1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
// license:BSD-3-Clause
// copyright-holders:Couriersud
/**********************************************************************
8 bit latch interface and emulation
Generic emulation of 74LS174/175, 74LS259 and other latches.
Apart from providing synched latch operation, these
latches can be configured to read their input bitwise from other
devices as well.
Please see audio/dkong.c for examples.
**********************************************************************/
#ifndef MAME_MACHINE_LATCH8_H
#define MAME_MACHINE_LATCH8_H
#pragma once
class latch8_device : public device_t
{
public:
latch8_device(const machine_config &mconfig, const char *tag, device_t *owner, const XTAL &clock = XTAL());
// Write bit to discrete node
template <unsigned N> auto write_cb() { return m_write_cb[N].bind(); }
// Upon read, replace bits by reading from another device handler
template <unsigned N> auto read_cb() { return m_read_cb[N].bind(); }
// Bit mask specifying bits to be masked *out*
void set_maskout(uint32_t maskout) { m_maskout = maskout; }
// Bit mask specifying bits to be inverted
void set_xorvalue(uint32_t xorvalue) { m_xorvalue = xorvalue; }
// Bit mask specifying bits not needing cpu synchronization.
void set_nosync(uint32_t nosync) { m_nosync = nosync; }
// write & read full byte
uint8_t read(offs_t offset);
void write(offs_t offset, uint8_t data);
// reset the latch
void reset_w(offs_t offset, uint8_t data);
// read bit x
// FIXME: does not honour read callbacks or XOR mask
DECLARE_READ_LINE_MEMBER( bit0_r ) { return BIT(m_value, 0); }
DECLARE_READ_LINE_MEMBER( bit1_r ) { return BIT(m_value, 1); }
DECLARE_READ_LINE_MEMBER( bit2_r ) { return BIT(m_value, 2); }
DECLARE_READ_LINE_MEMBER( bit3_r ) { return BIT(m_value, 3); }
DECLARE_READ_LINE_MEMBER( bit4_r ) { return BIT(m_value, 4); }
DECLARE_READ_LINE_MEMBER( bit5_r ) { return BIT(m_value, 5); }
DECLARE_READ_LINE_MEMBER( bit6_r ) { return BIT(m_value, 6); }
DECLARE_READ_LINE_MEMBER( bit7_r ) { return BIT(m_value, 7); }
// read inverted bit
// FIXME: does not honour read callbacks or XOR mask
DECLARE_READ_LINE_MEMBER( bit0_q_r ) { return BIT(~m_value, 0); }
DECLARE_READ_LINE_MEMBER( bit1_q_r ) { return BIT(~m_value, 1); }
DECLARE_READ_LINE_MEMBER( bit2_q_r ) { return BIT(~m_value, 2); }
DECLARE_READ_LINE_MEMBER( bit3_q_r ) { return BIT(~m_value, 3); }
DECLARE_READ_LINE_MEMBER( bit4_q_r ) { return BIT(~m_value, 4); }
DECLARE_READ_LINE_MEMBER( bit5_q_r ) { return BIT(~m_value, 5); }
DECLARE_READ_LINE_MEMBER( bit6_q_r ) { return BIT(~m_value, 6); }
DECLARE_READ_LINE_MEMBER( bit7_q_r ) { return BIT(~m_value, 7); }
// write bit x from data into bit determined by offset
// latch = (latch & ~(1<<offset)) | (((data >> x) & 0x01) << offset)
void bit0_w(offs_t offset, uint8_t data);
void bit1_w(offs_t offset, uint8_t data);
void bit2_w(offs_t offset, uint8_t data);
void bit3_w(offs_t offset, uint8_t data);
void bit4_w(offs_t offset, uint8_t data);
void bit5_w(offs_t offset, uint8_t data);
void bit6_w(offs_t offset, uint8_t data);
void bit7_w(offs_t offset, uint8_t data);
protected:
// device-level overrides
virtual void device_start() override;
virtual void device_reset() override;
virtual void device_validity_check(validity_checker &valid) const override;
TIMER_CALLBACK_MEMBER( timerproc );
void update(uint8_t new_val, uint8_t mask);
template <int Bit> void bitx_w(offs_t offset, uint8_t data);
private:
devcb_write_line::array<8> m_write_cb;
devcb_read_line::array<8> m_read_cb;
// internal state
uint8_t m_value;
bool m_has_write;
bool m_has_read;
// only for byte reads, does not affect bit reads and node_map
uint32_t m_maskout;
uint32_t m_xorvalue; // after mask
uint32_t m_nosync;
};
DECLARE_DEVICE_TYPE(LATCH8, latch8_device)
#endif // MAME_MACHINE_LATCH8_H
|