summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/machine/f3853.cpp
blob: dd9e80434b1041fa100f05709249f8b9f6a61b8f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// license:BSD-3-Clause
// copyright-holders:Wilbert Pol
/**********************************************************************

    Fairchild F3853 SRAM interface with integrated interrupt
    controller and timer (SMI)

    This chip is a timer shift register, basically the same as in the
    F3851.

    Based on a datasheet obtained from www.freetradezone.com

    The SMI does not have DC0 and DC1, only DC0; as a result, it does
    not respond to the main CPU's DC0/DC1 swap instruction.  This may
    lead to two devices responding to the same DC0 address and
    attempting to place their bytes on the data bus simultaneously!

    8-bit shift register:
    Feedback in0 = !((out3 ^ out4) ^ (out5 ^ out7))
    Interrupts are at 0xfe
    0xff stops the register (0xfe is never reached)

**********************************************************************/

#include "emu.h"
#include "f3853.h"

/***************************************************************************
    MACROS
***************************************************************************/

#define INTERRUPT_VECTOR(external) ( external ? m_low | ( m_high << 8 ) | 0x80 \
: ( m_low | ( m_high << 8 ) ) & ~0x80 )



/***************************************************************************
    IMPLEMENTATION
***************************************************************************/

//**************************************************************************
//  LIVE DEVICE
//**************************************************************************

// device type definition
const device_type F3853 = &device_creator<f3853_device>;

//-------------------------------------------------
//  f3853_device - constructor
//-------------------------------------------------

f3853_device::f3853_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, F3853, "F3853", tag, owner, clock, "f3853", __FILE__)
{
}

//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void f3853_device::device_start()
{
	uint8_t reg = 0xfe;
	for(int32_t i=254 /* Known to get 0xfe after 255 cycles */; i >= 0; i--)
	{
		int32_t o7 = (reg & 0x80) ? true : false;
		int32_t o5 = (reg & 0x20) ? true : false;
		int32_t o4 = (reg & 0x10) ? true : false;
		int32_t o3 = (reg & 0x08) ? true : false;
		m_value_to_cycle[reg] = i;
		reg <<= 1;
		if (!((o7 != o5) != (o4 != o3)))
		{
			reg |= 1;
		}
	}

	m_interrupt_req_cb.bind_relative_to(*owner());

	m_timer = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(f3853_device::timer_callback),this));

	save_item(NAME(m_high) );
	save_item(NAME(m_low) );
	save_item(NAME(m_external_enable) );
	save_item(NAME(m_timer_enable) );
	save_item(NAME(m_request_flipflop) );
	save_item(NAME(m_priority_line) );
	save_item(NAME(m_external_interrupt_line) );
}


//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void f3853_device::device_reset()
{
	m_high = 0;
	m_low = 0;
	m_external_enable = 0;
	m_timer_enable = 0;
	m_request_flipflop = 0;
	m_priority_line = false;
	m_external_interrupt_line = true;

	m_timer->enable(false);
}


void f3853_device::set_interrupt_request_line()
{
	if (m_interrupt_req_cb.isnull())
		return;

	if (m_external_enable && !m_priority_line)
		m_interrupt_req_cb(INTERRUPT_VECTOR(true), true);
	else if (m_timer_enable && !m_priority_line && m_request_flipflop)
		m_interrupt_req_cb(INTERRUPT_VECTOR(false), true);
	else
		m_interrupt_req_cb(0, false);
}


void f3853_device::timer_start(uint8_t value)
{
	attotime period = (value != 0xff) ? attotime::from_hz(clock()) * (m_value_to_cycle[value]*31) : attotime::never;

	m_timer->adjust(period);
}

TIMER_CALLBACK_MEMBER(f3853_device::timer_callback)
{
	if(m_timer_enable)
	{
		m_request_flipflop = true;
		set_interrupt_request_line();
	}
	timer_start(0xfe);
}

void f3853_device::set_external_interrupt_in_line(int level)
{
	if(m_external_interrupt_line && !level && m_external_enable)
	{
		m_request_flipflop = true;
	}
	m_external_interrupt_line = level;
	set_interrupt_request_line();
}

void f3853_device::set_priority_in_line(int level)
{
	m_priority_line = level;
	set_interrupt_request_line();
}


READ8_MEMBER(f3853_device::read)
{
	uint8_t data = 0;

	switch (offset)
	{
	case 0:
		data = m_high;
		break;

	case 1:
		data = m_low;
		break;

	case 2: // Interrupt control; not readable
	case 3: // Timer; not readable
		break;
	}

	return data;
}


WRITE8_MEMBER(f3853_device::write)
{
	switch(offset)
	{
	case 0:
		m_high = data;
		break;

	case 1:
		m_low = data;
		break;

	case 2: //interrupt control
		m_external_enable = ((data & 3) == 1);
		m_timer_enable = ((data & 3) == 3);
		set_interrupt_request_line();
		break;

	case 3: //timer
		m_request_flipflop = false;
		set_interrupt_request_line();
		timer_start(data);
		break;
	}
}