summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/machine/eepromser.cpp
blob: 9419993bc293a7e3ede1595c46fa0e3d5cd06db0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
// license:BSD-3-Clause
// copyright-holders:Aaron Giles
/***************************************************************************

    eepromser.c

    Serial EEPROM devices.

****************************************************************************

    Serial EEPROMs generally work the same across manufacturers and models,
    varying largely by the size of the EEPROM and the packaging details.

    At a basic level, there are 5 signals involved:

        * CS = chip select
        * CLK = serial data clock
        * DI = serial data in
        * DO = serial data out
        * RDY/BUSY = ready (1) or busy (0) status

    Data is read or written via serial commands. A command is begun on a
    low-to-high transition of the CS line, following by clocking a start
    bit (1) on the DI line. After the start bit, subsequent clocks
    assemble one of the following commands:

        Start   Opcode  Address     Data
          1       01    aaaaaaaaa   ddddddd     WRITE data
          1       10    aaaaaaaaa               READ data
          1       11    aaaaaaaaa               ERASE data
          1       00    00xxxxxxx               WREN = WRite ENable
          1       00    01xxxxxxx   ddddddd     WRAL = WRite ALl cells
          1       00    10xxxxxxx               ERAL = ERase ALl cells
          1       00    11xxxxxxx               WRDS = WRite DiSable

    The number of address bits (a) clocked varies based on the size of the
    chip, though it does not always map 1:1 with the size of the chip.
    For example, the 93C06 has 16 cells, which only needs 4 address bits;
    but commands to the 93C06 require 6 address bits (the top two must
    be 0).

    The number of data bits (d) clocked varies based on the chip and at
    times on the state of a pin on the chip which selects between multiple
    sizes (e.g., 8-bit versus 16-bit).

****************************************************************************

    Most EEPROMs are based on the 93Cxx design (and have similar part
    designations):

                                +--v--+
                             CS |1   8| Vcc
                            CLK |2   7| NC
                             DI |3   6| NC
                             DO |4   5| GND
                                +-----+

    Note the lack of a READY/BUSY pin. On the 93Cxx series, the DO pin
    serves double-duty, returning READY/BUSY during a write/erase cycle,
    and outputting data during a read cycle.

    Some manufacturers have released "enhanced" versions with additional
    features:

        * Several manufacturers (ST) map pin 6 to "ORG", specifying the
          logical organization of the data. Connecting ORG to ground
          makes the EEPROM work as an 8-bit device, while connecting it
          to Vcc makes it work as a 16-bit device with one less
          address bit.

        * Other manufacturers (ST) have enhanced the read operations to
          allow serially streaming more than one cell. Essentially, after
          reading the first cell, keep CS high and keep clocking, and
          data from following cells will be read as well.

    The ER5911 is only slightly different:

                                +--v--+
                             CS |1   8| Vcc
                            CLK |2   7| RDY/BUSY
                             DI |3   6| ORG
                             DO |4   5| GND
                                +-----+

    Here we have an explicit RDY/BUSY signal, and the ORG flag as described
    above.

    From a command perspective, the ER5911 is also slightly different:

        93Cxx has ERASE command; this maps to WRITE on ER5911
        93Cxx has WRITEALL command; no equivalent on ER5911

****************************************************************************

    Issues with:

    kickgoal.c - code seems wrong, clock logic writes 0-0-0 instead of 0-1-0 as expected
    overdriv.c - drops CS, raises CS, keeps DI=1, triggering extraneous start bit

***************************************************************************/

#include "emu.h"
#include "machine/eepromser.h"



//**************************************************************************
//  DEBUGGING
//**************************************************************************

// logging levels:
//  0 = errors and warnings only
//  1 = commands
//  2 = state machine
//  3 = DI/DO/READY reads & writes
//  4 = all reads & writes

#define VERBOSE_PRINTF 0
#define VERBOSE_LOGERROR 0

#define LOG0(x) do { if (VERBOSE_PRINTF >= 1) printf x; logerror x; } while (0)
#define LOG1(x) do { if (VERBOSE_PRINTF >= 1) printf x; if (VERBOSE_LOGERROR >= 1) logerror x; } while (0)
#define LOG2(x) do { if (VERBOSE_PRINTF >= 2) printf x; if (VERBOSE_LOGERROR >= 2) logerror x; } while (0)
#define LOG3(x) do { if (VERBOSE_PRINTF >= 3) printf x; if (VERBOSE_LOGERROR >= 3) logerror x; } while (0)
#define LOG4(x) do { if (VERBOSE_PRINTF >= 4) printf x; if (VERBOSE_LOGERROR >= 4) logerror x; } while (0)



//**************************************************************************
//  TYPE DEFINITIONS
//**************************************************************************

ALLOW_SAVE_TYPE(eeprom_serial_base_device::eeprom_command);
ALLOW_SAVE_TYPE(eeprom_serial_base_device::eeprom_state);



//**************************************************************************
//  BASE DEVICE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_base_device - constructor
//-------------------------------------------------

eeprom_serial_base_device::eeprom_serial_base_device(const machine_config &mconfig, device_type devtype, const char *name, std::string tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_base_device(mconfig, devtype, name, tag, owner, shortname, file),
		m_command_address_bits(0),
		m_streaming_enabled(false),
		m_state(STATE_IN_RESET),
		m_cs_state(CLEAR_LINE),
		m_last_cs_rising_edge_time(attotime::zero),
		m_oe_state(CLEAR_LINE),
		m_clk_state(CLEAR_LINE),
		m_di_state(CLEAR_LINE),
		m_locked(true),
		m_bits_accum(0),
		m_command_address_accum(0),
		m_command(COMMAND_INVALID),
		m_address(0),
		m_shift_register(0)
{
}


//-------------------------------------------------
//  static_set_address_bits - configuration helper
//  to set the number of address bits in the
//  serial commands
//-------------------------------------------------

void eeprom_serial_base_device::static_set_address_bits(device_t &device, int addrbits)
{
	downcast<eeprom_serial_base_device &>(device).m_command_address_bits = addrbits;
}


//-------------------------------------------------
//  static_enable_streaming - configuration helper
//  to enable streaming data
//-------------------------------------------------

void eeprom_serial_base_device::static_enable_streaming(device_t &device)
{
	downcast<eeprom_serial_base_device &>(device).m_streaming_enabled = true;
}


//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void eeprom_serial_base_device::device_start()
{
	// if no command address bits set, just inherit from the address bits
	if (m_command_address_bits == 0)
		m_command_address_bits = m_address_bits;

	// start the base class
	eeprom_base_device::device_start();

	// save the current state
	save_item(NAME(m_state));
	save_item(NAME(m_cs_state));
	save_item(NAME(m_oe_state));
	save_item(NAME(m_clk_state));
	save_item(NAME(m_di_state));
	save_item(NAME(m_locked));
	save_item(NAME(m_bits_accum));
	save_item(NAME(m_command_address_accum));
	save_item(NAME(m_command));
	save_item(NAME(m_address));
	save_item(NAME(m_shift_register));
}


//-------------------------------------------------
//  device_reset - device-specific reset
//-------------------------------------------------

void eeprom_serial_base_device::device_reset()
{
	// reset the base class
	eeprom_base_device::device_reset();

	// reset the state
	set_state(STATE_IN_RESET);
	m_locked = true;
	m_bits_accum = 0;
	m_command_address_accum = 0;
	m_command = COMMAND_INVALID;
	m_address = 0;
	m_shift_register = 0;
}



//**************************************************************************
//  READ/WRITE HANDLERS
//**************************************************************************

//-------------------------------------------------
//  base_cs_write - set the state of the chip
//  select (CS) line
//-------------------------------------------------

void eeprom_serial_base_device::base_cs_write(int state)
{
	// ignore if the state is not changing
	state &= 1;
	if (state == m_cs_state)
		return;

	// set the new state
	LOG4(("  cs_write(%d)\n", state));
	m_cs_state = state;

	// remember the rising edge time so we don't process CLK signals at the same time
	if (state == ASSERT_LINE)
		m_last_cs_rising_edge_time = machine().time();
	handle_event((m_cs_state == ASSERT_LINE) ? EVENT_CS_RISING_EDGE : EVENT_CS_FALLING_EDGE);
}


//-------------------------------------------------
//  base_clk_write - set the state of the clock
//  (CLK) line
//-------------------------------------------------

void eeprom_serial_base_device::base_clk_write(int state)
{
	// ignore if the state is not changing
	state &= 1;
	if (state == m_clk_state)
		return;

	// set the new state
	LOG4(("  clk_write(%d)\n", state));
	m_clk_state = state;
	handle_event((m_clk_state == ASSERT_LINE) ? EVENT_CLK_RISING_EDGE : EVENT_CLK_FALLING_EDGE);
}


//-------------------------------------------------
//  base_di_write - set the state of the data input
//  (DI) line
//-------------------------------------------------

void eeprom_serial_base_device::base_di_write(int state)
{
	if (state != 0 && state != 1)
		LOG0(("EEPROM: Unexpected data at input 0x%X treated as %d\n", state, state & 1));
	LOG3(("  di_write(%d)\n", state));
	m_di_state = state & 1;
}


//-------------------------------------------------
//  base_do_read - read the state of the data
//  output (DO) line
//-------------------------------------------------

int eeprom_serial_base_device::base_do_read()
{
	// in most states, the output is tristated, and generally connected to a pull up
	// to send back a 1 value; the only exception is if reading data and the current output
	// bit is a 0
	int result = (m_state == STATE_READING_DATA && ((m_shift_register & 0x80000000) == 0)) ? CLEAR_LINE : ASSERT_LINE;
	LOG3(("  do_read(%d)\n", result));
	return result;
}


//-------------------------------------------------
//  base_ready_read - read the state of the
//  READY/BUSY line
//-------------------------------------------------

int eeprom_serial_base_device::base_ready_read()
{
	// ready by default, except during long operations
	int result = ready() ? ASSERT_LINE : CLEAR_LINE;
	LOG3(("  ready_read(%d)\n", result));
	return result;
}



//**************************************************************************
//  INTERNAL HELPERS
//**************************************************************************

//-------------------------------------------------
//  set_state - update the state to a new one
//-------------------------------------------------

void eeprom_serial_base_device::set_state(eeprom_state newstate)
{
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_state state; const char *string; } s_state_names[] =
	{
		{ STATE_IN_RESET, "IN_RESET" },
		{ STATE_WAIT_FOR_START_BIT, "WAIT_FOR_START_BIT" },
		{ STATE_WAIT_FOR_COMMAND, "WAIT_FOR_COMMAND" },
		{ STATE_READING_DATA, "READING_DATA" },
		{ STATE_WAIT_FOR_DATA, "WAIT_FOR_DATA" },
		{ STATE_WAIT_FOR_COMPLETION, "WAIT_FOR_COMPLETION" },
	};
	const char *newstate_string = "UNKNOWN";
	for (int index = 0; index < ARRAY_LENGTH(s_state_names); index++)
		if (s_state_names[index].state == newstate)
			newstate_string = s_state_names[index].string;
	LOG2(("New state: %s\n", newstate_string));
#endif

	// switch to the new state
	m_state = newstate;
}


//-------------------------------------------------
//  handle_event - handle an event via the state
//  machine
//-------------------------------------------------

void eeprom_serial_base_device::handle_event(eeprom_event event)
{
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	if ((event & EVENT_CS_RISING_EDGE) != 0) LOG2(("Event: CS rising\n"));
	if ((event & EVENT_CS_FALLING_EDGE) != 0) LOG2(("Event: CS falling\n"));
	if ((event & EVENT_CLK_RISING_EDGE) != 0)
	{
		if (m_state == STATE_WAIT_FOR_COMMAND || m_state == STATE_WAIT_FOR_DATA)
			LOG2(("Event: CLK rising (%d, DI=%d)\n", m_bits_accum + 1, m_di_state));
		else if (m_state == STATE_READING_DATA)
			LOG2(("Event: CLK rising (%d, DO=%d)\n", m_bits_accum + 1, (m_shift_register >> 30) & 1));
		else if (m_state == STATE_WAIT_FOR_START_BIT)
			LOG2(("Event: CLK rising (%d)\n", m_di_state));
		else
			LOG2(("Event: CLK rising\n"));
	}
	if ((event & EVENT_CLK_FALLING_EDGE) != 0) LOG4(("Event: CLK falling\n"));
#endif

	// switch off the current state
	switch (m_state)
	{
		// CS is not asserted; wait for a rising CS to move us forward, ignoring all clocks
		case STATE_IN_RESET:
			if (event == EVENT_CS_RISING_EDGE)
				set_state(STATE_WAIT_FOR_START_BIT);
			break;

		// CS is asserted; wait for rising clock with a 1 start bit; falling CS will reset us
		// note that because each bit is written independently, it is possible for us to receive
		// a false rising CLK edge at the exact same time as a rising CS edge; it appears we
		// should ignore these edges (makes sense really)
		case STATE_WAIT_FOR_START_BIT:
			if (event == EVENT_CLK_RISING_EDGE && m_di_state == ASSERT_LINE && ready() && machine().time() > m_last_cs_rising_edge_time)
			{
				m_command_address_accum = m_bits_accum = 0;
				set_state(STATE_WAIT_FOR_COMMAND);
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; wait for a command to come through; falling CS will reset us
		case STATE_WAIT_FOR_COMMAND:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				// if we have enough bits for a command + address, check it out
				m_command_address_accum = (m_command_address_accum << 1) | m_di_state;
				if (++m_bits_accum == 2 + m_command_address_bits)
					execute_command();
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; reading data, clock the shift register; falling CS will reset us
		case STATE_READING_DATA:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				int bit_index = m_bits_accum++;

				// wrapping the address on multi-read is required by pacslot(cave.c)
				if (bit_index % m_data_bits == 0 && (bit_index == 0 || m_streaming_enabled))
					m_shift_register = read((m_address + m_bits_accum / m_data_bits) & ((1 << m_address_bits) - 1)) << (32 - m_data_bits);
				else
					m_shift_register = (m_shift_register << 1) | 1;
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				if (m_streaming_enabled)
					LOG1(("  (%d cells read)\n", m_bits_accum / m_data_bits));
				if (!m_streaming_enabled && m_bits_accum > m_data_bits + 1)
					LOG0(("EEPROM: Overclocked read by %d bits\n", m_bits_accum - m_data_bits));
				else if (m_streaming_enabled && m_bits_accum > m_data_bits + 1 && m_bits_accum % m_data_bits > 2)
					LOG0(("EEPROM: Overclocked read by %d bits\n", m_bits_accum % m_data_bits));
				else if (m_bits_accum < m_data_bits)
					LOG0(("EEPROM: CS deasserted in READING_DATA after %d bits\n", m_bits_accum));
			}
			break;

		// CS is asserted; waiting for data; clock data through until we accumulate enough; falling CS will reset us
		case STATE_WAIT_FOR_DATA:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				m_shift_register = (m_shift_register << 1) | m_di_state;
				if (++m_bits_accum == m_data_bits)
					execute_write_command();
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				LOG0(("EEPROM: CS deasserted in STATE_WAIT_FOR_DATA after %d bits\n", m_bits_accum));
			}
			break;

		// CS is asserted; waiting for completion; watch for CS falling
		case STATE_WAIT_FOR_COMPLETION:
			if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;
	}
}


//-------------------------------------------------
//  execute_command - execute a command once we
//  have enough bits for one
//-------------------------------------------------

void eeprom_serial_base_device::execute_command()
{
	// parse into a generic command and reset the accumulator count
	parse_command_and_address();
	m_bits_accum = 0;

#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_command command; const char *string; } s_command_names[] =
	{
		{ COMMAND_INVALID, "Execute command: INVALID\n" },
		{ COMMAND_READ, "Execute command:READ 0x%X\n" },
		{ COMMAND_WRITE, "Execute command:WRITE 0x%X\n" },
		{ COMMAND_ERASE, "Execute command:ERASE 0x%X\n" },
		{ COMMAND_LOCK, "Execute command:LOCK\n" },
		{ COMMAND_UNLOCK, "Execute command:UNLOCK\n" },
		{ COMMAND_WRITEALL, "Execute command:WRITEALL\n" },
		{ COMMAND_ERASEALL, "Execute command:ERASEALL\n" },
	};
	const char *command_string = s_command_names[0].string;
	for (int index = 0; index < ARRAY_LENGTH(s_command_names); index++)
		if (s_command_names[index].command == m_command)
			command_string = s_command_names[index].string;
	LOG1((command_string, m_address));
#endif

	// each command advances differently
	switch (m_command)
	{
		// advance to the READING_DATA state; data is fetched after first CLK
		// reset the shift register to 0 to simulate the dummy 0 bit that happens prior
		// to the first clock
		case COMMAND_READ:
			m_shift_register = 0;
			set_state(STATE_READING_DATA);
			break;

		// reset the shift register and wait for enough data to be clocked through
		case COMMAND_WRITE:
		case COMMAND_WRITEALL:
			m_shift_register = 0;
			set_state(STATE_WAIT_FOR_DATA);
			break;

		// erase the parsed address (unless locked) and wait for it to complete
		case COMMAND_ERASE:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to erase while locked\n"));
				set_state(STATE_IN_RESET);
				break;
			}
			erase(m_address);
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		// lock the chip; return to IN_RESET state
		case COMMAND_LOCK:
			m_locked = true;
			set_state(STATE_IN_RESET);
			break;

		// unlock the chip; return to IN_RESET state
		case COMMAND_UNLOCK:
			m_locked = false;
			set_state(STATE_IN_RESET);
			break;

		// erase the entire chip (unless locked) and wait for it to complete
		case COMMAND_ERASEALL:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to erase all while locked\n"));
				set_state(STATE_IN_RESET);
				break;
			}
			erase_all();
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		default:
			throw emu_fatalerror("execute_command called with invalid command %d\n", m_command);
	}
}


//-------------------------------------------------
//  execute_write_command - execute a write
//  command after receiving the data bits
//-------------------------------------------------

void eeprom_serial_base_device::execute_write_command()
{
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_command command; const char *string; } s_command_names[] =
	{
		{ COMMAND_WRITE, "Execute write command: WRITE 0x%X = 0x%X\n" },
		{ COMMAND_WRITEALL, "Execute write command: WRITEALL (%X) = 0x%X\n" },
	};
	const char *command_string = "UNKNOWN";
	for (int index = 0; index < ARRAY_LENGTH(s_command_names); index++)
		if (s_command_names[index].command == m_command)
			command_string = s_command_names[index].string;
	LOG1((command_string, m_address, m_shift_register));
#endif

	// each command advances differently
	switch (m_command)
	{
		// reset the shift register and wait for enough data to be clocked through
		case COMMAND_WRITE:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to write to address 0x%X while locked\n", m_address));
				set_state(STATE_IN_RESET);
				break;
			}
			write(m_address, m_shift_register);
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		// write the entire EEPROM with the same data; ERASEALL is required before so we
		// AND against the already-present data
		case COMMAND_WRITEALL:
			if (m_locked)
			{
				LOG0(("EEPROM: Attempt to write all while locked\n"));
				set_state(STATE_IN_RESET);
				break;
			}
			write_all(m_shift_register);
			set_state(STATE_WAIT_FOR_COMPLETION);
			break;

		default:
			throw emu_fatalerror("execute_write_command called with invalid command %d\n", m_command);
	}
}



//**************************************************************************
//  STANDARD INTERFACE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_93cxx_device - constructor
//-------------------------------------------------

eeprom_serial_93cxx_device::eeprom_serial_93cxx_device(const machine_config &mconfig, device_type devtype, const char *name, std::string tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_serial_base_device(mconfig, devtype, name, tag, owner, shortname, file)
{
}


//-------------------------------------------------
//  parse_command_and_address - extract the
//  command and address from a bitstream
//-------------------------------------------------

void eeprom_serial_93cxx_device::parse_command_and_address()
{
	// set the defaults
	m_command = COMMAND_INVALID;
	m_address = m_command_address_accum & ((1 << m_command_address_bits) - 1);

	// extract the command portion and handle it
	switch (m_command_address_accum >> m_command_address_bits)
	{
		// opcode 0 needs two more bits to decode the operation
		case 0:
			switch (m_address >> (m_command_address_bits - 2))
			{
				case 0: m_command = COMMAND_LOCK;       break;
				case 1: m_command = COMMAND_WRITEALL;   break;
				case 2: m_command = COMMAND_ERASEALL;   break;
				case 3: m_command = COMMAND_UNLOCK;     break;
			}
			m_address = 0;
			break;
		case 1: m_command = COMMAND_WRITE;  break;
		case 2: m_command = COMMAND_READ;   break;
		case 3: m_command = COMMAND_ERASE;  break;
	}

	// warn about out-of-range addresses
	if (m_address >= (1 << m_address_bits))
		LOG0(("EEPROM: out-of-range address 0x%X provided (maximum should be 0x%X)\n", m_address, (1 << m_address_bits) - 1));
}


//-------------------------------------------------
//  do_read - read handlers
//-------------------------------------------------

READ_LINE_MEMBER(eeprom_serial_93cxx_device::do_read) { return base_do_read() & ((m_state == STATE_WAIT_FOR_START_BIT) ? base_ready_read() : 1); }


//-------------------------------------------------
//  cs_write/clk_write/di_write - write handlers
//-------------------------------------------------

WRITE_LINE_MEMBER(eeprom_serial_93cxx_device::cs_write) { base_cs_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_93cxx_device::clk_write) { base_clk_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_93cxx_device::di_write) { base_di_write(state); }



//**************************************************************************
//  ER5911 DEVICE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_er5911_device - constructor
//-------------------------------------------------

eeprom_serial_er5911_device::eeprom_serial_er5911_device(const machine_config &mconfig, device_type devtype, const char *name, std::string tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_serial_base_device(mconfig, devtype, name, tag, owner, shortname, file)
{
}


//-------------------------------------------------
//  parse_command_and_address - extract the
//  command and address from a bitstream
//-------------------------------------------------

void eeprom_serial_er5911_device::parse_command_and_address()
{
	// set the defaults
	m_command = COMMAND_INVALID;
	m_address = m_command_address_accum & ((1 << m_command_address_bits) - 1);

	// extract the command portion and handle it
	switch (m_command_address_accum >> m_command_address_bits)
	{
		// opcode 0 needs two more bits to decode the operation
		case 0:
			switch (m_address >> (m_command_address_bits - 2))
			{
				case 0: m_command = COMMAND_LOCK;       break;
				case 1: m_command = COMMAND_INVALID;    break;  // not on ER5911
				case 2: m_command = COMMAND_ERASEALL;   break;
				case 3: m_command = COMMAND_UNLOCK;     break;
			}
			m_address = 0;
			break;
		case 1: m_command = COMMAND_WRITE;  break;
		case 2: m_command = COMMAND_READ;   break;
		case 3: m_command = COMMAND_WRITE;  break;  // WRITE instead of ERASE on ER5911
	}

	// warn about out-of-range addresses
	if (m_address >= (1 << m_address_bits))
		LOG0(("EEPROM: out-of-range address 0x%X provided (maximum should be 0x%X)\n", m_address, (1 << m_address_bits) - 1));
}


//-------------------------------------------------
//  do_read/ready_read - read handlers
//-------------------------------------------------

READ_LINE_MEMBER(eeprom_serial_er5911_device::do_read) { return base_do_read(); }
READ_LINE_MEMBER(eeprom_serial_er5911_device::ready_read) { return base_ready_read(); }


//-------------------------------------------------
//  cs_write/clk_write/di_write - write handlers
//-------------------------------------------------

WRITE_LINE_MEMBER(eeprom_serial_er5911_device::cs_write) { base_cs_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_er5911_device::clk_write) { base_clk_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_er5911_device::di_write) { base_di_write(state); }



//**************************************************************************
//  X24c44 DEVICE IMPLEMENTATION
//**************************************************************************

//-------------------------------------------------
//  eeprom_serial_x24c44_device - constructor
//-------------------------------------------------

eeprom_serial_x24c44_device::eeprom_serial_x24c44_device(const machine_config &mconfig, device_type devtype, const char *name, std::string tag, device_t *owner, const char *shortname, const char *file)
	: eeprom_serial_base_device(mconfig, devtype, name, tag, owner, shortname, file)
{
}



//-------------------------------------------------
//  device_start - device-specific startup
//-------------------------------------------------

void eeprom_serial_x24c44_device::device_start()
{
	// if no command address bits set, just inherit from the address bits
	if (m_command_address_bits == 0)
		m_command_address_bits = m_address_bits;

	// start the base class
	eeprom_base_device::device_start();

	INT16 i=0;
	m_ram_length=0xf;

	for (i=0;i<16;i++){
		m_ram_data[i]=read(i);  //autoreload at power up
	}
	m_reading=0;
	m_store_latch=0;
	// save the current state
	save_item(NAME(m_state));
	save_item(NAME(m_cs_state));
	save_item(NAME(m_oe_state));
	save_item(NAME(m_clk_state));
	save_item(NAME(m_di_state));
	save_item(NAME(m_locked));
	save_item(NAME(m_bits_accum));
	save_item(NAME(m_command_address_accum));
	save_item(NAME(m_command));
	save_item(NAME(m_address));
	save_item(NAME(m_shift_register));
	save_item(NAME(m_ram_data));
	save_item(NAME(m_reading));
	save_item(NAME(m_store_latch));
}

void eeprom_serial_x24c44_device::copy_eeprom_to_ram(){
	UINT16 i=0;
	LOG1(("EEPROM TO RAM COPY!!!\n"));
	for (i=0;i<16;i++){
		m_ram_data[i]=read(i);
	}
	m_store_latch=1;
}



void eeprom_serial_x24c44_device::copy_ram_to_eeprom(){
	UINT16 i=0;
	if (m_store_latch){
		LOG1(("RAM TO EEPROM COPY\n"));
		for (i=0;i<16;i++){
			write(i, m_ram_data[i]);
		}
		m_store_latch=0;
	}else{
		LOG0(("Store command with store latch not set!\n"));
	}

}

//-------------------------------------------------
//  execute_command - execute a command once we
//  have enough bits for one
//-------------------------------------------------

void eeprom_serial_x24c44_device::execute_command()
{
	// parse into a generic command and reset the accumulator count
	parse_command_and_address();
	m_bits_accum = 0;

#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	static const struct { eeprom_command command; const char *string; } s_command_names[] =
	{
		{ COMMAND_INVALID, "Execute command: INVALID\n" },
		{ COMMAND_READ, "Execute command:READ 0x%X\n" },
		{ COMMAND_WRITE, "Execute command:WRITE 0x%X\n" },
		{ COMMAND_ERASE, "Execute command:ERASE 0x%X\n" },
		{ COMMAND_LOCK, "Execute command:LOCK\n" },
		{ COMMAND_UNLOCK, "Execute command:UNLOCK\n" },
		{ COMMAND_WRITEALL, "Execute command:WRITEALL\n" },
		{ COMMAND_ERASEALL, "Execute command:ERASEALL\n" },
		{ COMMAND_COPY_EEPROM_TO_RAM, "Execute command:COPY_EEPROM_TO_RAM\n" },
		{ COMMAND_COPY_RAM_TO_EEPROM, "Execute command:COPY_RAM_TO_EEPROM\n" },
	};
	const char *command_string = s_command_names[0].string;
	for (int index = 0; index < ARRAY_LENGTH(s_command_names); index++)
		if (s_command_names[index].command == m_command)
			command_string = s_command_names[index].string;
	LOG1((command_string, m_address));
#endif

	// each command advances differently
	switch (m_command)
	{
		// advance to the READING_DATA state; data is fetched after first CLK
		// reset the shift register to 0 to simulate the dummy 0 bit that happens prior
		// to the first clock

		// reset the shift register and wait for enough data to be clocked through
		case COMMAND_WRITE:
			m_shift_register = 0;
			set_state(STATE_WAIT_FOR_DATA);
			break;

		// lock the chip; return to IN_RESET state
		case COMMAND_LOCK:
			m_locked = true;
			m_store_latch=0;
			set_state(STATE_IN_RESET);
			break;

		// unlock the chip; return to IN_RESET state
		case COMMAND_UNLOCK:
			m_locked = false;
			m_store_latch=1;
			set_state(STATE_IN_RESET);
			break;

		// copy eeprom to ram
		case COMMAND_COPY_EEPROM_TO_RAM:
			copy_eeprom_to_ram();
			set_state(STATE_IN_RESET);
			break;

		// copy ram into eeprom
		case COMMAND_COPY_RAM_TO_EEPROM:
			copy_ram_to_eeprom();
			set_state(STATE_IN_RESET);
			break;

		default:
			throw emu_fatalerror("execute_command called with invalid command %d\n", m_command);
	}
}


void eeprom_serial_x24c44_device::handle_event(eeprom_event event)
{
//UINT32 tmp=0;
#if (VERBOSE_PRINTF > 0 || VERBOSE_LOGERROR > 0)
	// for debugging purposes
	if ((event & EVENT_CS_RISING_EDGE) != 0) LOG2(("Event: CS rising\n"));
	if ((event & EVENT_CS_FALLING_EDGE) != 0) LOG2(("Event: CS falling\n"));
	if ((event & EVENT_CLK_RISING_EDGE) != 0)
	{
		if (m_state == STATE_WAIT_FOR_COMMAND || m_state == STATE_WAIT_FOR_DATA)
			LOG2(("Event: CLK rising (%d, DI=%d)\n", m_bits_accum + 1, m_di_state));
		else if (m_state == STATE_READING_DATA)
			LOG2(("Event: CLK rising (%d, DO=%d)\n", m_bits_accum + 1, (m_shift_register >> 30) & 1));
		else if (m_state == STATE_WAIT_FOR_START_BIT)
			LOG2(("Event: CLK rising (%d)\n", m_di_state));
		else
			LOG2(("Event: CLK rising\n"));
	}
	if ((event & EVENT_CLK_FALLING_EDGE) != 0) LOG4(("Event: CLK falling\n"));
#endif

	// switch off the current state
	switch (m_state)
	{
		// CS is not asserted; wait for a rising CS to move us forward, ignoring all clocks
		case STATE_IN_RESET:
			if (event == EVENT_CS_RISING_EDGE)
				set_state(STATE_WAIT_FOR_START_BIT);
			break;

		// CS is asserted; wait for rising clock with a 1 start bit; falling CS will reset us
		// note that because each bit is written independently, it is possible for us to receive
		// a false rising CLK edge at the exact same time as a rising CS edge; it appears we
		// should ignore these edges (makes sense really)
		case STATE_WAIT_FOR_START_BIT:
			if (event == EVENT_CLK_RISING_EDGE && m_di_state == ASSERT_LINE && ready() && machine().time() > m_last_cs_rising_edge_time)
			{
				m_command_address_accum = m_bits_accum = 0;
				set_state(STATE_WAIT_FOR_COMMAND);
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; wait for a command to come through; falling CS will reset us
		case STATE_WAIT_FOR_COMMAND:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				// if we have enough bits for a command + address, check it out
				m_command_address_accum = (m_command_address_accum << 1) | m_di_state;

				m_bits_accum=m_bits_accum+1;

				if (m_bits_accum == 2 + m_command_address_bits){
					//read command is only 2 bits all other are 3 bits!!!

						parse_command_and_address_2_bit();

				}

				if (!m_reading){
				if (m_bits_accum == 3 + m_command_address_bits){
					execute_command();
				}
				}
			}
			else if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;

		// CS is asserted; reading data, clock the shift register; falling CS will reset us
		case STATE_READING_DATA:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				int bit_index = m_bits_accum++;

				if (bit_index % m_data_bits == 0 && (bit_index == 0 || m_streaming_enabled)){
					m_shift_register=m_ram_data[m_address];

					//m_shift_register=BITSWAP16(m_shift_register,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
					//m_shift_register=BITSWAP16(m_shift_register,7,6,5,4,3,2,1,0,15,14,13,12,11,10,9,8);
					m_shift_register= BITSWAP16(m_shift_register,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);

					m_shift_register=m_shift_register<<16;

					LOG1(("read from RAM addr %02X data(from ram) %04X ,m_shift_register vale %04X \n",m_address,m_ram_data[m_address],m_shift_register));
					}
				else{
					m_shift_register = (m_shift_register << 1) | 1;

				}
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				m_reading=0;
				if (m_streaming_enabled)
					LOG1(("  (%d cells read)\n", m_bits_accum / m_data_bits));
				if (!m_streaming_enabled && m_bits_accum > m_data_bits + 1)
					LOG1(("EEPROM: Overclocked read by %d bits\n", m_bits_accum - m_data_bits));
				else if (m_streaming_enabled && m_bits_accum > m_data_bits + 1 && m_bits_accum % m_data_bits > 2)
					LOG1(("EEPROM: Overclocked read by %d bits\n", m_bits_accum % m_data_bits));
				else if (m_bits_accum < m_data_bits)
					LOG1(("EEPROM: CS deasserted in READING_DATA after %d bits\n", m_bits_accum));
			}
			break;

		// CS is asserted; waiting for data; clock data through until we accumulate enough; falling CS will reset us
		case STATE_WAIT_FOR_DATA:
			if (event == EVENT_CLK_RISING_EDGE)
			{
				m_shift_register = (m_shift_register << 1) | m_di_state;
				if (++m_bits_accum == m_data_bits){
				//m_shift_register=BITSWAP16(m_shift_register, 0, 1, 2, 3, 4, 5,6,7, 8, 9,10,11,12,13,14,15);
				//m_shift_register=BITSWAP16(m_shift_register, 7, 6, 5, 4, 3, 2,1,0,15,14,13,12,11,10, 9, 8);
				m_shift_register=BITSWAP16(m_shift_register,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);
				m_ram_data[m_address]=m_shift_register;

				LOG1(("write to RAM addr=%02X data=%04X\n",m_address,m_shift_register));
				}
			}
			else if (event == EVENT_CS_FALLING_EDGE)
			{
				set_state(STATE_IN_RESET);
				LOG1(("EEPROM: CS deasserted in STATE_WAIT_FOR_DATA after %d bits\n", m_bits_accum));
			}
			break;


		// CS is asserted; waiting for completion; watch for CS falling
		case STATE_WAIT_FOR_COMPLETION:
			if (event == EVENT_CS_FALLING_EDGE)
				set_state(STATE_IN_RESET);
			break;
	}
}


//-------------------------------------------------
//  parse_command_and_address - extract the
//  command and address from a bitstream
//-------------------------------------------------

void eeprom_serial_x24c44_device::parse_command_and_address()
{
	//command is start_bit - 4bit_address - 3bit_command

	// set the defaults
	m_command = COMMAND_INVALID;

	m_address = (m_command_address_accum >> 3) & 0x0f;

	LOG1(("EEPROM: command= %04X, address %02X\n", m_command_address_accum& 0x07, m_address));

	switch (m_command_address_accum & 0x07)
	{
		case 0: //reset write enable latch
				LOG0(("Lock eeprom\n"));
				m_command = COMMAND_LOCK;   break;
		case 3: //write data into ram
				LOG0(("Write to ram\n"));
				m_command = COMMAND_WRITE;  break;
		case 4: //set write enable latch
				LOG0(("Unlock eeprom\n"));
				m_command = COMMAND_UNLOCK; break;
		case 1: //store ram data in eeprom
				LOG0(("copy ram to eeprom\n"));
				m_command = COMMAND_COPY_RAM_TO_EEPROM;   break;
		case 5: //reload eeprom data into ram
				LOG0(("copy eeprom to ram\n"));
				m_command = COMMAND_COPY_EEPROM_TO_RAM; break;
		case 2: //reserved (Sleep on x2444)
			m_command = COMMAND_INVALID;
				break;

	}

}

void eeprom_serial_x24c44_device::parse_command_and_address_2_bit()
{
	if ((m_command_address_accum & 0x03) == 0x03){
		m_command = COMMAND_READ;
		m_address = ((m_command_address_accum >> 2) & 0x0f);
		m_shift_register = 0;
		set_state(STATE_READING_DATA);
		LOG1(("parse command_and_address_2_bit found a read command\n"));
		m_reading=1;
		m_bits_accum=0;
	}

	// warn about out-of-range addresses
	if (m_address >= (1 << m_address_bits))
		LOG1(("EEPROM: out-of-range address 0x%X provided (maximum should be 0x%X)\n", m_address, (1 << m_address_bits) - 1));
}


//-------------------------------------------------
//  do_read/ready_read - read handlers
//-------------------------------------------------

READ_LINE_MEMBER(eeprom_serial_x24c44_device::do_read) { return base_do_read(); }


//-------------------------------------------------
//  cs_write/clk_write/di_write - write handlers
//-------------------------------------------------

WRITE_LINE_MEMBER(eeprom_serial_x24c44_device::cs_write) { base_cs_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_x24c44_device::clk_write) { base_clk_write(state); }
WRITE_LINE_MEMBER(eeprom_serial_x24c44_device::di_write) { base_di_write(state); }


//**************************************************************************
//  DERIVED TYPES
//**************************************************************************

// macro for defining a new device class
#define DEFINE_SERIAL_EEPROM_DEVICE(_baseclass, _lowercase, _uppercase, _bits, _cells, _addrbits) \
eeprom_serial_##_lowercase##_##_bits##bit_device::eeprom_serial_##_lowercase##_##_bits##bit_device(const machine_config &mconfig, std::string tag, device_t *owner, UINT32 clock) \
	: eeprom_serial_##_baseclass##_device(mconfig, EEPROM_SERIAL_##_uppercase##_##_bits##BIT, "Serial EEPROM " #_uppercase " (" #_cells "x" #_bits ")", tag, owner, #_lowercase "_" #_bits, __FILE__) \
{ \
	static_set_size(*this, _cells, _bits); \
	static_set_address_bits(*this, _addrbits); \
} \
const device_type EEPROM_SERIAL_##_uppercase##_##_bits##BIT = &device_creator<eeprom_serial_##_lowercase##_##_bits##bit_device>;
// standard 93CX6 class of 16-bit EEPROMs
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c06, 93C06, 16, 16, 6)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c46, 93C46, 16, 64, 6)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c56, 93C56, 16, 128, 8)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c57, 93C57, 16, 128, 7)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c66, 93C66, 16, 256, 8)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c76, 93C76, 16, 512, 10)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c86, 93C86, 16, 1024, 10)

// some manufacturers use pin 6 as an "ORG" pin which, when pulled low, configures memory for 8-bit accesses
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c46, 93C46, 8, 128, 7)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c56, 93C56, 8, 256, 9)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c57, 93C57, 8, 256, 8)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c66, 93C66, 8, 512, 9)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c76, 93C76, 8, 1024, 11)
DEFINE_SERIAL_EEPROM_DEVICE(93cxx, 93c86, 93C86, 8, 2048, 11)

// ER5911 has a separate ready pin, a reduced command set, and supports 8/16 bit out of the box
DEFINE_SERIAL_EEPROM_DEVICE(er5911, er5911, ER5911, 8, 128, 9)
DEFINE_SERIAL_EEPROM_DEVICE(er5911, er5911, ER5911, 16, 64, 8)
DEFINE_SERIAL_EEPROM_DEVICE(er5911, msm16911, MSM16911, 8, 128, 9)
DEFINE_SERIAL_EEPROM_DEVICE(er5911, msm16911, MSM16911, 16, 64, 8)

// X24c44 8 bit 32byte ram/eeprom combo
DEFINE_SERIAL_EEPROM_DEVICE(x24c44, x24c44, X24C44, 16, 16, 4)