R 0: Interrupting conditions
	REG_W_INT_COND = 0, // W 0: Interrupting conditions
	REG_R_INT_MASK = 1, // R 1: Interrupt mask
	REG_W_INT_MASK = 1, // W 1: Interrupt mask
	REG_R_INBOUND_FIFO = 2, // R 2: Inbound FIFO
	REG_W_OUTBOUND_FIFO = 2,// W 2: Outbound FIFO
	REG_R_STATUS = 3,   // R 3: Status
	REG_W_STATUS = 3,   // W 3: Status
	REG_R_CONTROL = 4,  // R 4: Control
	REG_W_CONTROL = 4,  // W 4: Control
	REG_R_ADDRESS = 5,  // R 5: HPIB address
	REG_W_ADDRESS = 5,  // W 5: HPIB address
	REG_R_1ST_ID = 6,   // R 6: 1st ID byte
	REG_W_1ST_ID = 6,   // W 6: 1st ID byte
	REG_R_2ND_ID = 7,   // R 7: 2nd ID byte
	REG_W_2ND_ID = 7    // W 7: 2nd ID byte
};

// All valid bits in registers
#define REG_ALL_MASK    0xc0ff

// D0 & D1 bits
#define REG_D0D1_MASK   0xc000  // Mask of D0/D1 bits
#define REG_D0D1_SHIFT  14      // Position of D0/D1 bits

// D8-D15 bits
#define REG_D08D15_MASK 0xff    // Mask of D8:D15 bits

// Bits in INT_COND & INT_MASK
#define REG_INT_DEV_CLEAR_BIT   0   // Device clear
#define REG_INT_FIFO_IDLE_BIT   1   // FIFO idle
#define REG_INT_FIFO_AV_BIT     2   // FIFO bytes available
#define REG_INT_FIFO_ROOM_BIT   3   // FIFO room available
#define REG_INT_SRQ_BIT         4   // Service request
#define REG_INT_PP_RESPONSE_BIT 5   // PP response
#define REG_INT_PROC_ABORT_BIT  6   // Processor handshake abort
#define REG_INT_STATUS_CH_BIT   7   // Status change
#define REG_INT_PARITY_ERR_BIT  14  // Parity error
#define REG_INT_PENDING_BIT     15  // Interrupt pending
#define REG_INT_CLEARABLE_MASK  0x40c1  // Mask of clearable bits
#define REG_INT_STATE_MASK      0x803e  // Mask of "state" bits

// Bits in inbound FIFO
#define REG_IFIFO_NORMAL_MASK   0x0000  // Mask of D0/D1 bits for "normal" bytes
#define REG_IFIFO_CNT_EXP_MASK  0x8000  // Mask for a byte that caused byte count to expire
#define REG_IFIFO_LAST_MASK     0xc000  // Mask for last byte in a record
#define REG_IFIFO_2_ADDR_MASK   0x4000  // Mask for secondary addresses
#define REG_IFIFO_TALK_BIT      5       // Bit of "talk" flag

// Bits in outbound FIFO
#define REG_OFIFO_SPECIAL_BIT   14      // Bit to discriminate between normal bytes and the rest
#define REG_OFIFO_END_BIT       15      // Bit of EOI
#define REG_OFIFO_IFCMD_MASK    0x4000  // Mask of interface commands
#define REG_OFIFO_UNCNT_MASK    0xc000  // Mask of uncounted transfer enable
#define REG_OFIFO_XFER_EN_MASK  0x0000  // Mask of byte transfer enable
#define REG_OFIFO_LF_INH_BIT    15      // Bit of LF detection inhibit

// Bits in status register
#define REG_STATUS_DATA_FREEZE_BIT  0   // Outbound data freeze
#define REG_STATUS_LISTEN_BIT       1   // Addressed to listen
#define REG_STATUS_TALK_BIT         2   // Addressed to talk or identify
#define REG_STATUS_SYS_CTRL_BIT     3   // System controller
#define REG_STATUS_CONTROLLER_BIT   4   // Current controller
#define REG_STATUS_REMOTE_BIT       5   // Remote state
#define REG_STATUS_D0D1_BIT         6   // D0/D1 bit access
#define REG_STATUS_STATE_MASK       0x3e    // Mask of "state" bits

// Bits in control register
#define REG_CTRL_INIT_OFIFO_BIT     0   // Initialize outbound FIFO
#define REG_CTRL_DMA_FIFO_BIT       1   // DMA FIFO selection
#define REG_CTRL_SERVICE_REQ_BIT    2   // Request service
#define REG_CTRL_PP_RESPONSE_BIT    3   // Respond to PP
#define REG_CTRL_IFC_BIT            4   // IFC value
#define REG_CTRL_REN_BIT            5   // REN value
#define REG_CTRL_PAR_FREEZE_BIT     6   // Parity freeze
#define REG_CTRL_8BIT_PROC_BIT      7   // 8-bit processor

// Bits in address register
#define REG_ADDR_HPIB_ADDR_BIT      0   // HPIB address
#define REG_ADDR_LA_BIT             5   // Listen always
#define REG_ADDR_TA_BIT             6   // Talk always
#define REG_ADDR_ONLINE_BIT         7   // Online

// Interface commands
#define IFCMD_MASK              0x7f    // Mask of interface commands
#define IFCMD_DCL               0x14    // Device clear
#define IFCMD_GET               0x08    // Group execute trigger
#define IFCMD_GTL               0x01    // Go to local
#define IFCMD_LLO               0x11    // Local lock-out
#define IFCMD_AG_MASK           0x60    // Mask of bits identifying address group commands
#define IFCMD_ADDR_MASK         0x1f    // Mask of address in AG commands
#define IFCMD_LAG_VALUE         0x20    // Value of LAG commands
#define IFCMD_TAG_VALUE         0x40    // Value of TAG commands
#define IFCMD_SCG_VALUE         0x60    // Value of SCG commands
#define IFCMD_PPC               0x05    // Parallel poll configure
#define IFCMD_PPX_MASK          0x70    // Mask of PPE/PPD commands
#define IFCMD_PPE_VALUE         0x60    // Parallel poll enable
#define IFCMD_PPE_S_BIT         3       // Position of "S" bit in PPE
#define IFCMD_PPE_PPR_MASK      7       // Mask in PPE of PPR msg no.
#define IFCMD_PPD_VALUE         0x70    // Parallel poll disable
#define IFCMD_PPU               0x15    // Parallel poll unconfigure
#define IFCMD_SDC               0x04    // Selected device clear
#define IFCMD_SPD               0x19    // Serial poll disable
#define IFCMD_SPE               0x18    // Serial poll enable
#define IFCMD_TCT               0x09    // Take control
#define IFCMD_UNL               0x3f    // Unlisten
#define IFCMD_UNT               0x5f    // Untalk

// Delays
#define DELAY_T1    2000    // T1: 2 us
#define DELAY_T7    500     // T7: 0.5 us
#define DELAY_T9    1500    // T9: 1.5 us
#define DELAY_T10   1500    // T10: 1.5 us

// Controller address
#define CONTROLLER_ADDR         0x1e    // PHI always has this address when it's a controller

// Device type definition
const device_type PHI = device_creator<phi_device>;

// Constructors
phi_device::phi_device(const machine_config &mconfig, device_type type, const char *name, const char *tag, device_t *owner, uint32_t clock, const char *shortname)
	: device_t(mconfig, type, name, tag, owner, clock, shortname, __FILE__),
	  m_dio_read_func(*this),
	  m_dio_write_func(*this),
	  m_signal_wr_fns{
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this) },
	  m_int_write_func(*this),
	  m_dmarq_write_func(*this)
{
}

phi_device::phi_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, PHI, "HP PHI", tag, owner, clock, "phi", __FILE__),
	  m_dio_read_func(*this),
	  m_dio_write_func(*this),
	  m_signal_wr_fns{
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this),
		  devcb_write_line(*this) },
	  m_int_write_func(*this),
	  m_dmarq_write_func(*this)
{
}

WRITE_LINE_MEMBER(phi_device::eoi_w)
{
	set_ext_signal(PHI_488_EOI , state);
}

WRITE_LINE_MEMBER(phi_device::dav_w)
{
	set_ext_signal(PHI_488_DAV , state);
}

WRITE_LINE_MEMBER(phi_device::nrfd_w)
{
	set_ext_signal(PHI_488_NRFD , state);
}

WRITE_LINE_MEMBER(phi_device::ndac_w)
{
	set_ext_signal(PHI_488_NDAC , state);
}

WRITE_LINE_MEMBER(phi_device::ifc_w)
{
	set_ext_signal(PHI_488_IFC , state);
}

WRITE_LINE_MEMBER(phi_device::srq_w)
{
	set_ext_signal(PHI_488_SRQ , state);
}

WRITE_LINE_MEMBER(phi_device::atn_w)
{
	set_ext_signal(PHI_488_ATN , state);
}

WRITE_LINE_MEMBER(phi_device::ren_w)
{
	set_ext_signal(PHI_488_REN , state);
}


void phi_device::set_ext_signal(phi_488_signal_t signal , int state)
{
	state = !state;
	if (m_ext_signals[ signal ] != state) {
		m_ext_signals[ signal ] = state;
		LOG_0(("EXT EOI %d DAV %d NRFD %d NDAC %d IFC %d SRQ %d ATN %d REN %d\n" ,
			 m_ext_signals[ PHI_488_EOI ] ,
			 m_ext_signals[ PHI_488_DAV ] ,
			 m_ext_signals[ PHI_488_NRFD ] ,
			 m_ext_signals[ PHI_488_NDAC ] ,
			 m_ext_signals[ PHI_488_IFC ] ,
			 m_ext_signals[ PHI_488_SRQ ] ,
			 m_ext_signals[ PHI_488_ATN ] ,
			 m_ext_signals[ PHI_488_REN ]));
		update_fsm();
	}
}

WRITE16_MEMBER(phi_device::reg16_w)
{
	int_reg_w(offset , data & REG_ALL_MASK);
}

READ16_MEMBER(phi_device::reg16_r)
{
	uint16_t res;

	switch (offset) {
	case REG_R_INT_COND:
		res = m_reg_int_cond & m_reg_int_mask;
		break;

	case REG_R_INT_MASK:
		res = m_reg_int_mask;
		break;

	case REG_R_INBOUND_FIFO:
		// TODO: read from PP response
		if (m_fifo_in.empty()) {
			BIT_SET(m_reg_int_cond, REG_INT_PROC_ABORT_BIT);
			res = 0;
		} else {
			res = m_fifo_in.dequeue();
		}
		update_fsm();
		break;

	case REG_R_STATUS:
		res = m_reg_status;
		break;

	case REG_R_CONTROL:
		res = m_reg_control;
		break;

	case REG_R_ADDRESS:
		res = m_reg_address;
		break;

	case REG_R_1ST_ID:
		res = m_reg_1st_id;
		break;

	case REG_R_2ND_ID:
		res = m_reg_2nd_id;
		break;

	default:
		res = 0;
		LOG(("Reading from unmapped address (%u)\n", offset));
		break;
	};

	if (offset != REG_R_STATUS) {
		// Store D0/D1 in top bits of status register
		m_reg_status = (m_reg_status & ~(3U << REG_STATUS_D0D1_BIT)) |
			((res & REG_D0D1_MASK) >> (REG_D0D1_SHIFT - REG_STATUS_D0D1_BIT));
	}

	//LOG(("R %u=%04x\n" , offset , res));
	return res;
}

WRITE8_MEMBER(phi_device::reg8_w)
{
	int_reg_w(offset , data);
}

READ8_MEMBER(phi_device::reg8_r)
{
	return (uint8_t)reg16_r(space , offset , mem_mask);
}

void phi_device::device_start()
{
	save_item(NAME(m_dio));
	save_item(NAME(m_signals));
	save_item(NAME(m_ext_signals));
	save_item(NAME(m_sys_controller));
	save_item(NAME(m_loopback));
	save_item(NAME(m_id_enabled));
	save_item(NAME(m_sh_state));
	save_item(NAME(m_ah_state));
	save_item(NAME(m_t_state));
	save_item(NAME(m_t_spms));
	save_item(NAME(m_l_state));
	save_item(NAME(m_sr_state));
	save_item(NAME(m_pp_state));
	save_item(NAME(m_pp_pacs));
	save_item(NAME(m_ppr_msg));
	save_item(NAME(m_s_sense));
	save_item(NAME(m_c_state));
	save_item(NAME(m_be_counter));
	save_item(NAME(m_reg_status));
	save_item(NAME(m_reg_int_cond));
	save_item(NAME(m_reg_int_mask));
	save_item(NAME(m_reg_1st_id));
	save_item(NAME(m_reg_2nd_id));
	save_item(NAME(m_reg_control));
	save_item(NAME(m_reg_address));
	save_item(NAME(m_nba_origin));

	m_dio_read_func.resolve_safe(0xff);
	m_dio_write_func.resolve_safe();
	for (auto& f : m_signal_wr_fns) {
		f.resolve_safe();
	}
	m_int_write_func.resolve_safe();
	m_dmarq_write_func.resolve_safe();

	m_sh_dly_timer = timer_alloc(SH_DELAY_TMR_ID);
	m_c_dly_timer = timer_alloc(C_DELAY_TMR_ID);
}

void phi_device::device_reset()
{
	m_dio = 0;
	for (auto& s : m_signals) {
		s = false;
	}
	for (auto& s : m_ext_signals) {
		s = false;
	}
	m_no_recursion = false;
	// The following variables are set "true" because m_reg_address is set to 0
	m_sys_controller = true;
	m_loopback = true;
	m_id_enabled = false;
	m_reg_status = 0;
	m_reg_int_cond = 0;
	m_reg_int_mask = 0;
	m_reg_1st_id = 0;
	m_reg_2nd_id = 0;
	m_reg_control = 0;
	m_reg_address = 0;
	m_fifo_in.clear();
	m_fifo_out.clear();

	pon_msg();
	update_488();
}

void phi_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
	LOG_0(("tmr %d enabled %d\n" , id , timer.enabled()));
	update_fsm();
}

void phi_device::int_reg_w(offs_t offset , uint16_t data)
{
	if (BIT(m_reg_control , REG_CTRL_8BIT_PROC_BIT)) {
		// In 8-bit mode, D0/D1 come from status register
		data = (data & REG_D08D15_MASK) | ((m_reg_status << (REG_D0D1_SHIFT - REG_STATUS_D0D1_BIT)) & REG_D0D1_MASK);
	}

	//LOG(("W %u=%04x\n" , offset , data));

	switch (offset) {
	case REG_W_INT_COND:
		// Bits D1/D8/D9/D15 only are clearable when written to 1
		m_reg_int_cond &= ~(data & REG_INT_CLEARABLE_MASK);
		update_fsm();
		break;

	case REG_W_INT_MASK:
		m_reg_int_mask = data;
		update_fsm();
		break;

	case REG_W_OUTBOUND_FIFO:
		if (m_fifo_out.full()) {
			BIT_SET(m_reg_int_cond, REG_INT_PROC_ABORT_BIT);
		} else {
			m_fifo_out.enqueue(data);
		}
		update_fsm();
		break;

	case REG_W_STATUS:
		// Copy D0/D1 access bits into status register
		m_reg_status = (m_reg_status & ~(3U << REG_STATUS_D0D1_BIT)) |
			(data & (3U << REG_STATUS_D0D1_BIT));
		if (BIT(data , REG_STATUS_DATA_FREEZE_BIT) && m_fifo_in.empty()) {
			BIT_CLR(m_reg_status, REG_STATUS_DATA_FREEZE_BIT);
		}
		update_fsm();
		break;

	case REG_W_CONTROL:
		// D0/D1/D15 are not mapped into register
		m_reg_control = data & 0xfe;
		if (BIT(data , REG_CTRL_INIT_OFIFO_BIT)) {
			m_fifo_out.clear();
		}
		if (m_loopback) {
			// TODO: better?
			m_id_enabled = BIT(m_reg_control , REG_CTRL_PP_RESPONSE_BIT);
		}
		update_fsm();
		break;

	case REG_W_ADDRESS:
		{
			// No D0/D1 in register
			data &= REG_D08D15_MASK;
			bool prev_ol = BIT(m_reg_address , REG_ADDR_ONLINE_BIT);
			m_reg_address = data;
			bool current_ol = BIT(m_reg_address , REG_ADDR_ONLINE_BIT);
			// TODO: consider SYS CNTRL input, too
			m_sys_controller = !current_ol;
			m_loopback = !current_ol;
			if (!current_ol) {
				// IDENTIFY is enabled by PP_RESPONSE bit in control register
				m_id_enabled = BIT(m_reg_control , REG_CTRL_PP_RESPONSE_BIT);
			} else if (!prev_ol) {
				// Going on-line
				pon_msg();
				m_id_enabled = BIT(m_reg_control , REG_CTRL_PP_RESPONSE_BIT);
			}
			if (prev_ol != current_ol) {
				update_488();
			}
			update_fsm();
		}
		break;

	case REG_W_1ST_ID:
		// No D0/D1 in register
		m_reg_1st_id = data & REG_D08D15_MASK;
		update_fsm();
		break;

	case REG_W_2ND_ID:
		// No D0/D1 in register
		m_reg_2nd_id = data & REG_D08D15_MASK;
		update_fsm();
		break;

	default:
		LOG(("Writing to unmapped address (%u)\n", offset));
		break;
	}
}

uint8_t phi_device::get_dio(void)
{
	if (m_loopback) {
		return m_dio;
	} else {
		return ~m_dio_read_func();
	}
}

void phi_device::set_dio(uint8_t data)
{
	if (data != m_dio) {
		LOG_0(("DIO=%02x\n" , data));
		m_dio = data;
		if (!m_loopback) {
			m_dio_write_func(~data);
		}
	}
}

bool phi_device::get_signal(phi_488_signal_t signal)
{
	if (m_loopback) {
		return m_signals[ signal ];
	} else {
		return m_ext_signals[ signal ];
	}
}

void phi_device::set_signal(phi_488_signal_t signal , bool state)
{
	if (state != m_signals[ signal ]) {
		m_signals[ signal ] = state;
		LOG_0(("INT EOI %d DAV %d NRFD %d NDAC %d IFC %d SRQ %d ATN %d REN %d\n" ,
			 m_signals[ PHI_488_EOI ] ,
			 m_signals[ PHI_488_DAV ] ,
			 m_signals[ PHI_488_NRFD ] ,
			 m_signals[ PHI_488_NDAC ] ,
			 m_signals[ PHI_488_IFC ] ,
			 m_signals[ PHI_488_SRQ ] ,
			 m_signals[ PHI_488_ATN ] ,
			 m_signals[ PHI_488_REN ]));
		if (!m_loopback) {
			m_signal_wr_fns[ signal ](!state);
		}
	}
}

void phi_device::pon_msg(void)
{
	m_sh_state = PHI_SH_SIDS;
	m_ah_state = PHI_AH_AIDS;
	m_t_state = PHI_T_TIDS;
	m_t_spms = false;
	m_l_state = PHI_L_LIDS;
	m_sr_state = PHI_SR_NPRS;
	m_pp_pacs = false;
	uint8_t addr = my_address();
	if (addr <= 7) {
		// If address <= 7, PP is automatically enabled and configured for PPR = ~address
		m_ppr_msg = addr ^ 7;
		m_pp_state = PHI_PP_PPSS;
	} else {
		m_ppr_msg = 0;
		m_pp_state = PHI_PP_PPIS;
	}
	m_s_sense = true;
	m_c_state = PHI_C_CIDS;
	m_be_counter = 0;
	m_nba_origin = NBA_NONE;
}

void phi_device::update_488(void)
{
	if (m_loopback) {
		m_dio_write_func(~0);
		for (auto& f : m_signal_wr_fns) {
			f(1);
		}
	} else {
		m_dio_write_func(~m_dio);
		for (unsigned i = 0; i < PHI_488_SIGNAL_COUNT; i++) {
			m_signal_wr_fns[ i ](!m_signals[ i ]);
		}
	}
}

void phi_device::update_fsm(void)
{
	if (m_no_recursion) {
		// Prevent recursion into this function whenever a signal change propagates through
		// set_ext_signal
		return;
	}
	m_no_recursion = true;

	set_signal(PHI_488_IFC , m_sys_controller && BIT(m_reg_control , REG_CTRL_IFC_BIT));
	set_signal(PHI_488_REN , m_sys_controller && BIT(m_reg_control , REG_CTRL_REN_BIT));

	bool changed = true;
	int prev_state;
	uint8_t new_byte = 0;
	bool new_eoi = false;
	bool prev_cic = controller_in_charge();
	// TODO: SR FSM
	// TODO: RL FSM
	// Loop until all changes settle
	while (changed) {
		LOG_0(("SH %d AH %d T %d SPMS %d L %d SR %d PP %d PACS %d PPR %u S %d C %d\n" ,
			 m_sh_state , m_ah_state , m_t_state , m_t_spms , m_l_state , m_sr_state ,
			 m_pp_state , m_pp_pacs , m_ppr_msg , m_s_sense , m_c_state));
		LOG_0(("O E/F=%d/%d I E/F=%d/%d\n" , m_fifo_out.empty() , m_fifo_out.full() , m_fifo_in.empty() , m_fifo_in.full()));
		changed = false;

		// SH FSM
		prev_state = m_sh_state;
		bool sh_reset =
			(get_signal(PHI_488_ATN) && !(m_c_state == PHI_C_CACS || m_c_state == PHI_C_CTRS)) ||
			(!get_signal(PHI_488_ATN) && !(m_t_state == PHI_T_TACS || m_t_state == PHI_T_SPAS || m_t_state == PHI_T_ID3 || m_t_state == PHI_T_ID5));

		if (sh_reset) {
			m_sh_state = PHI_SH_SIDS;
			m_sh_dly_timer->reset();
		} else {
			switch (m_sh_state) {
			case PHI_SH_SIDS:
				if (m_t_state == PHI_T_TACS ||
					m_t_state == PHI_T_SPAS ||
					m_t_state == PHI_T_ID3 ||
					m_t_state == PHI_T_ID5 ||
					m_c_state == PHI_C_CACS) {
					m_sh_state = PHI_SH_SGNS;
				}
				break;

			case PHI_SH_SGNS:
				if ((m_nba_origin = nba_msg(new_byte , new_eoi)) != NBA_NONE) {
					m_sh_state = PHI_SH_SDYS;
					m_sh_dly_timer->adjust(attotime::from_nsec(DELAY_T1));
					LOG_0(("SH DLY enabled %d\n" , m_sh_dly_timer->enabled()));
				}
				break;

			case PHI_SH_SDYS:
				if (!get_signal(PHI_488_NRFD) && !m_sh_dly_timer->enabled()) {
					m_sh_state = PHI_SH_STRS;
				}
				break;

			case PHI_SH_STRS:
				if (!get_signal(PHI_488_NDAC)) {
					LOG(("TX %02x/%d\n" , m_dio , m_signals[ PHI_488_EOI ]));
					m_sh_state = PHI_SH_SGNS;
					clear_nba((nba_origin_t)m_nba_origin);
				}
				break;

			default:
				logerror("Invalid SH state %d\n" , m_sh_state);
				m_sh_state = PHI_SH_SIDS;
			}
		}
		if (m_sh_state != prev_state) {
			changed = true;
		}

		// SH outputs
		// EOI is controlled by SH & C FSMs
		bool eoi_signal = false;
		uint8_t dio_byte = 0;
		set_signal(PHI_488_DAV , m_sh_state == PHI_SH_STRS);
		if (m_sh_state == PHI_SH_SDYS || m_sh_state == PHI_SH_STRS) {
			nba_msg(new_byte , new_eoi);
			dio_byte = new_byte;
			eoi_signal = new_eoi;
		}

		// AH FSM
		prev_state = m_ah_state;
		bool ah_reset = !(get_signal(PHI_488_ATN) || m_l_state == PHI_L_LADS || m_l_state == PHI_L_LACS || m_c_state == PHI_C_CSBS);
		if (ah_reset) {
			m_ah_state = PHI_AH_AIDS;
		} else {
			switch (m_ah_state) {
			case PHI_AH_AIDS:
				m_ah_state = PHI_AH_ANRS;
				break;

			case PHI_AH_ANRS:
				//if (!tcs_msg() && (get_signal(PHI_488_ATN) || rdy_msg())) {
				// According to standard either ATN or rdy should also be true, but rdy is always true in PHI
				if (!tcs_msg()) {
					m_ah_state = PHI_AH_ACRS;
				}
				break;

			case PHI_AH_ACRS:
				if (get_signal(PHI_488_DAV)) {
					m_ah_state = PHI_AH_ACDS;
				}
				// rdy is always true
				// } else if (!get_signal(PHI_488_ATN) && !rdy_msg()) {
				//  m_ah_state = PHI_AH_ANRS;
				// }
				break;

			case PHI_AH_ACDS:
				// FSM stays in this state until the acceptor has
				// accepted the data byte or the interface command.
				if (get_signal(PHI_488_ATN)) {
					uint8_t if_cmd = get_dio();
					bool parity_ok = odd_parity(if_cmd);
					if (!parity_ok) {
						BIT_SET(m_reg_int_cond , REG_INT_PARITY_ERR_BIT);
					}
					if (BIT(m_reg_control , REG_CTRL_PAR_FREEZE_BIT) && !parity_ok) {
						// With even parity and PARITY FREEZE set, command is ignored and
						// AH FSM freezes in ACDS
						m_ah_state = PHI_AH_ACDS_FROZEN;
					} else {
						// Clear parity bit & process command
						if_cmd &= IFCMD_MASK;
						if (if_cmd_received(if_cmd)) {
							m_ah_state = PHI_AH_AWNS;
						}
					}
				} else if (byte_received(get_dio() , get_signal(PHI_488_EOI))) {
					m_ah_state = PHI_AH_AWNS;
				}
				break;

			case PHI_AH_ACDS_FROZEN:
			case PHI_AH_AWNS:
				if (!get_signal(PHI_488_DAV)) {
					m_ah_state = PHI_AH_ANRS;
				}
				break;

			default:
				logerror("Invalid AH state %d\n" , m_ah_state);
				m_ah_state = PHI_AH_AIDS;
			}
		}
		if (m_ah_state != prev_state) {
			changed = true;
		}
		// AH outputs
		set_signal(PHI_488_NRFD , m_ah_state == PHI_AH_ANRS || m_ah_state == PHI_AH_ACDS || m_ah_state == PHI_AH_ACDS_FROZEN || m_ah_state == PHI_AH_AWNS);
		set_signal(PHI_488_NDAC , m_ah_state == PHI_AH_ANRS || m_ah_state == PHI_AH_ACRS || m_ah_state == PHI_AH_ACDS || m_ah_state == PHI_AH_ACDS_FROZEN);

		// T FSM
		prev_state = m_t_state;
		if (get_signal(PHI_488_IFC)) {
			m_t_state = PHI_T_TIDS;
			m_t_spms = false;
		} else {
			switch (m_t_state) {
			case PHI_T_TIDS:
				if (ton_msg()) {
					m_t_state = PHI_T_TADS;
				}
				break;

			case PHI_T_TADS:
				if (!get_signal(PHI_488_ATN)) {
					if (m_t_spms) {
						m_t_state = PHI_T_SPAS;
					} else {
						m_t_state = PHI_T_TACS;
					}
				}
				break;

			case PHI_T_SPAS:
			case PHI_T_TACS:
				if (get_signal(PHI_488_ATN)) {
					m_t_state = PHI_T_TADS;
				}
				break;

			case PHI_T_ID1:
				break;

			case PHI_T_ID2:
				if (!get_signal(PHI_488_ATN)) {
					m_t_state = PHI_T_ID3;
				}
				break;

			case PHI_T_ID3:
				if (get_signal(PHI_488_ATN)) {
					m_t_state = PHI_T_ID2;
				}
				break;

			case PHI_T_ID4:
				if (!get_signal(PHI_488_ATN)) {
					m_t_state = PHI_T_ID5;
				}
				break;

			case PHI_T_ID5:
				if (get_signal(PHI_488_ATN)) {
					m_t_state = PHI_T_ID4;
				}
				break;

			case PHI_T_ID6:
				break;

			default:
				logerror("Invalid T state %d\n" , m_t_state);
				m_t_state = PHI_T_TIDS;
			}
		}
		if (m_t_state != prev_state) {
			changed = true;
		}
		// No direct T outputs

		// L FSM
		prev_state = m_l_state;
		if (get_signal(PHI_488_IFC)) {
			m_l_state = PHI_L_LIDS;
		} else {
			switch (m_l_state) {
			case PHI_L_LIDS:
				if (lon_msg()) {
					m_l_state = PHI_L_LADS;
				}
				break;

			case PHI_L_LADS:
				if (!get_signal(PHI_488_ATN)) {
					m_l_state = PHI_L_LACS;
				}
				break;

			case PHI_L_LACS:
				if (get_signal(PHI_488_ATN)) {
					m_l_state = PHI_L_LADS;
				}
				break;

			default:
				logerror("Invalid L state %d\n" , m_l_state);
				m_l_state = PHI_L_LIDS;
			}
		}
		if (m_l_state != prev_state) {
			changed = true;
		}
		// No direct L outputs

		// PP FSM
		prev_state = m_pp_state;
		switch (m_pp_state) {
		case PHI_PP_PPIS:
			break;

		case PHI_PP_PPSS:
			if (get_signal(PHI_488_ATN) && get_signal(PHI_488_EOI)) {
				m_pp_state = PHI_PP_PPAS;
			}
			break;

		case PHI_PP_PPAS:
			if (!get_signal(PHI_488_ATN) || !get_signal(PHI_488_EOI)) {
				m_pp_state = PHI_PP_PPSS;
			}
			break;

		default:
			logerror("Invalid PP state %d\n" , m_pp_state);
			m_pp_state = PHI_PP_PPIS;
		}
		if (m_pp_state != prev_state) {
			changed = true;
		}
		// PP outputs
		if (m_pp_state == PHI_PP_PPAS && m_s_sense == !!BIT(m_reg_control , REG_CTRL_PP_RESPONSE_BIT)) {
			LOG(("PP %u\n" , m_ppr_msg));
			dio_byte |= (1U << m_ppr_msg);
		}

		// C FSM
		prev_state = m_c_state;
		if (!m_sys_controller && get_signal(PHI_488_IFC)) {
			m_c_state = PHI_C_CIDS;
			m_c_dly_timer->reset();
		} else {
			switch (m_c_state) {
			case PHI_C_CIDS:
				if (m_sys_controller && get_signal(PHI_488_IFC)) {
					m_c_state = PHI_C_CADS;
				}
				break;

			case PHI_C_CADS:
				if (!get_signal(PHI_488_ATN)) {
					m_c_state = PHI_C_CACS;
				}
				break;

			case PHI_C_CACS:
				// If there are ifcmds to send, just stay in CACS
				// else wait for SH to finish its current transfer then decide what to do
				if (nba_msg(new_byte , new_eoi) != NBA_CMD_FROM_OFIFO &&
					m_sh_state != PHI_SH_STRS && m_sh_state != PHI_SH_SDYS) {
					if (!m_fifo_out.empty()) {
						// Possible cases
						// D0/D1    Meaning of 1st word of OFIFO
						// =====================================
						// x0       Counted transfer enable or byte to be sent
						// 11       Uncounted transfer enable
						// 01       Send interface command (already caught by nba_msg)
						m_c_state = PHI_C_CSBS;
						m_be_counter = 0;
					} else if (rpp_msg()) {
						// Start parallel polling
						m_c_state = PHI_C_CPWS;
					}
					// It's not clear what PHI does when it's controller-in-charge
					// and it's nothing to do. Here we park it in CACS.
				}
				break;

			case PHI_C_CPWS:
				// TODO:
				break;

			case PHI_C_CPPS:
				// TODO:
				break;

			case PHI_C_CSBS:
				if (tcs_msg() && m_ah_state == PHI_AH_ANRS) {
					m_c_state = PHI_C_CSHS;
					m_c_dly_timer->adjust(attotime::from_nsec(DELAY_T10));
				}
				break;

			case PHI_C_CSHS:
				// tcs_msg cannot go false here
				if (!m_c_dly_timer->enabled()) {
					m_c_state = PHI_C_CSWS;
					m_c_dly_timer->adjust(attotime::from_nsec(DELAY_T7));
				}
				break;

			case PHI_C_CAWS:
				if (rpp_msg()) {
					m_c_state = PHI_C_CPWS;
					m_c_dly_timer->reset();
				} else if (!m_c_dly_timer->enabled()) {
					m_c_state = PHI_C_CACS;
				}
				break;

			case PHI_C_CTRS:
				if (m_sh_state != PHI_SH_STRS) {
					m_c_state = PHI_C_CIDS;
				}
				break;

			case PHI_C_CSWS:
				if (m_t_state == PHI_T_TADS || !m_c_dly_timer->enabled()) {
					m_c_state = PHI_C_CAWS;
					m_c_dly_timer->adjust(attotime::from_nsec(DELAY_T9));
				}
				break;

			default:
				logerror("Invalid C state %d\n" , m_c_state);
				m_c_state = PHI_C_CIDS;
			}
		}
		if (m_c_state != prev_state) {
			changed = true;
		}
		// C outputs
		set_signal(PHI_488_ATN , m_c_state == PHI_C_CACS || m_c_state == PHI_C_CPWS ||
				   m_c_state == PHI_C_CPPS || m_c_state == PHI_C_CSWS ||
				   m_c_state == PHI_C_CAWS || m_c_state == PHI_C_CTRS);
		eoi_signal = eoi_signal || m_c_state == PHI_C_CPWS || m_c_state == PHI_C_CPPS;
		set_signal(PHI_488_EOI , eoi_signal);
		set_dio(dio_byte);
	}

	// Update status register
	m_reg_status &= ~REG_STATUS_STATE_MASK;
	if (m_l_state != PHI_L_LIDS) {
		BIT_SET(m_reg_status, REG_STATUS_LISTEN_BIT);
	}
	if (m_t_state != PHI_T_TIDS && m_t_state != PHI_T_ID1) {
		BIT_SET(m_reg_status, REG_STATUS_TALK_BIT);
	}
	if (m_sys_controller) {
		BIT_SET(m_reg_status, REG_STATUS_SYS_CTRL_BIT);
	}
	if (controller_in_charge()) {
		BIT_SET(m_reg_status, REG_STATUS_CONTROLLER_BIT);
	}
	// TODO: REG_STATUS_REMOTE_BIT

	// Update interrupting condition register and INT signal
	if (prev_cic != controller_in_charge()) {
		BIT_SET(m_reg_int_cond, REG_INT_STATUS_CH_BIT);
	}
	m_reg_int_cond &= ~REG_INT_STATE_MASK;
	if (m_fifo_out.empty()) {
		BIT_SET(m_reg_int_cond , REG_INT_FIFO_IDLE_BIT);
	}
	if (!m_fifo_in.empty()) {
		BIT_SET(m_reg_int_cond, REG_INT_FIFO_AV_BIT);
	}
	if (!m_fifo_out.full()) {
		BIT_SET(m_reg_int_cond, REG_INT_FIFO_ROOM_BIT);
	}
	if (controller_in_charge() && get_signal(PHI_488_SRQ)) {
		BIT_SET(m_reg_int_cond, REG_INT_SRQ_BIT);
	}
	// TODO: REG_INT_PP_RESPONSE_BIT
	bool int_pending = (m_reg_int_cond & m_reg_int_mask) != 0;
	bool int_line = false;
	if (int_pending) {
		BIT_SET(m_reg_int_cond, REG_INT_PENDING_BIT);
		if (BIT(m_reg_int_mask , REG_INT_PENDING_BIT)) {
			int_line = true;
		}
	}
	if (int_line != m_int_line) {
		m_int_line = int_line;
		m_int_write_func(m_int_line);
	}

	(void)m_dmarq_line; // TODO: update DMARQ
	m_no_recursion = false;
}

phi_device::nba_origin_t phi_device::nba_msg(uint8_t& new_byte , bool& new_eoi) const
{
	// TODO: consider CIC
	if (!m_fifo_out.empty()) {
		uint16_t word = m_fifo_out.peek();
		if ((word & REG_D0D1_MASK) == REG_OFIFO_IFCMD_MASK) {
			// Controller sends an interface command
			new_byte = (uint8_t)(word & IFCMD_MASK);
			if (!odd_parity(new_byte)) {
				BIT_SET(new_byte, 7);
			}
			new_eoi = false;
			return NBA_CMD_FROM_OFIFO;
		}
	}

	switch (m_t_state) {
	case PHI_T_TACS:
		if (!BIT(m_reg_status , REG_STATUS_DATA_FREEZE_BIT) &&
			!BIT(m_reg_int_cond , REG_INT_DEV_CLEAR_BIT) &&
			!m_fifo_out.empty()) {
			uint16_t word = m_fifo_out.peek();
			if (!BIT(word , REG_OFIFO_SPECIAL_BIT)) {
				// Talker sends a data byte
				new_byte = (uint8_t)word;
				new_eoi = BIT(word , REG_OFIFO_END_BIT);
				return NBA_BYTE_FROM_OFIFO;
			}
		}
		break;

	case PHI_T_SPAS:
		// Reply to serial poll: STB & RQS
		new_byte = m_sr_state == PHI_SR_NPRS ? 0x80 : 0x40;
		new_eoi = false;
		return NBA_FROM_SPAS;

	case PHI_T_ID3:
		// 1st byte of ID
		new_byte = (uint8_t)m_reg_1st_id;
		new_eoi = false;
		return NBA_FROM_ID3;

	case PHI_T_ID5:
		// 2nd byte of ID
		new_byte = (uint8_t)m_reg_2nd_id;
		new_eoi = true;
		return NBA_FROM_ID5;

	default:
		break;
	}
	return NBA_NONE;
}

void phi_device::clear_nba(nba_origin_t origin)
{
	switch (origin) {
	case NBA_CMD_FROM_OFIFO:
	case NBA_BYTE_FROM_OFIFO:
		m_fifo_out.dequeue();
		break;

	case NBA_FROM_ID3:
		m_t_state = PHI_T_ID4;
		break;

	case NBA_FROM_ID5:
		m_t_state = PHI_T_ID6;
		break;

	default:
		break;
	}
}

bool phi_device::if_cmd_received(uint8_t byte)
{
	LOG(("RX cmd: %02x\n" , byte));

	bool accepted = true;

	if ((byte & IFCMD_AG_MASK) != IFCMD_SCG_VALUE && byte != IFCMD_PPC) {
		// PACS -> PUCS when receiving a PCG command that is not PPC
		m_pp_pacs = false;
	}

	// TODO: IFC & non-reflection into controller
	switch (byte) {
	case IFCMD_GTL:
		// Go to local
		// TODO:
		break;

	case IFCMD_SDC:
		// Selected device clear
		if (m_l_state == PHI_L_LADS && !controller_in_charge()) {
			BIT_SET(m_reg_int_cond, REG_INT_DEV_CLEAR_BIT);
		}
		break;

	case IFCMD_PPC:
		// Parallel poll configure
		if (m_l_state == PHI_L_LADS) {
			m_pp_pacs = true;
		}
		break;

	case IFCMD_GET:
		// Group execute trigger
		// TODO:
		break;

	case IFCMD_TCT:
		// Take control
		if (m_c_state == PHI_C_CIDS && m_t_state == PHI_T_TADS) {
			// Take control
			m_c_state = PHI_C_CADS;
		}
		if (m_c_state == PHI_C_CACS && m_t_state != PHI_T_TADS) {
			// Give control to someone else
			m_c_state = PHI_C_CTRS;
		}
		break;

	case IFCMD_LLO:
		// Local lock-out
		// TODO:
		break;

	case IFCMD_DCL:
		// Device clear
		if (!controller_in_charge()) {
			BIT_SET(m_reg_int_cond, REG_INT_DEV_CLEAR_BIT);
		}
		break;

	case IFCMD_PPU:
		// Parallel poll unconfigure
		if (m_pp_state == PHI_PP_PPSS) {
			m_pp_state = PHI_PP_PPIS;
		}
		break;

	case IFCMD_SPE:
		// Serial poll enable
		m_t_spms = true;
		break;

	case IFCMD_SPD:
		// Serial poll disable
		m_t_spms = false;
		break;

	case IFCMD_UNL:
		// Unlisten
		if (m_l_state == PHI_L_LADS && !lon_msg()) {
			m_l_state = PHI_L_LIDS;
		}
		break;

	case IFCMD_UNT:
		// Untalk
		if (!ton_msg()) {
			if (m_id_enabled) {
				m_t_state = PHI_T_ID1;
			} else {
				m_t_state = PHI_T_TIDS;
			}
		}
		break;

	default:
		{
			uint8_t address = byte & IFCMD_ADDR_MASK;
			uint8_t ag = byte & IFCMD_AG_MASK;
			bool my_addr = address == my_address();

			if (ag == IFCMD_LAG_VALUE) {
				// LAG
				if (!lon_msg() && m_l_state == PHI_L_LIDS && my_addr) {
					m_l_state = PHI_L_LADS;
				}
			} else if (ag == IFCMD_TAG_VALUE) {
				// TAG
				if (!ton_msg()) {
					if (my_addr) {
						// MTA
						m_t_state = PHI_T_TADS;
					} else {
						// OTA
						m_t_state = PHI_T_TIDS;
					}
				}
			} else if (ag == IFCMD_SCG_VALUE) {
				// SCG
				if (m_pp_pacs) {
					if ((byte & IFCMD_PPX_MASK) == IFCMD_PPE_VALUE && m_pp_state == PHI_PP_PPIS) {
						// PPE
						m_s_sense = BIT(byte , IFCMD_PPE_S_BIT);
						m_ppr_msg = byte & IFCMD_PPE_PPR_MASK;
						m_pp_state = PHI_PP_PPSS;
					} else if ((byte & IFCMD_PPX_MASK) == IFCMD_PPD_VALUE && m_pp_state == PHI_PP_PPSS) {
						// PPD
						m_pp_state = PHI_PP_PPIS;
					}
				} else {
					// command is a secondary address
					if (m_t_state == PHI_T_ID1 && my_addr) {
						// Start IDENTIFY sequence
						m_t_state = PHI_T_ID2;
					} else if (m_t_state >= PHI_T_ID2 && m_t_state <= PHI_T_ID6 && !my_addr) {
						// Unaddressed by OSA
						m_t_state = PHI_T_ID1;
					} else if (m_t_state == PHI_T_TADS || m_l_state == PHI_L_LADS) {
						if (m_fifo_in.full() || BIT(m_reg_int_cond , REG_INT_DEV_CLEAR_BIT)) {
							// No room for secondary address in FIFO, stall handshake
							accepted = false;
						} else {
							uint16_t word = REG_IFIFO_2_ADDR_MASK | address;
							if (m_t_state == PHI_T_TADS) {
								BIT_SET(word, REG_IFIFO_TALK_BIT);
							}
							rx_n_data_freeze(word);
						}
					}
				}
			}
		}
	}
	return accepted;
}

bool phi_device::byte_received(uint8_t byte , bool eoi)
{
	// Start with D0/D1 = 00
	uint16_t word = byte;

	if (eoi) {
		// EOI -> D0/D1 = 11
		word |= REG_IFIFO_LAST_MASK;
	}

	bool end_of_transfer = false;

	if (!m_fifo_out.empty() && m_c_state == PHI_C_CSBS && m_t_state != PHI_T_TACS) {
		uint16_t be_word = m_fifo_out.peek();
		// Monitoring bytes being transferred on the bus
		if (eoi) {
			end_of_transfer = true;
		} else if (!BIT(be_word , REG_OFIFO_LF_INH_BIT) && byte == 0x0a) {
			// LF received -> D0/D1 = 11
			word |= REG_IFIFO_LAST_MASK;
			end_of_transfer = true;
		} else if (be_word != REG_OFIFO_UNCNT_MASK && ((m_be_counter + 1) & 0xff) == (be_word & 0xff)) {
			// Byte count expired -> D0/D1 = 10
			word |= REG_IFIFO_CNT_EXP_MASK;
			end_of_transfer = true;
		}
	}

	LOG(("RX word:%04x\n" , word));

	if (m_l_state == PHI_L_LACS) {
		if (m_fifo_in.full() || BIT(m_reg_int_cond , REG_INT_DEV_CLEAR_BIT)) {
			// No room for received byte, stall handshake
			LOG_0(("..stalled\n"));
			return false;
		} else {
			LOG_0(("..OK\n"));
			rx_n_data_freeze(word);
		}
	}
	if (end_of_transfer) {
		LOG_0(("End of byte transfer enable\n"));
		m_fifo_out.dequeue();
		m_be_counter = 0;
	} else {
		m_be_counter++;
	}

	return true;
}

void phi_device::rx_n_data_freeze(uint16_t word)
{
	m_fifo_in.enqueue(word);
	if (m_sh_state != PHI_SH_STRS) {
		// If PHI didn't send this byte to itself, set data freeze
		BIT_SET(m_reg_status, REG_STATUS_DATA_FREEZE_BIT);
	}
}

bool phi_device::ton_msg(void) const
{
	return BIT(m_reg_address , REG_ADDR_TA_BIT);
}

bool phi_device::lon_msg(void) const
{
	return BIT(m_reg_address , REG_ADDR_LA_BIT);
}

bool phi_device::odd_parity(uint8_t byte) const
{
	byte = (byte >> 4) ^ byte;
	byte = (byte >> 2) ^ byte;
	byte = (byte >> 1) ^ byte;
	return (byte & 1) != 0;
}

uint8_t phi_device::my_address(void) const
{
	if (m_sys_controller) {
		return CONTROLLER_ADDR;
	} else {
		return (m_reg_address >> REG_ADDR_HPIB_ADDR_BIT) & 0x1f;
	}
}

bool phi_device::tcs_msg(void) const
{
	uint8_t new_byte;
	bool new_eoi;

	// When the CIC takes back control synchronously:
	// * Nothing in OFIFO
	// * Request to start parallel poll is pending
	// * There's an interface command to be sent at head of OFIFO
	return (m_c_state == PHI_C_CSBS || m_c_state == PHI_C_CSHS || m_c_state == PHI_C_CSWS) &&
		(m_fifo_out.empty() ||
		 rpp_msg() ||
		 nba_msg(new_byte , new_eoi) == NBA_CMD_FROM_OFIFO);
}

bool phi_device::rpp_msg(void) const
{
	// TODO:
	return false;
}

bool phi_device::controller_in_charge(void) const
{
	return m_c_state != PHI_C_CIDS;
}