summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/upd7725/upd7725.cpp
blob: 5820d6fe4e0406ba6baecd483d5d4d420b625bc9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// license:BSD-3-Clause
// copyright-holders:R. Belmont,byuu
/***************************************************************************

    upd7725.c

    Core implementation for the portable NEC uPD7725/uPD96050 emulator

    Original by byuu in the public domain.
    MAME conversion by R. Belmont

****************************************************************************/

#include "emu.h"
#include "debugger.h"
#include "upd7725.h"


//**************************************************************************
//  DEVICE INTERFACE
//**************************************************************************

// device type definition
const device_type UPD7725 = &device_creator<upd7725_device>;
const device_type UPD96050 = &device_creator<upd96050_device>;

necdsp_device::necdsp_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, UINT32 clock, UINT32 abits, UINT32 dbits, const char *name, const char *shortname, const char *source)
	: cpu_device(mconfig, type, name, tag, owner, clock, shortname, source),
		m_program_config("program", ENDIANNESS_BIG, 32, abits, -2), // data bus width, address bus width, -2 means DWORD-addressable
		m_data_config("data", ENDIANNESS_BIG, 16, dbits, -1), m_icount(0),   // -1 for WORD-addressable
		m_irq(0),
		m_program(nullptr),
		m_data(nullptr),
		m_direct(nullptr),
		m_in_int_cb(*this),
		//m_in_si_cb(*this),
		//m_in_sck_cb(*this),
		//m_in_sien_cb(*this),
		//m_in_soen_cb(*this),
		//m_in_dack_cb(*this),
		m_out_p0_cb(*this),
		m_out_p1_cb(*this)
		//m_out_so_cb(*this),
		//m_out_sorq_cb(*this),
		//m_out_drq_cb(*this)
{
}


upd7725_device::upd7725_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
	: necdsp_device(mconfig, UPD7725, tag, owner, clock, 11, 11, "uPD7725", "upd7725", __FILE__)
{
}

upd96050_device::upd96050_device(const machine_config &mconfig, const char *tag, device_t *owner, UINT32 clock)
	: necdsp_device(mconfig, UPD96050, tag, owner, clock, 14, 12, "uPD96050", "upd96050", __FILE__)
{
}

//-------------------------------------------------
//  device_start - start up the device
//-------------------------------------------------

void necdsp_device::device_start()
{
	// get our address spaces
	m_program = &space(AS_PROGRAM);
	m_data = &space(AS_DATA);
	m_direct = &m_program->direct();

	// register our state for the debugger
	state_add(STATE_GENPC, "GENPC", regs.pc).noshow();
	state_add(UPD7725_PC, "PC", regs.pc);
	state_add(UPD7725_RP, "RP", regs.rp);
	state_add(UPD7725_DP, "DP", regs.dp);
	state_add(UPD7725_SP, "SP", regs.sp);
	state_add(UPD7725_K, "K", regs.k);
	state_add(UPD7725_L, "L", regs.l);
	state_add(UPD7725_M, "M", regs.m);
	state_add(UPD7725_N, "N", regs.n);
	state_add(UPD7725_A, "A", regs.a);
	state_add(UPD7725_B, "B", regs.b);
	state_add(UPD7725_TR, "TR", regs.tr);
	state_add(UPD7725_TRB, "TRB", regs.trb);
	state_add(UPD7725_DR, "DR", regs.dr);
	state_add(UPD7725_SI, "SI", regs.si);
	state_add(UPD7725_SO, "SO", regs.so);
	state_add(UPD7725_IDB, "IDB", regs.idb);

	// resolve callbacks
	m_in_int_cb.resolve_safe(0);
	//m_in_si_cb.resolve_safe(0);
	//m_in_sck_cb.resolve_safe(0);
	//m_in_sien_cb.resolve_safe(0);
	//m_in_soen_cb.resolve_safe(0);
	//m_in_dack_cb.resolve_safe(0);
	m_out_p0_cb.resolve_safe();
	m_out_p1_cb.resolve_safe();
	//m_out_so_cb.resolve_safe();
	//m_out_sorq_cb.resolve_safe();
	//m_out_drq_cb.resolve_safe();

	// save state registrations
	save_item(NAME(regs.pc));
	save_item(NAME(regs.rp));
	save_item(NAME(regs.dp));
	save_item(NAME(regs.sp));
	save_item(NAME(regs.k));
	save_item(NAME(regs.l));
	save_item(NAME(regs.m));
	save_item(NAME(regs.n));
	save_item(NAME(regs.a));
	save_item(NAME(regs.b));
	save_item(NAME(regs.tr));
	save_item(NAME(regs.trb));
	save_item(NAME(regs.dr));
	save_item(NAME(regs.so));
	save_item(NAME(regs.idb));
	save_item(NAME(regs.sr.rqm));
	save_item(NAME(regs.sr.usf0));
	save_item(NAME(regs.sr.usf1));
	save_item(NAME(regs.sr.drs));
	save_item(NAME(regs.sr.dma));
	save_item(NAME(regs.sr.drc));
	save_item(NAME(regs.sr.soc));
	save_item(NAME(regs.sr.sic));
	save_item(NAME(regs.sr.ei));
	save_item(NAME(regs.sr.p0));
	save_item(NAME(regs.sr.p1));
	save_item(NAME(regs.stack));
	save_item(NAME(dataRAM));

	m_icountptr = &m_icount;
}

//-------------------------------------------------
//  device_reset - reset the device
//-------------------------------------------------

void necdsp_device::device_reset()
{
	for (auto & elem : dataRAM)
	{
		elem = 0x0000;
	}

	regs.pc = 0x0000;
	regs.rp = 0x0000;
	regs.dp = 0x0000;
	regs.sp = 0x0;
	regs.k = 0x0000;
	regs.l = 0x0000;
	regs.m = 0x0000;
	regs.n = 0x0000;
	regs.a = 0x0000;
	regs.b = 0x0000;
	regs.flaga = 0x00;
	regs.flagb = 0x00;
	regs.tr = 0x0000;
	regs.trb = 0x0000;
	regs.sr = 0x0000;
	regs.dr = 0x0000;
	regs.si = 0x0000;
	regs.so = 0x0000;
	regs.idb = 0x0000;
}

//-------------------------------------------------
//  memory_space_config - return the configuration
//  of the specified address space, or NULL if
//  the space doesn't exist
//-------------------------------------------------

const address_space_config *necdsp_device::memory_space_config(address_spacenum spacenum) const
{
	return (spacenum == AS_PROGRAM) ? &m_program_config : &m_data_config;
}


//-------------------------------------------------
//  state_import - import state into the device,
//  after it has been set
//-------------------------------------------------

void necdsp_device::state_import(const device_state_entry &entry)
{
}


//-------------------------------------------------
//  state_export - export state from the device,
//  to a known location where it can be read
//-------------------------------------------------

void necdsp_device::state_export(const device_state_entry &entry)
{
}


//-------------------------------------------------
//  state_string_export - export state as a string
//  for the debugger
//-------------------------------------------------

void necdsp_device::state_string_export(const device_state_entry &entry, std::string &str)
{
	switch (entry.index())
	{
		case UPD7725_FLAGA:
			strprintf(str, "%s %s %c%c %s %s %s %s",
							regs.flaga.s1 ? "S1" : "s1",
							regs.flaga.s0 ? "S0" : "s0",
							regs.flaga.c ? 'C' : 'c',
							regs.flaga.z ? 'Z' : 'z',
							regs.flaga.ov1 ? "OV1" : "ov1",
							regs.flaga.ov0 ? "OV0" : "ov0",
							regs.flaga.ov0p ? "OV0P" : "ov0p",
							regs.flaga.ov0pp ? "OV0PP" : "ov0pp");
			break;

		case UPD7725_FLAGB:
			strprintf(str, "%s %s %c%c %s %s %s %s",
							regs.flagb.s1 ? "S1" : "s1",
							regs.flagb.s0 ? "S0" : "s0",
							regs.flagb.c ? 'C' : 'c',
							regs.flagb.z ? 'Z' : 'z',
							regs.flagb.ov1 ? "OV1" : "ov1",
							regs.flagb.ov0 ? "OV0" : "ov0",
							regs.flagb.ov0p ? "OV0P" : "ov0p",
							regs.flagb.ov0pp ? "OV0PP" : "ov0pp");
			break;
	}
}

//-------------------------------------------------
//  execute_min_cycles - return minimum number of
//  cycles it takes for one instruction to execute
//-------------------------------------------------

UINT32 necdsp_device::execute_min_cycles() const
{
	return 4;
}


//-------------------------------------------------
//  execute_max_cycles - return maximum number of
//  cycles it takes for one instruction to execute
//-------------------------------------------------

UINT32 necdsp_device::execute_max_cycles() const
{
	return 4;
}


//-------------------------------------------------
//  execute_input_lines - return the number of
//  input/interrupt lines
//-------------------------------------------------

UINT32 necdsp_device::execute_input_lines() const
{
	return 3; // TODO: there should be 11: INT, SCK, /SIEN, /SOEN, SI, and /DACK, plus SO, /SORQ and DRQ; for now, just INT, P0, and P1 are enough.
}


//-------------------------------------------------
//  execute_set_input -
//-------------------------------------------------

void necdsp_device::execute_set_input(int inputnum, int state)
{
	switch (inputnum)
	{
	case NECDSP_INPUT_LINE_INT:
		//TODO: detect rising edge; if rising edge found AND IE = 1, push PC, pc = 0x100; else do nothing
		m_irq = state; // set old state to current state
		break;
	// add more when needed
	}
}

//-------------------------------------------------
//  disasm_min_opcode_bytes - return the length
//  of the shortest instruction, in bytes
//-------------------------------------------------

UINT32 necdsp_device::disasm_min_opcode_bytes() const
{
	return 4;
}


//-------------------------------------------------
//  disasm_max_opcode_bytes - return the length
//  of the longest instruction, in bytes
//-------------------------------------------------

UINT32 necdsp_device::disasm_max_opcode_bytes() const
{
	return 4;
}

//-------------------------------------------------
//  disasm_disassemble - call the disassembly
//  helper function
//-------------------------------------------------

offs_t necdsp_device::disasm_disassemble(char *buffer, offs_t pc, const UINT8 *oprom, const UINT8 *opram, UINT32 options)
{
	extern CPU_DISASSEMBLE( upd7725 );
	return CPU_DISASSEMBLE_NAME(upd7725)(this, buffer, pc, oprom, opram, options);
}

void necdsp_device::execute_run()
{
	UINT32 opcode;

	do
	{
		// call debugger hook if necessary
		if (device_t::machine().debug_flags & DEBUG_FLAG_ENABLED)
		{
			debugger_instruction_hook(this, regs.pc);
		}

		opcode = m_direct->read_dword(regs.pc<<2)>>8;
		regs.pc++;
		switch(opcode >> 22)
		{
			case 0: exec_op(opcode); break;
			case 1: exec_rt(opcode); break;
			case 2: exec_jp(opcode); break;
			case 3: exec_ld(opcode); break;
		}

		INT32 result = (INT32)regs.k * regs.l;  //sign + 30-bit result
		regs.m = result >> 15;  //store sign + top 15-bits
		regs.n = result <<  1;  //store low 15-bits + zero

		m_icount--;

	} while (m_icount > 0);
}

void necdsp_device::exec_op(UINT32 opcode) {
	UINT8 pselect = (opcode >> 20)&0x3;  //P select
	UINT8 alu     = (opcode >> 16)&0xf;  //ALU operation mode
	UINT8 asl     = (opcode >> 15)&0x1;  //accumulator select
	UINT8 dpl     = (opcode >> 13)&0x3;  //DP low modify
	UINT8 dphm    = (opcode >>  9)&0xf;  //DP high XOR modify
	UINT8 rpdcr   = (opcode >>  8)&0x1;  //RP decrement
	UINT8 src     = (opcode >>  4)&0xf;  //move source
	UINT8 dst     = (opcode >>  0)&0xf;  //move destination

	switch(src) {
	case  0: regs.idb = regs.trb; break;
	case  1: regs.idb = regs.a; break;
	case  2: regs.idb = regs.b; break;
	case  3: regs.idb = regs.tr; break;
	case  4: regs.idb = regs.dp; break;
	case  5: regs.idb = regs.rp; break;
	case  6: regs.idb = m_data->read_word(regs.rp<<1); break;
	case  7: regs.idb = 0x8000 - regs.flaga.s1; break;  //SGN
	case  8: regs.idb = regs.dr; regs.sr.rqm = 1; break;
	case  9: regs.idb = regs.dr; break;
	case 10: regs.idb = regs.sr; break;
	case 11: regs.idb = regs.si; break;  //MSB
	case 12: regs.idb = regs.si; break;  //LSB
	case 13: regs.idb = regs.k; break;
	case 14: regs.idb = regs.l; break;
	case 15: regs.idb = dataRAM[regs.dp]; break;
	}

	if(alu) {
	UINT16 p=0, q=0, r=0;
	Flag flag;
	bool c=0;

	flag.c = 0;
	flag.s1 = 0;
	flag.ov0 = 0;
	flag.ov1 = 0;
	flag.ov0p = 0;
	flag.ov0pp = 0;

	switch(pselect) {
		case 0: p = dataRAM[regs.dp]; break;
		case 1: p = regs.idb; break;
		case 2: p = regs.m; break;
		case 3: p = regs.n; break;
	}

	switch(asl) {
		case 0: q = regs.a; flag = regs.flaga; c = regs.flagb.c; break;
		case 1: q = regs.b; flag = regs.flagb; c = regs.flaga.c; break;
	}

	switch(alu) {
		case  1: r = q | p; break;                    //OR
		case  2: r = q & p; break;                    //AND
		case  3: r = q ^ p; break;                    //XOR
		case  4: r = q - p; break;                    //SUB
		case  5: r = q + p; break;                    //ADD
		case  6: r = q - p - c; break;                //SBB
		case  7: r = q + p + c; break;                //ADC
		case  8: r = q - 1; p = 1; break;             //DEC
		case  9: r = q + 1; p = 1; break;             //INC
		case 10: r = ~q; break;                       //CMP
		case 11: r = (q >> 1) | (q & 0x8000); break;  //SHR1 (ASR)
		case 12: r = (q << 1) | (c ? 1 : 0); break;             //SHL1 (ROL)
		case 13: r = (q << 2) | 3; break;             //SHL2
		case 14: r = (q << 4) | 15; break;            //SHL4
		case 15: r = (q << 8) | (q >> 8); break;      //XCHG
	}

	flag.s0 = (r & 0x8000);
	flag.z = (r == 0);
	flag.ov0pp = flag.ov0p;
	flag.ov0p = flag.ov0;

	switch(alu) {
		case  1: case  2: case  3: case 10: case 13: case 14: case 15: {
		flag.c = 0;
		flag.ov0 = flag.ov0p = flag.ov0pp = 0; // ASSUMPTION: previous ov0 values are nulled here to make ov1 zero
		break;
		}
		case  4: case  5: case  6: case  7: case  8: case  9: {
		if(alu & 1) {
			//addition
			flag.ov0 = (q ^ r) & ~(q ^ p) & 0x8000;
			flag.c = (r < q);
		} else {
			//subtraction
			flag.ov0 = (q ^ r) &  (q ^ p) & 0x8000;
			flag.c = (r > q);
		}
		break;
		}
		case 11: {
		flag.c = q & 1;
		flag.ov0 = flag.ov0p = flag.ov0pp = 0; // ASSUMPTION: previous ov0 values are nulled here to make ov1 zero
		break;
		}
		case 12: {
		flag.c = q >> 15;
		flag.ov0 = flag.ov0p = flag.ov0pp = 0; // ASSUMPTION: previous ov0 values are nulled here to make ov1 zero
		break;
		}
	}
	// flag.ov1 is only set if the number of overflows of the past 3 opcodes (of type 4,5,6,7,8,9) is odd
	flag.ov1 = (flag.ov0 + flag.ov0p + flag.ov0pp) & 1;
	// flag.s1 is based on ov1: s1 = ov1 ^ s0;
	flag.s1 = flag.ov1 ^ flag.s0;

	switch(asl) {
		case 0: regs.a = r; regs.flaga = flag; break;
		case 1: regs.b = r; regs.flagb = flag; break;
	}
	}

	exec_ld((regs.idb << 6) + dst);

	switch(dpl) {
	case 1: regs.dp = (regs.dp & 0xf0) + ((regs.dp + 1) & 0x0f); break;  //DPINC
	case 2: regs.dp = (regs.dp & 0xf0) + ((regs.dp - 1) & 0x0f); break;  //DPDEC
	case 3: regs.dp = (regs.dp & 0xf0); break;  //DPCLR
	}

	regs.dp ^= dphm << 4;

	if(rpdcr) regs.rp--;
}

void necdsp_device::exec_rt(UINT32 opcode) {
	exec_op(opcode);
	regs.pc = regs.stack[--regs.sp];
	regs.sp &= 0xf;
}

void necdsp_device::exec_jp(UINT32 opcode) {
	UINT16 brch = (opcode >> 13) & 0x1ff;  //branch
	UINT16 na  =  (opcode >>  2) & 0x7ff;  //next address
	UINT16 bank = (opcode >>  0) & 0x3;  //bank address

	UINT16 jps = (regs.pc & 0x2000) | (bank << 11) | (na << 0);
	UINT16 jpl = (bank << 11) | (na << 0);

	switch(brch) {
		case 0x000: regs.pc = regs.so; return;  //JMPSO

		case 0x080: if(regs.flaga.c == 0) regs.pc = jps; return;  //JNCA
		case 0x082: if(regs.flaga.c == 1) regs.pc = jps; return;  //JCA
		case 0x084: if(regs.flagb.c == 0) regs.pc = jps; return;  //JNCB
		case 0x086: if(regs.flagb.c == 1) regs.pc = jps; return;  //JCB

		case 0x088: if(regs.flaga.z == 0) regs.pc = jps; return;  //JNZA
		case 0x08a: if(regs.flaga.z == 1) regs.pc = jps; return;  //JZA
		case 0x08c: if(regs.flagb.z == 0) regs.pc = jps; return;  //JNZB
		case 0x08e: if(regs.flagb.z == 1) regs.pc = jps; return;  //JZB

		case 0x090: if(regs.flaga.ov0 == 0) regs.pc = jps; return;  //JNOVA0
		case 0x092: if(regs.flaga.ov0 == 1) regs.pc = jps; return;  //JOVA0
		case 0x094: if(regs.flagb.ov0 == 0) regs.pc = jps; return;  //JNOVB0
		case 0x096: if(regs.flagb.ov0 == 1) regs.pc = jps; return;  //JOVB0

		case 0x098: if(regs.flaga.ov1 == 0) regs.pc = jps; return;  //JNOVA1
		case 0x09a: if(regs.flaga.ov1 == 1) regs.pc = jps; return;  //JOVA1
		case 0x09c: if(regs.flagb.ov1 == 0) regs.pc = jps; return;  //JNOVB1
		case 0x09e: if(regs.flagb.ov1 == 1) regs.pc = jps; return;  //JOVB1

		case 0x0a0: if(regs.flaga.s0 == 0) regs.pc = jps; return;  //JNSA0
		case 0x0a2: if(regs.flaga.s0 == 1) regs.pc = jps; return;  //JSA0
		case 0x0a4: if(regs.flagb.s0 == 0) regs.pc = jps; return;  //JNSB0
		case 0x0a6: if(regs.flagb.s0 == 1) regs.pc = jps; return;  //JSB0

		case 0x0a8: if(regs.flaga.s1 == 0) regs.pc = jps; return;  //JNSA1
		case 0x0aa: if(regs.flaga.s1 == 1) regs.pc = jps; return;  //JSA1
		case 0x0ac: if(regs.flagb.s1 == 0) regs.pc = jps; return;  //JNSB1
		case 0x0ae: if(regs.flagb.s1 == 1) regs.pc = jps; return;  //JSB1

		case 0x0b0: if((regs.dp & 0x0f) == 0x00) regs.pc = jps; return;  //JDPL0
		case 0x0b1: if((regs.dp & 0x0f) != 0x00) regs.pc = jps; return;  //JDPLN0
		case 0x0b2: if((regs.dp & 0x0f) == 0x0f) regs.pc = jps; return;  //JDPLF
		case 0x0b3: if((regs.dp & 0x0f) != 0x0f) regs.pc = jps; return;  //JDPLNF

		case 0x0bc: if(regs.sr.rqm == 0) regs.pc = jps; return;  //JNRQM
		case 0x0be: if(regs.sr.rqm == 1) regs.pc = jps; return;  //JRQM

		case 0x100: regs.pc = 0x0000 | jpl; return;  //LJMP
		case 0x101: regs.pc = 0x2000 | jpl; return;  //HJMP

		case 0x140: regs.stack[regs.sp++] = regs.pc; regs.pc = 0x0000 | jpl; regs.sp &= 0xf; return;  //LCALL
		case 0x141: regs.stack[regs.sp++] = regs.pc; regs.pc = 0x2000 | jpl; regs.sp &= 0xf; return;  //HCALL
	}
}

void necdsp_device::exec_ld(UINT32 opcode) {
	UINT16 id = opcode >> 6;  //immediate data
	UINT8 dst = (opcode >> 0) & 0xf;  //destination

	regs.idb = id;

	switch(dst) {
	case  0: break;
	case  1: regs.a = id; break;
	case  2: regs.b = id; break;
	case  3: regs.tr = id; break;
	case  4: regs.dp = id; break;
	case  5: regs.rp = id; break;
	case  6: regs.dr = id; regs.sr.rqm = 1; break;
	case  7: regs.sr = (regs.sr & 0x907c) | (id & ~0x907c);
				m_out_p0_cb(regs.sr&0x1);
				m_out_p1_cb((regs.sr&0x2)>>1);
				break;
	case  8: regs.so = id; break;  //LSB
	case  9: regs.so = id; break;  //MSB
	case 10: regs.k = id; break;
	case 11: regs.k = id; regs.l = m_data->read_word(regs.rp<<1); break;
	case 12: regs.l = id; regs.k = dataRAM[regs.dp | 0x40]; break;
	case 13: regs.l = id; break;
	case 14: regs.trb = id; break;
	case 15: dataRAM[regs.dp] = id; break;
	}
}

UINT8 necdsp_device::snesdsp_read(bool mode) {
	if (!mode)
	{
		return regs.sr >> 8;
	}

	if (regs.sr.drc == 0)
	{
		//16-bit
		if(regs.sr.drs == 0)
		{
			regs.sr.drs = 1;
			return regs.dr >> 0;
		}
		else
		{
			regs.sr.rqm = 0;
			regs.sr.drs = 0;
			return regs.dr >> 8;
		}
	}
	else
	{
		//8-bit
		regs.sr.rqm = 0;
		return regs.dr >> 0;
	}
}

void necdsp_device::snesdsp_write(bool mode, UINT8 data) {
	if (!mode) return;

	if (regs.sr.drc == 0)
	{
		//16-bit
		if (regs.sr.drs == 0)
		{
			regs.sr.drs = 1;
			regs.dr = (regs.dr & 0xff00) | (data << 0);
		}
		else
		{
			regs.sr.rqm = 0;
			regs.sr.drs = 0;
			regs.dr = (data << 8) | (regs.dr & 0x00ff);
		}
	}
	else
	{
		//8-bit
		regs.sr.rqm = 0;
		regs.dr = (regs.dr & 0xff00) | (data << 0);
	}
}