1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
// license:BSD-3-Clause
// copyright-holders:Farfetch'd, R. Belmont
// V60.C
// Undiscover the beast!
// Main hacking and coding by Farfetch'd
// Portability fixes by R. Belmont
//
// Emulation for the NEC V60 (uPD70615) and V70 (uPD70632) CPUs
//
/*
Taken from the NEC Semiconductor Selection Guide Guide Book (Oct. 1995):
uPD70615 (V60)
Features:
- Virtual memory (paging method)
- Level protection architecture - 4-level hierarchical protection function
for system multi-programming.
- Abundant general registers - Thirty two 32-bit general registers for
optimizing compiler
- Refined instruction set - 2-address method: Arbitrary addressing mode
can be used independently for source operand and destination operand.
- Abundant address modes and data types - Auto increment/decrement mode
for string process, and memory indirect addressing for pointer operation
- High cost-to performance chip
- No multiprocessor system - no FRM function for increasing system
reliability using two or more processors.
- No V20/V30 simulation mode
Address bus: 24 bits
Data bus: 16 bits
Memory space: 4G bytes
Operating frequency: 16 MHz
Package: 120-pin QFP
uPD70616 (V60)
Features:
- Virtual memory (paging method)
- Level protection architecture - 4-level hierarchical protection function
for system multi-programming.
- Abundant general registers - Thirty two 32-bit general registers for
optimizing compiler
- Refined instruction set - 2-address method: Arbitrary addressing mode
can be used independently for source operand and destination operand.
- Abundant address modes and data types - Auto increment/decrement mode
for string process, and memory indirect addressing for pointer operation
- Multiprocessor system - FRM function for increasing system reliability
using two or more processors.
- V20/V30 simulation mode
Address bus: 24 bits
Data bus: 16 bits
Memory space: 4G bytes
Operating frequency: 16 MHz
Package: 68-pin PGA
uPD70632 (V70)
Features:
- Virtual memory (paging method)
- Level protection architecture - 4-level hierarchical protection function
for system multi-programming.
- Abundant general registers - Thirty two 32-bit general registers for
optimizing compiler
- Refined instruction set - 2-address method: Arbitrary addressing mode
can be used independently for source operand and destination operand.
- Abundant address modes and data types - Auto increment/decrement mode
for string process, and memory indirect addressing for pointer operation
- Multiprocessor system - FRM function for increasing system reliability
using two or more processors.
- V20/V30 simulation mode
Address bus: 32 bits
Data bus: 32 bits
Memory space: 4G bytes
Operating frequency: 20 MHz
Package: 132-pin PGA, 200-pin QFP
*/
#include "emu.h"
#include "v60.h"
#include "v60d.h"
#include "debugger.h"
DEFINE_DEVICE_TYPE(V60, v60_device, "v60", "NEC V60")
DEFINE_DEVICE_TYPE(V70, v70_device, "v70", "NEC V70")
// Set m_PIR (Processor ID) for NEC m_ LSB is reserved to NEC,
// so I don't know what it contains.
v60_device::v60_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: v60_device(mconfig, V60, tag, owner, clock, 16, 24, 0x00006000)
{
}
v60_device::v60_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock, int databits, int addrbits, uint32_t pir)
: cpu_device(mconfig, type, tag, owner, clock)
, m_program_config("program", ENDIANNESS_LITTLE, databits, addrbits, 0)
, m_io_config("io", ENDIANNESS_LITTLE, 16, 24, 0)
, m_start_pc(0xfffffff0)
{
m_reg[45] = pir;
}
// Set m_PIR (Processor ID) for NEC v70. LSB is reserved to NEC,
// so I don't know what it contains.
v70_device::v70_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
: v60_device(mconfig, V70, tag, owner, clock, 32, 32, 0x00007000)
{
}
device_memory_interface::space_config_vector v60_device::memory_space_config() const
{
return space_config_vector {
std::make_pair(AS_PROGRAM, &m_program_config),
std::make_pair(AS_IO, &m_io_config)
};
}
std::unique_ptr<util::disasm_interface> v60_device::create_disassembler()
{
return std::make_unique<v60_disassembler>();
}
// memory accessors
#define OpRead8(a) m_pr8(a)
#define OpRead16(a) m_pr16(a)
#define OpRead32(a) m_pr32(a)
// macros stolen from MAME for flags calc
// note that these types are in x86 naming:
// byte = 8 bit, word = 16 bit, long = 32 bit
// parameter x = result, y = source 1, z = source 2
#define SetOFL_Add(x, y,z) (_OV = (((x) ^ (y)) & ((x) ^ (z)) & 0x80000000) ? 1: 0)
#define SetOFW_Add(x, y,z) (_OV = (((x) ^ (y)) & ((x) ^ (z)) & 0x8000) ? 1 : 0)
#define SetOFB_Add(x, y,z) (_OV = (((x) ^ (y)) & ((x) ^ (z)) & 0x80) ? 1 : 0)
#define SetOFL_Sub(x, y,z) (_OV = (((z) ^ (y)) & ((z) ^ (x)) & 0x80000000) ? 1 : 0)
#define SetOFW_Sub(x, y,z) (_OV = (((z) ^ (y)) & ((z) ^ (x)) & 0x8000) ? 1 : 0)
#define SetOFB_Sub(x, y,z) (_OV = (((z) ^ (y)) & ((z) ^ (x)) & 0x80) ? 1 : 0)
#define SetCFB(x) {_CY = ((x) & 0x100) ? 1 : 0; }
#define SetCFW(x) {_CY = ((x) & 0x10000) ? 1 : 0; }
#define SetCFL(x) {_CY = ((x) & (((uint64_t)1) << 32)) ? 1 : 0; }
#define SetSF(x) (_S = (x))
#define SetZF(x) (_Z = (x))
#define SetSZPF_Byte(x) {_Z = ((uint8_t)(x) == 0); _S = ((x)&0x80) ? 1 : 0; }
#define SetSZPF_Word(x) {_Z = ((uint16_t)(x) == 0); _S = ((x)&0x8000) ? 1 : 0; }
#define SetSZPF_Long(x) {_Z = ((uint32_t)(x) == 0); _S = ((x)&0x80000000) ? 1 : 0; }
#define ORB(dst, src) { (dst) |= (src); _OV = 0; SetSZPF_Byte(dst); }
#define ORW(dst, src) { (dst) |= (src); _OV = 0; SetSZPF_Word(dst); }
#define ORL(dst, src) { (dst) |= (src); _OV = 0; SetSZPF_Long(dst); }
#define ANDB(dst, src) { (dst) &= (src); _OV = 0; SetSZPF_Byte(dst); }
#define ANDW(dst, src) { (dst) &= (src); _OV = 0; SetSZPF_Word(dst); }
#define ANDL(dst, src) { (dst) &= (src); _OV = 0; SetSZPF_Long(dst); }
#define XORB(dst, src) { (dst) ^= (src); _OV = 0; SetSZPF_Byte(dst); }
#define XORW(dst, src) { (dst) ^= (src); _OV = 0; SetSZPF_Word(dst); }
#define XORL(dst, src) { (dst) ^= (src); _OV = 0; SetSZPF_Long(dst); }
#define SUBB(dst, src) { unsigned res = (dst) - (src); SetCFB(res); SetOFB_Sub(res, src, dst); SetSZPF_Byte(res); dst = (uint8_t)res; }
#define SUBW(dst, src) { unsigned res = (dst) - (src); SetCFW(res); SetOFW_Sub(res, src, dst); SetSZPF_Word(res); dst = (uint16_t)res; }
#define SUBL(dst, src) { uint64_t res = (uint64_t)(dst) - (int64_t)(src); SetCFL(res); SetOFL_Sub(res, src, dst); SetSZPF_Long(res); dst = (uint32_t)res; }
#define ADDB(dst, src) { unsigned res = (dst) + (src); SetCFB(res); SetOFB_Add(res, src, dst); SetSZPF_Byte(res); dst = (uint8_t)res; }
#define ADDW(dst, src) { unsigned res = (dst) + (src); SetCFW(res); SetOFW_Add(res, src, dst); SetSZPF_Word(res); dst = (uint16_t)res; }
#define ADDL(dst, src) { uint64_t res = (uint64_t)(dst) + (uint64_t)(src); SetCFL(res); SetOFL_Add(res, src, dst); SetSZPF_Long(res); dst = (uint32_t)res; }
#define SETREG8(a, b) (a) = ((a) & ~0xff) | ((b) & 0xff)
#define SETREG16(a, b) (a) = ((a) & ~0xffff) | ((b) & 0xffff)
/*
* Prevent warnings on NetBSD. All identifiers beginning with an underscore
* followed by an uppercase letter are reserved by the C standard (ISO / IEC
* 9899:1999, 7.1.3) to be used by the implementation. It'd be best to rename
* all such instances, but this is less intrusive and error-prone.
*/
#undef _S
#define _CY m_flags.CY
#define _OV m_flags.OV
#define _S m_flags.S
#define _Z m_flags.Z
// Defines of all v60 register...
#define R0 m_reg[0]
#define R1 m_reg[1]
#define R2 m_reg[2]
#define R3 m_reg[3]
#define R4 m_reg[4]
#define R5 m_reg[5]
#define R6 m_reg[6]
#define R7 m_reg[7]
#define R8 m_reg[8]
#define R9 m_reg[9]
#define R10 m_reg[10]
#define R11 m_reg[11]
#define R12 m_reg[12]
#define R13 m_reg[13]
#define R14 m_reg[14]
#define R15 m_reg[15]
#define R16 m_reg[16]
#define R17 m_reg[17]
#define R18 m_reg[18]
#define R19 m_reg[19]
#define R20 m_reg[20]
#define R21 m_reg[21]
#define R22 m_reg[22]
#define R23 m_reg[23]
#define R24 m_reg[24]
#define R25 m_reg[25]
#define R26 m_reg[26]
#define R27 m_reg[27]
#define R28 m_reg[28]
#define AP m_reg[29]
#define FP m_reg[30]
#define SP m_reg[31]
#define PC m_reg[32]
#define PSW m_reg[33]
// Privileged registers
#define ISP m_reg[36]
#define L0SP m_reg[37]
#define L1SP m_reg[38]
#define L2SP m_reg[39]
#define L3SP m_reg[40]
#define SBR m_reg[41]
#define TR m_reg[42]
#define SYCW m_reg[43]
#define TKCW m_reg[44]
#define PIR m_reg[45]
//10-14 reserved
#define PSW2 m_reg[51]
#define ATBR0 m_reg[52]
#define ATLR0 m_reg[53]
#define ATBR1 m_reg[54]
#define ATLR1 m_reg[55]
#define ATBR2 m_reg[56]
#define ATLR2 m_reg[57]
#define ATBR3 m_reg[58]
#define ATLR3 m_reg[59]
#define TRMODE m_reg[60]
#define ADTR0 m_reg[61]
#define ADTR1 m_reg[62]
#define ADTMR0 m_reg[63]
#define ADTMR1 m_reg[64]
//29-31 reserved
// Defines...
#define NORMALIZEFLAGS() \
{ \
_S = _S ? 1 : 0; \
_OV = _OV ? 1 : 0; \
_Z = _Z ? 1 : 0; \
_CY = _CY ? 1 : 0; \
}
void v60_device::v60SaveStack()
{
if (PSW & 0x10000000)
ISP = SP;
else
m_reg[37 + ((PSW >> 24) & 3)] = SP;
}
void v60_device::v60ReloadStack()
{
if (PSW & 0x10000000)
SP = ISP;
else
SP = m_reg[37 + ((PSW >> 24) & 3)];
}
uint32_t v60_device::v60ReadPSW()
{
PSW &= 0xfffffff0;
PSW |= (_Z?1:0) | (_S?2:0) | (_OV?4:0) | (_CY?8:0);
return PSW;
}
void v60_device::v60WritePSW(uint32_t newval)
{
/* determine if we need to save / restore the stacks */
int updateStack = 0;
/* if the interrupt state is changing, we definitely need to update */
if ((newval ^ PSW) & 0x10000000)
updateStack = 1;
/* if we are not in interrupt mode and the level is changing, we also must update */
else if (!(PSW & 0x10000000) && ((newval ^ PSW) & 0x03000000))
updateStack = 1;
/* save the previous stack value */
if (updateStack)
v60SaveStack();
/* set the new value and update the flags */
PSW = newval;
_Z = (uint8_t)(PSW & 1);
_S = (uint8_t)(PSW & 2);
_OV = (uint8_t)(PSW & 4);
_CY = (uint8_t)(PSW & 8);
/* fetch the new stack value */
if (updateStack)
v60ReloadStack();
}
uint32_t v60_device::v60_update_psw_for_exception(int is_interrupt, int target_level)
{
uint32_t oldPSW = v60ReadPSW();
uint32_t newPSW = oldPSW;
// Change to interrupt context
newPSW &= ~(3 << 24); // PSW.EL = 0
newPSW |= target_level << 24; // set target level
newPSW &= ~(1 << 18); // PSW.IE = 0
newPSW &= ~(1 << 16); // PSW.TE = 0
newPSW &= ~(1 << 27); // PSW.TP = 0
newPSW &= ~(1 << 17); // PSW.AE = 0
newPSW &= ~(1 << 29); // PSW.EM = 0
if (is_interrupt)
newPSW |= (1 << 28);// PSW.IS = 1
newPSW |= (1 << 31); // PSW.ASA = 1
v60WritePSW(newPSW);
return oldPSW;
}
#define GETINTVECT(nint) m_program->read_dword((SBR & ~0xfff) + (nint) * 4)
#define EXCEPTION_CODE_AND_SIZE(code, size) (((code) << 16) | (size))
// Addressing mode decoding functions
#include "am.hxx"
// Opcode functions
#include "op12.hxx"
#include "op2.hxx"
#include "op3.hxx"
#include "op4.hxx"
#include "op5.hxx"
#include "op6.hxx"
#include "op7a.hxx"
uint32_t v60_device::opUNHANDLED()
{
fatalerror("Unhandled OpCode found : %02x at %08x\n", OpRead16(PC), PC);
//return 0; /* never reached, fatalerror won't return */
}
// Opcode jump table
#include "optable.hxx"
void v60_device::device_start()
{
m_stall_io = 0;
m_irq_line = CLEAR_LINE;
m_nmi_line = CLEAR_LINE;
for ( int i = 0; i < 68; i++ )
{
// Don't set SP (31), PCi (32), PSW (33), SBR (41), SYCW (43), TKCW (44), PIR (45), PSW2 (51)
if ( i != 31 && i != 32 && i != 33 && i != 41 && i != 43 && i != 44 && i != 45 && i != 51 )
{
m_reg[i] = 0;
}
}
m_flags.CY = 0;
m_flags.OV = 0;
m_flags.S = 0;
m_flags.Z = 0;
m_op1 = 0;
m_op2 = 0;
m_flag1 = 0;
m_flag2 = 0;
m_instflags = 0;
m_lenop1 = 0;
m_lenop2 = 0;
m_subop = 0;
m_bamoffset1 = 0;
m_bamoffset2 = 0;
m_amflag = 0;
m_amout = 0;
m_bamoffset = 0;
m_amlength1 = 0;
m_amlength2 = 0;
m_modadd = 0;
m_modm = 0;
m_modval = 0;
m_modval2 = 0;
m_modwritevalb = 0;
m_modwritevalh = 0;
m_modwritevalw = 0;
m_moddim = 0;
m_program = &space(AS_PROGRAM);
if (m_program->data_width() == 16)
{
m_program->cache(m_cache16);
m_pr8 = [this](offs_t address) -> u8 { return m_cache16.read_byte(address); };
m_pr16 = [this](offs_t address) -> u16 { return m_cache16.read_word_unaligned(address); };
m_pr32 = [this](offs_t address) -> u32 { return m_cache16.read_dword_unaligned(address); };
}
else
{
m_program->cache(m_cache32);
m_pr8 = [this](offs_t address) -> u8 { return m_cache32.read_byte(address); };
m_pr16 = [this](offs_t address) -> u16 { return m_cache32.read_word_unaligned(address); };
m_pr32 = [this](offs_t address) -> u32 { return m_cache32.read_dword_unaligned(address); };
}
m_io = &space(AS_IO);
save_item(NAME(m_reg));
save_item(NAME(m_irq_line));
save_item(NAME(m_nmi_line));
save_item(NAME(m_PPC));
save_item(NAME(_CY));
save_item(NAME(_OV));
save_item(NAME(_S));
save_item(NAME(_Z));
state_add( V60_R0, "R0", R0).formatstr("%08X");
state_add( V60_R1, "R1", R1).formatstr("%08X");
state_add( V60_R2, "R2", R2).formatstr("%08X");
state_add( V60_R3, "R3", R3).formatstr("%08X");
state_add( V60_R4, "R4", R4).formatstr("%08X");
state_add( V60_R5, "R5", R5).formatstr("%08X");
state_add( V60_R6, "R6", R6).formatstr("%08X");
state_add( V60_R7, "R7", R7).formatstr("%08X");
state_add( V60_R8, "R8", R8).formatstr("%08X");
state_add( V60_R9, "R9", R9).formatstr("%08X");
state_add( V60_R10, "R10", R10).formatstr("%08X");
state_add( V60_R11, "R11", R11).formatstr("%08X");
state_add( V60_R12, "R12", R12).formatstr("%08X");
state_add( V60_R13, "R13", R13).formatstr("%08X");
state_add( V60_R14, "R14", R14).formatstr("%08X");
state_add( V60_R15, "R15", R15).formatstr("%08X");
state_add( V60_R16, "R16", R16).formatstr("%08X");
state_add( V60_R17, "R17", R17).formatstr("%08X");
state_add( V60_R18, "R18", R18).formatstr("%08X");
state_add( V60_R19, "R19", R19).formatstr("%08X");
state_add( V60_R20, "R20", R20).formatstr("%08X");
state_add( V60_R21, "R21", R21).formatstr("%08X");
state_add( V60_R22, "R22", R22).formatstr("%08X");
state_add( V60_R23, "R23", R23).formatstr("%08X");
state_add( V60_R24, "R24", R24).formatstr("%08X");
state_add( V60_R25, "R25", R25).formatstr("%08X");
state_add( V60_R26, "R26", R26).formatstr("%08X");
state_add( V60_R27, "R27", R27).formatstr("%08X");
state_add( V60_R28, "R28", R28).formatstr("%08X");
state_add( V60_AP, "AP", AP).formatstr("%08X");
state_add( V60_FP, "FP", FP).formatstr("%08X");
state_add( V60_SP, "SP", SP).formatstr("%08X");
state_add( V60_PC, "PC", PC).formatstr("%08X");
state_add( V60_PSW, "PSW", m_debugger_temp).callimport().callexport().formatstr("%08X");
state_add( V60_ISP, "ISP", ISP).formatstr("%08X");
state_add( V60_L0SP, "L0SP", L0SP).formatstr("%08X");
state_add( V60_L1SP, "L1SP", L1SP).formatstr("%08X");
state_add( V60_L2SP, "L2SP", L2SP).formatstr("%08X");
state_add( V60_L3SP, "L3SP", L3SP).formatstr("%08X");
state_add( V60_SBR, "SBR", SBR).formatstr("%08X");
state_add( V60_TR, "TR", TR).formatstr("%08X");
state_add( V60_SYCW, "SYCW", SYCW).formatstr("%08X");
state_add( V60_TKCW, "TKCW", TKCW).formatstr("%08X");
state_add( V60_PIR, "PIR", PIR).formatstr("%08X");
state_add( V60_PSW2, "PSW2", PSW2).formatstr("%08X");
state_add( V60_ATBR0, "ATBR0", ATBR0).formatstr("%08X");
state_add( V60_ATLR0, "ATLR0", ATLR0).formatstr("%08X");
state_add( V60_ATBR1, "ATBR1", ATBR1).formatstr("%08X");
state_add( V60_ATLR1, "ATLR1", ATLR1).formatstr("%08X");
state_add( V60_ATBR2, "ATBR2", ATBR2).formatstr("%08X");
state_add( V60_ATLR2, "ATLR2", ATLR2).formatstr("%08X");
state_add( V60_ATBR3, "ATBR3", ATBR3).formatstr("%08X");
state_add( V60_ATLR3, "ATLR3", ATLR3).formatstr("%08X");
state_add( V60_TRMODE, "TRMODE", TRMODE).formatstr("%08X");
state_add( V60_ADTR0, "ADTR0", ADTR0).formatstr("%08X");
state_add( V60_ADTR1, "ADTR1", ADTR1).formatstr("%08X");
state_add( V60_ADTMR0, "ADTMR0", ADTMR0).formatstr("%08X");
state_add( V60_ADTMR1, "ADTMR1", ADTMR1).formatstr("%08X");
state_add( STATE_GENPC, "GENPC", PC).noshow();
state_add( STATE_GENPCBASE, "CURPC", m_PPC ).noshow();
state_add( STATE_GENSP, "GENSP", SP ).noshow();
state_add( STATE_GENFLAGS, "GENFLAGS", m_debugger_temp).callimport().formatstr("%7s").noshow();
set_icountptr(m_icount);
}
void v60_device::state_export(const device_state_entry &entry)
{
switch (entry.index())
{
case V60_PSW:
m_debugger_temp = v60ReadPSW();
break;
}
}
void v60_device::state_string_export(const device_state_entry &entry, std::string &str) const
{
switch(entry.index()) {
case STATE_GENFLAGS:
str = string_format("%c%c%c%c",
PSW & 1 ? 'Z' : '.',
PSW & 2 ? 'S' : '.',
PSW & 4 ? 'O' : '.',
PSW & 8 ? 'C' : '.');
break;
}
}
void v60_device::state_import(const device_state_entry &entry)
{
switch (entry.index())
{
case V60_PSW:
v60WritePSW( m_debugger_temp );
break;
}
}
void v60_device::device_reset()
{
PSW = 0x10000000;
PC = m_start_pc;
SBR = 0x00000000;
SYCW = 0x00000070;
TKCW = 0x0000e000;
PSW2 = 0x0000f002;
_CY = 0;
_OV = 0;
_S = 0;
_Z = 0;
}
void v60_device::stall()
{
m_stall_io = 1;
}
void v60_device::v60_do_irq(int vector)
{
uint32_t oldPSW = v60_update_psw_for_exception(1, 0);
// Push PC and PSW onto the stack
SP-=4;
m_program->write_dword_unaligned(SP, oldPSW);
SP-=4;
m_program->write_dword_unaligned(SP, PC);
// Jump to vector for user interrupt
PC = GETINTVECT(vector);
}
void v60_device::v60_try_irq()
{
if(m_irq_line == CLEAR_LINE)
return;
if((PSW & (1 << 18)) != 0) {
int vector;
if(m_irq_line != ASSERT_LINE)
m_irq_line = CLEAR_LINE;
vector = standard_irq_callback(0);
v60_do_irq(vector + 0x40);
}
}
void v60_device::execute_set_input(int irqline, int state)
{
if(irqline == INPUT_LINE_NMI) {
switch(state) {
case ASSERT_LINE:
if(m_nmi_line == CLEAR_LINE) {
m_nmi_line = ASSERT_LINE;
v60_do_irq(2);
}
break;
case CLEAR_LINE:
m_nmi_line = CLEAR_LINE;
break;
}
} else {
m_irq_line = state;
v60_try_irq();
}
}
// Actual cycles / instruction is unknown
void v60_device::execute_run()
{
if (m_irq_line != CLEAR_LINE)
v60_try_irq();
while (m_icount > 0)
{
uint32_t inc;
m_PPC = PC;
debugger_instruction_hook(PC);
m_icount -= 8; /* fix me -- this is just an average */
inc = (this->*s_OpCodeTable[OpRead8(PC)])();
PC += inc;
if (m_irq_line != CLEAR_LINE)
v60_try_irq();
}
}
|