summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/tms9900/tms9900.cpp
blob: 7cc7552c502c81bf09e27616e1a6dc7ca3bb8db4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
// license:BSD-3-Clause
// copyright-holders:Michael Zapf
/*
    Texas Instruments TMS9900

                    +--------------------+
               V_BB | 1  o             64| /HOLD
               V_CC | 2                63| /MEMEN
               WAIT | 3                62| READY
              /LOAD | 4                61| /WE
              HOLDA | 5                60| CRUCLK
             /RESET | 6                59| V_CC
                IAQ | 7                58| -
               PHI1 | 8                57| -
               PHI2 | 9                56| D15   -+  LSB
     LSB  +-    A14 |10                55| D14    |
          |     A13 |11                54| D13    |
          |     A12 |12                53| D12    |
          |     A11 |13                52| D11    |
  Address |     A10 |14   +--------+   51| D10    | Data
    bus   |      A9 |15   |        |   50| D9     | bus
   32K *  |      A8 |16   |        |   49| D8     | 16 bit
   16bit  |      A7 |17   |        |   48| D7     |
          |      A6 |18   |        |   47| D6     |
          |      A5 |19   +--------+   46| D5     |
          |      A4 |20                45| D4     |
          |      A3 |21                44| D3     |
          |      A2 |22                43| D2     |
          |      A1 |23                42| D1     |
     MSB  +-     A0 |24                41| D0    -+  MSB
               PHI4 |25                40| V_SS
               V_SS |26                39| -
               V_DD |27                38| -
               PHI3 |28                37| -
               DBIN |29                36| IC0   -+ MSB
             CRUOUT |30                35| IC1    | Interrupt
              CRUIN |31                34| IC2    | level
            /INTREQ |32                33| IC3   -+ LSB
                    +--------------------+

       WAIT   out   Processor in wait state
      /LOAD    in   Non-maskable interrupt
      HOLDA   out   Hold acknowledge
     /RESET    in   Reset
        IAQ   out   Instruction acquisition
     PHI1-4    in   Clock phase inputs
       DBIN   out   Data bus in input mode
     CRUOUT   out   Communication register unit data output
      CRUIN    in   Communication register unit data input
    /INTREQ    in   Interrupt request
     CRUCLK   out   Communication register unit clock output
        /WE   out   Data available for memory write
      READY    in   Memory ready for access
     /MEMEN   out   Address bus contains memory address
      /HOLD    in   External device acquires address and data bus lines

      V_BB     -5V  supply
      V_CC     +5V  supply (pins 2 and 59 connected in parallel)
      V_DD    +12V  supply
      V_SS      0V  Ground reference (pins 26 and 40 connected in parallel)

      A0-A14  out   Address bus (32768 words of 16 bit width)
      D0-A15  i/o   Data bus
     IC0-IC3   in   Interrupt level (0-15)

     Note that Texas Instruments' bit numberings define bit 0 as the
     most significant bit (different to most other systems). Also, the
     system uses big-endian memory organisation: Storing the word 0x1234 at
     address 0x0000 means that the byte 0x12 is stored at 0x0000 and byte 0x34
     is stored at 0x0001.

     The processor also knows byte-oriented operations (like add byte (AB),
     move byte (MOVB)). This makes it necessary for the CPU to read the word
     from the target memory location first, change the respective byte, and
     write it back.

     See the TI-99/4A driver for an application of the TMS9900 processor
     within an 8-bit data bus board layout (using a data bus multiplexer).

     Subcycle handling

     In this implementation we try to emulate the internal operations as
     precisely as possible, following the technical specifications. We need
     not try to be clock-precise with every tick; it suffices to perform
     the proper number of operations within a given time span.

     For each command the CPU executes a microprogram which requires some
     amount of cycles to complete. During this time the external clock continues
     to issue pulses which can be used to control wait state creation. As we
     do not emulate external clocks this implementation offers an extra output
     "clock_out" (which, however, is available for the TMS9995) which pulses
     at a rate of 3 MHz. External devices (e.g. memory controllers) may count
     the pulses and pull down the READY line (with set_ready) as needed.

     Another possibility for creating wait states is to pull down the line
     for some time set by a timer. This is done, for example, by circuits like
     GROMs or speech synthesis processors (TMS52xx).

    TODO:
    - Fine-tune cycles
    - State save
    - HOLD state should be tested; I don't have test cases yet


    Previous implementation with valuable info inside:
    https://github.com/mamedev/mame/blob/677ec78eb50decdc40fad3d30daa3560feaff3cc/src/devices/cpu/tms9900/99xxcore.h

    Michael Zapf, June 2012
*/

#include "emu.h"
#include "tms9900.h"

#define NOPRG -1

/* tms9900 ST register bits. */
enum
{
	ST_LH = 0x8000,     // Logical higher (unsigned comparison)
	ST_AGT = 0x4000,    // Arithmetical greater than (signed comparison)
	ST_EQ = 0x2000,     // Equal
	ST_C = 0x1000,      // Carry
	ST_OV = 0x0800,     // Overflow (when using signed operations)
	ST_OP = 0x0400,     // Odd parity (used with byte operations)
	ST_X = 0x0200,      // XOP
	ST_IM = 0x000f      // Interrupt mask
};

/*
    The following defines can be set to 0 or 1 to disable or enable certain
    output in the log.
*/
// Emulation setup
#define TRACE_SETUP 0

// Emulation details
#define TRACE_EMU 0

// Location and command
#define TRACE_EXEC 0

// Memory operation
#define TRACE_MEM 0

// Address bus operation
#define TRACE_ADDRESSBUS 0

// Cycle count
#define TRACE_CYCLES 0

// Clock ticks
#define TRACE_CLOCK 0

// Wait states
#define TRACE_WAIT 0

// Interrupts
#define TRACE_INT 0

// CRU operation
#define TRACE_CRU 0

// Status register
#define TRACE_STATUS 0

// ALU details
#define TRACE_ALU 0

// Microinstruction level
#define TRACE_MICRO 0

/****************************************************************************
    Common constructor for TMS9900 and TMS9980A
    The CRU mask is related to the bits, not to their addresses which are
    twice their number. Accordingly, the TMS9900 has a CRU bitmask 0x0fff.
****************************************************************************/

tms99xx_device::tms99xx_device(const machine_config &mconfig, device_type type, const char *tag, int databus_width, int prg_addr_bits, int cru_addr_bits, device_t *owner, uint32_t clock)
	: cpu_device(mconfig, type, tag, owner, clock),
		m_program_config("program", ENDIANNESS_BIG, databus_width, prg_addr_bits),
		m_io_config("cru", ENDIANNESS_BIG, 8, cru_addr_bits),
		m_prgspace(nullptr),
		m_cru(nullptr),
		m_prgaddr_mask((1<<prg_addr_bits)-1),
		m_cruaddr_mask((1<<cru_addr_bits)-1),
		m_clock_out_line(*this),
		m_wait_line(*this),
		m_holda_line(*this),
		m_iaq_line(*this),
		m_get_intlevel(*this),
		m_dbin_line(*this),
		m_external_operation(*this),
		m_program_index(NOPRG),
		m_caller_index(NOPRG)
{
}

tms99xx_device::~tms99xx_device()
{
}

/****************************************************************************
    Constructor for TMS9900
****************************************************************************/

tms9900_device::tms9900_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: tms99xx_device(mconfig, TMS9900, tag, 16, 16, 12, owner, clock)
{
}

enum
{
	TMS9900_PC=0, TMS9900_WP, TMS9900_STATUS, TMS9900_IR,
	TMS9900_R0, TMS9900_R1, TMS9900_R2, TMS9900_R3,
	TMS9900_R4, TMS9900_R5, TMS9900_R6, TMS9900_R7,
	TMS9900_R8, TMS9900_R9, TMS9900_R10, TMS9900_R11,
	TMS9900_R12, TMS9900_R13, TMS9900_R14, TMS9900_R15
};

void tms99xx_device::device_start()
{
	// TODO: Restore state save feature
	resolve_lines();
	m_prgspace = &space(AS_PROGRAM);
	m_cru = &space(AS_IO);

	// set our instruction counter
	m_icountptr = &m_icount;

	m_state_any = 0;
	PC = 0;
	m_hold_state = false;

	// add the states for the debugger
	for (int i=0; i < 20; i++)
	{
		// callimport = need to use the state_import method to write to the state variable
		// callexport = need to use the state_export method to read the state variable
		state_add(i, s_statename[i], m_state_any).callimport().callexport().formatstr("%04X");
	}
	state_add(STATE_GENPC, "GENPC", PC).formatstr("%4s").noshow();
	state_add(STATE_GENPCBASE, "CURPC", PC).formatstr("%4s").noshow();
	state_add(STATE_GENFLAGS, "status", m_state_any).callimport().callexport().formatstr("%16s").noshow();

	build_command_lookup_table();

	// Register persistable state variables
	save_item(NAME(m_icount));
	save_item(NAME(WP));
	save_item(NAME(PC));
	save_item(NAME(ST));
	save_item(NAME(IR));
	save_item(NAME(m_address));
	save_item(NAME(m_current_value));
	save_item(NAME(m_command));
	save_item(NAME(m_byteop));
	save_item(NAME(m_pass));
	save_item(NAME(m_check_ready));
	save_item(NAME(m_mem_phase));
	save_item(NAME(m_load_state));
	save_item(NAME(m_irq_state));
	save_item(NAME(m_reset));
	save_item(NAME(m_irq_level));
	// save_item(NAME(m_first_cycle)); // only for log output
	save_item(NAME(m_idle_state));
	save_item(NAME(m_ready_bufd));
	save_item(NAME(m_ready));
	save_item(NAME(m_wait_state));
	save_item(NAME(m_hold_state));
	// save_item(NAME(m_state_any)); // only for debugger output
	save_item(NAME(MPC));
	save_item(NAME(m_program_index));
	save_item(NAME(m_caller_index));
	save_item(NAME(m_caller_MPC));
	save_item(NAME(m_state));
	save_item(NAME(m_hold_acknowledged));
	save_item(NAME(m_source_even));
	save_item(NAME(m_destination_even));
	save_item(NAME(m_source_address));
	save_item(NAME(m_source_value));
	save_item(NAME(m_address_saved));
	save_item(NAME(m_address_copy));
	save_item(NAME(m_register_contents));
	save_item(NAME(m_regnumber));
	save_item(NAME(m_cru_address));
	save_item(NAME(m_count));
	save_item(NAME(m_value_copy));
	save_item(NAME(m_value));
	save_item(NAME(m_get_destination));
}

void tms99xx_device::device_stop()
{
}

/*
    External connections
*/
void tms99xx_device::resolve_lines()
{
	// Resolve our external connections
	m_external_operation.resolve();
	m_get_intlevel.resolve();
	m_iaq_line.resolve();
	m_clock_out_line.resolve();
	m_wait_line.resolve();
	m_holda_line.resolve();
	m_dbin_line.resolve();        // we need this for the set_address operation
}

/*
    TMS9900 hard reset
    The device reset is just the emulator's trigger for the reset procedure
    which is invoked via the main loop.
*/
void tms99xx_device::device_reset()
{
	if (TRACE_EMU) logerror("Device reset by emulator\n");
	m_reset = true;
	m_check_ready = false;
	m_wait_state = false;
	ST = 0;
	m_irq_state = false;
}

const char* tms99xx_device::s_statename[20] =
{
	"PC", "WP", "ST", "IR",
	"R0", "R1", "R2", "R3",
	"R4", "R5", "R6", "R7",
	"R8", "R9", "R10","R11",
	"R12","R13","R14","R15"
};

/*
    Write the contents of a register by external input (debugger)
*/
void tms99xx_device::state_import(const device_state_entry &entry)
{
	int index = entry.index();
	switch (entry.index())
	{
		case STATE_GENFLAGS:
			// no action here; we do not allow import, as the flags are all
			// bits of the STATUS register
			break;
		case TMS9900_PC:
			PC = (uint16_t)(m_state_any & m_prgaddr_mask & 0xfffe);
			break;
		case TMS9900_WP:
			WP = (uint16_t)(m_state_any & m_prgaddr_mask & 0xfffe);
			break;
		case TMS9900_STATUS:
			ST = (uint16_t)m_state_any;
			break;
		case TMS9900_IR:
			IR = (uint16_t)m_state_any;
			break;
		default:
			// Workspace registers
			if (index <= TMS9900_R15)
				write_workspace_register_debug(index-TMS9900_R0, (uint16_t)m_state_any);
			break;
	}
}

/*
    Reads the contents of a register for display in the debugger.
*/
void tms99xx_device::state_export(const device_state_entry &entry)
{
	int index = entry.index();
	switch (entry.index())
	{
		case STATE_GENFLAGS:
			m_state_any = ST;
			break;
		case TMS9900_PC:
			m_state_any = PC;
			break;
		case TMS9900_WP:
			m_state_any = WP;
			break;
		case TMS9900_STATUS:
			m_state_any = ST;
			break;
		case TMS9900_IR:
			m_state_any = IR;
			break;
		default:
			// Workspace registers
			if (index <= TMS9900_R15)
				m_state_any = read_workspace_register_debug(index-TMS9900_R0);
			break;
	}
}

/*
    state_string_export - export state as a string for the debugger
*/
void tms99xx_device::state_string_export(const device_state_entry &entry, std::string &str) const
{
	static const char *statestr = "LAECOPX-----IIII";
	char flags[17];
	for (auto &flag : flags) flag = 0x00;
	uint16_t val = 0x8000;
	if (entry.index()==STATE_GENFLAGS)
	{
		for (int i=0; i < 16; i++)
		{
			flags[i] = ((val & ST)!=0)? statestr[i] : '.';
			val = (val >> 1) & 0x7fff;
		}
	}
	str.assign(flags);
}

/**************************************************************************/

uint16_t tms99xx_device::read_workspace_register_debug(int reg)
{
	int temp = m_icount;
	auto dis = machine().disable_side_effect();
	uint16_t value = m_prgspace->read_word((WP+(reg<<1)) & m_prgaddr_mask & 0xfffe);
	m_icount = temp;
	return value;
}

void tms99xx_device::write_workspace_register_debug(int reg, uint16_t data)
{
	int temp = m_icount;
	auto dis = machine().disable_side_effect();
	m_prgspace->write_word((WP+(reg<<1)) & m_prgaddr_mask & 0xfffe, data);
	m_icount = temp;
}

const address_space_config *tms99xx_device::memory_space_config(address_spacenum spacenum) const
{
	switch (spacenum)
	{
	case AS_PROGRAM:
		return &m_program_config;

	case AS_IO:
		return &m_io_config;

	default:
		return nullptr;
	}
}

/**************************************************************************
    Microprograms for the CPU instructions

    The actions which are specific to the respective instruction are
    invoked by repeated calls of ALU_xxx; each call increases a state
    variable so that on the next call, the next part can be processed.
    This saves us a lot of additional functions.
**************************************************************************/

/*
    Define the indices for the micro-operation table. This is done for the sake
    of a simpler microprogram definition as an uint8_t[].
*/
enum
{
	IAQ = 0,
	MEMORY_READ,
	MEMORY_WRITE,
	REG_READ,
	REG_WRITE,
	CRU_INPUT,
	CRU_OUTPUT,
	DATA_DERIVE,
	RET,
	ABORT,
	END,

	ALU_NOP,
	ALU_CLR,
	ALU_SETADDR,
	ALU_ADDONE,
	ALU_SETADDR_ADDONE,
	ALU_PCADDR_ADVANCE,
	ALU_SOURCE,
	ALU_ADDREG,
	ALU_IMM,
	ALU_REG,
	ALU_F1,
	ALU_COMP,
	ALU_F3,
	ALU_MPY,
	ALU_DIV,
	ALU_XOP,
	ALU_CLR_SWPB,
	ALU_ABS,
	ALU_X,
	ALU_B,
	ALU_BLWP,
	ALU_LDCR,
	ALU_STCR,
	ALU_SBZ_SBO,
	ALU_TB,
	ALU_JMP,
	ALU_SHIFT,
	ALU_AI_ORI,
	ALU_CI,
	ALU_LI,
	ALU_LWPI,
	ALU_LIMI,
	ALU_STWP_STST,
	ALU_EXT,
	ALU_RTWP,
	ALU_INT
};


#define MICROPROGRAM(_MP) \
	static const uint8_t _MP[] =

/*
    This is a kind of subroutine with 6 variants. Might be done in countless
    better ways, but will suffice for now. Each variant has at most 8 steps
    RET will return to the caller.
    The padding simplifies the calculation of the start address: We just
    take the Ts field as an index. In the last two cases we add an offset of 8
    if we have an indexed (resp. a byte) operation.
*/
MICROPROGRAM(data_derivation)
{
	REG_READ, RET, 0, 0, 0, 0, 0, 0,                                                // Rx           (00)
	0, 0, 0, 0, 0, 0, 0, 0,
	REG_READ, ALU_SETADDR, MEMORY_READ, RET, 0, 0, 0, 0,                            // *Rx          (01)
	0, 0, 0, 0, 0, 0, 0, 0,
	ALU_CLR, ALU_PCADDR_ADVANCE, MEMORY_READ, ALU_ADDREG, MEMORY_READ, RET, 0, 0,   // @sym         (10)
	REG_READ, ALU_PCADDR_ADVANCE, MEMORY_READ, ALU_ADDREG, MEMORY_READ, RET, 0, 0,  // @sym(Rx)     (10)
	REG_READ, ALU_SETADDR_ADDONE, ALU_ADDONE, REG_WRITE, MEMORY_READ, RET, 0, 0,    // *Rx+ (word)  (11)
	REG_READ, ALU_SETADDR_ADDONE, REG_WRITE, MEMORY_READ, RET, 0, 0, 0              // *Rx+ (byte)  (11)
};

MICROPROGRAM(f1_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_SOURCE,         // Store the word
	DATA_DERIVE,
	ALU_F1,
	MEMORY_WRITE,
	END
};

MICROPROGRAM(comp_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_SOURCE,
	DATA_DERIVE,
	ALU_COMP,
	ALU_NOP,        // Compare operations do not write back any data
	END
};

MICROPROGRAM(f3_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_F3,
	MEMORY_READ,    // We have to distinguish this from the C/CB microprogram above
	ALU_F3,
	ALU_NOP,        // Compare operations do not write back any data
	END
};

MICROPROGRAM(xor_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_F3,
	MEMORY_READ,
	ALU_F3,
	MEMORY_WRITE,   // XOR again must write back data, cannot reuse f3_mp
	END
};

MICROPROGRAM(mult_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_MPY,        // Save the value; put register number in m_regnumber
	MEMORY_READ,
	ALU_MPY,        // 18 cycles for multiplication
	MEMORY_WRITE,       // Write the high word
	ALU_MPY,        // Get low word, increase m_address
	MEMORY_WRITE,
	END
};

MICROPROGRAM(div_mp)
{
	ALU_NOP,
	DATA_DERIVE,    // Get divisor
	ALU_DIV,        // 0 Store divisor and get register number
	MEMORY_READ,    // Read register
	ALU_DIV,        // 1 Check overflow, increase address (or abort here)
	ABORT,
	MEMORY_READ,    // Read subsequent word (if reg=15 this is behind the workspace)
	ALU_DIV,        // 2 Calculate quotient (takes variable amount of cycles; at least 32 machine cycles), set register number
	MEMORY_WRITE,   // Write quotient into register
	ALU_DIV,        // 3 Get remainder
	MEMORY_WRITE,   // Write remainder
	END
};

MICROPROGRAM(xop_mp)
{
	ALU_NOP,
	DATA_DERIVE,    // Get argument
	ALU_XOP,        // 0 Save the address of the source operand, set address = 0x0040 + xopNr*4, 6 cycles
	MEMORY_READ,    // Read the new WP
	ALU_XOP,        // 1 Save old WP, set new WP, get the source operand address
	MEMORY_WRITE,   // Write the address of the source operand into the new R11
	ALU_XOP,        // 2
	MEMORY_WRITE,   // Write the ST into the new R15
	ALU_XOP,        // 3
	MEMORY_WRITE,   // Write the PC into the new R14
	ALU_XOP,        // 4
	MEMORY_WRITE,   // Write the WP into the new R13
	ALU_XOP,        // 5 Set the X bit in the ST
	MEMORY_READ,    // Read the new PC
	ALU_XOP,        // 6 Set the new PC
	END
};

MICROPROGRAM(clr_swpb_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_CLR_SWPB,
	MEMORY_WRITE,
	END
};

MICROPROGRAM(abs_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_ABS,        // two cycles
	MEMORY_WRITE,   // skipped when ABS is not performed
	ALU_NOP,
	END
};

MICROPROGRAM(x_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_X,
	END
};

MICROPROGRAM(b_mp)      // Branch
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_B,
	END
};

MICROPROGRAM(bl_mp)     // Branch and Link
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_B,
	ALU_NOP,
	MEMORY_WRITE,
	END
};

MICROPROGRAM(blwp_mp)       // Branch and Load WP
{
	ALU_NOP,
	DATA_DERIVE,            // Get argument
	ALU_BLWP,               // 0 Save old WP, set new WP, save position
	ALU_NOP,
	MEMORY_WRITE,           // write ST to R15
	ALU_BLWP,               // 1
	MEMORY_WRITE,           // write PC to R14
	ALU_BLWP,               // 2
	MEMORY_WRITE,           // write WP to R13
	ALU_BLWP,               // 3 Get saved position
	MEMORY_READ,            // Read new PC
	ALU_BLWP,               // 4 Set new PC
	END
};

MICROPROGRAM(ldcr_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_SOURCE,
	ALU_NOP,
	ALU_LDCR,
	ALU_NOP,
	MEMORY_READ,
	ALU_LDCR,
	CRU_OUTPUT,
	ALU_NOP,
	END
};

MICROPROGRAM(stcr_mp)
{
	ALU_NOP,
	DATA_DERIVE,
	ALU_SOURCE,         // Store address and value
	ALU_STCR,           // 0 Set register_number = 12; 0 cycles (already done before)
	MEMORY_READ,
	ALU_STCR,           // 1 Prepare CRU access
	ALU_NOP,
	CRU_INPUT,
	ALU_STCR,           // 2 Create result; Cycles = 5 + (8-#C-1) or + (16-#C)
	ALU_NOP,
	ALU_NOP,
	ALU_NOP,
	MEMORY_WRITE,
	END
};

MICROPROGRAM(sbz_sbo_mp)
{
	ALU_SBZ_SBO,
	ALU_NOP,
	MEMORY_READ,
	ALU_SBZ_SBO,
	CRU_OUTPUT,
	END
};

MICROPROGRAM(tb_mp)
{
	ALU_TB,
	MEMORY_READ,
	ALU_TB,
	CRU_INPUT,
	ALU_TB,
	END
};

MICROPROGRAM(jmp_mp)
{
	ALU_NOP,
	ALU_JMP,
	ALU_JMP,
	ALU_NOP,
	END
};

MICROPROGRAM(shift_mp)
{
	ALU_SHIFT,
	MEMORY_READ,
	ALU_SHIFT,              // 2 cycles if count != 0, else 4
	MEMORY_READ,            // skipped if count != 0
	ALU_SHIFT,              // skipped if count != 0  (4 cycles)
	ALU_SHIFT,
	MEMORY_WRITE,
	ALU_NOP,
	END
};

MICROPROGRAM(ai_ori_mp)
{
	ALU_REG,
	MEMORY_READ,
	ALU_IMM,
	MEMORY_READ,
	ALU_AI_ORI,
	MEMORY_WRITE,
	END
};

MICROPROGRAM(ci_mp)
{
	ALU_REG,
	MEMORY_READ,
	ALU_IMM,
	MEMORY_READ,
	ALU_CI,
	ALU_NOP,
	END
};

MICROPROGRAM(li_mp)
{
	ALU_IMM,
	MEMORY_READ,
	ALU_LI,             // sets status bits
	ALU_REG,            // set register number
	MEMORY_WRITE,
	END
};

MICROPROGRAM(lwpi_mp)
{
	ALU_IMM,
	MEMORY_READ,
	ALU_NOP,
	ALU_LWPI,               // sets WP
	END
};

MICROPROGRAM(limi_mp)
{
	ALU_IMM,
	MEMORY_READ,
	ALU_NOP,
	ALU_LIMI,               // sets interrupt mask in ST
	ALU_NOP,
	ALU_NOP,
	END
};

MICROPROGRAM(stwp_stst_mp)
{
	ALU_STWP_STST,
	ALU_REG,
	MEMORY_WRITE,
	END
};

MICROPROGRAM(external_mp)
{
	ALU_NOP,
	ALU_NOP,
	ALU_EXT,
	ALU_NOP,
	ALU_NOP,
	END
};

MICROPROGRAM(rtwp_mp)
{
	ALU_NOP,
	ALU_RTWP,
	MEMORY_READ,
	ALU_RTWP,               // no cycles
	MEMORY_READ,
	ALU_RTWP,               // no cycles
	MEMORY_READ,
	ALU_RTWP,
	END
};

MICROPROGRAM(int_mp)
{
	ALU_NOP,
	ALU_INT,                // 0 Set address = 0
	MEMORY_READ,
	ALU_INT,                // 1 Save old WP, set new WP, save position
	MEMORY_WRITE,           // write ST to R15
	ALU_INT,                // 2
	MEMORY_WRITE,           // write PC to R14
	ALU_INT,                // 3
	MEMORY_WRITE,           // write WP to R13
	ALU_INT,                // 4 Get saved position
	MEMORY_READ,            // Read new PC
	ALU_INT,                // 5 Set new PC
	END
};

const tms99xx_device::ophandler tms99xx_device::s_microoperation[] =
{
	&tms99xx_device::acquire_instruction,
	&tms99xx_device::mem_read,
	&tms99xx_device::mem_write,
	&tms99xx_device::register_read,
	&tms99xx_device::register_write,
	&tms99xx_device::cru_input_operation,
	&tms99xx_device::cru_output_operation,
	&tms99xx_device::data_derivation_subprogram,
	&tms99xx_device::return_from_subprogram,
	&tms99xx_device::abort_operation,
	&tms99xx_device::command_completed,

	&tms99xx_device::alu_nop,
	&tms99xx_device::alu_clear,
	&tms99xx_device::alu_setaddr,
	&tms99xx_device::alu_addone,
	&tms99xx_device::alu_setaddr_addone,
	&tms99xx_device::alu_pcaddr_advance,
	&tms99xx_device::alu_source,
	&tms99xx_device::alu_add_register,
	&tms99xx_device::alu_imm,
	&tms99xx_device::alu_reg,

	&tms99xx_device::alu_f1,
	&tms99xx_device::alu_comp,
	&tms99xx_device::alu_f3,
	&tms99xx_device::alu_multiply,
	&tms99xx_device::alu_divide,
	&tms99xx_device::alu_xop,
	&tms99xx_device::alu_clr_swpb,
	&tms99xx_device::alu_abs,
	&tms99xx_device::alu_x,
	&tms99xx_device::alu_b,
	&tms99xx_device::alu_blwp,
	&tms99xx_device::alu_ldcr,
	&tms99xx_device::alu_stcr,
	&tms99xx_device::alu_sbz_sbo,
	&tms99xx_device::alu_tb,
	&tms99xx_device::alu_jmp,
	&tms99xx_device::alu_shift,
	&tms99xx_device::alu_ai_ori,
	&tms99xx_device::alu_ci,
	&tms99xx_device::alu_li,
	&tms99xx_device::alu_lwpi,
	&tms99xx_device::alu_limi,
	&tms99xx_device::alu_stwp_stst,
	&tms99xx_device::alu_external,
	&tms99xx_device::alu_rtwp,
	&tms99xx_device::alu_int
};

/*****************************************************************************
    CPU instructions
*****************************************************************************/

/*
    Available instructions
*/
enum
{
	ILL=0, A, AB, ABS, AI, ANDI, B, BL, BLWP, C,
	CB, CI, CKOF, CKON, CLR, COC, CZC, DEC, DECT, DIV,
	IDLE, INC, INCT, INV, JEQ, JGT, JH, JHE, JL, JLE,
	JLT, JMP, JNC, JNE, JNO, JOC, JOP, LDCR, LI, LIMI,
	LREX, LWPI, MOV, MOVB, MPY, NEG, ORI, RSET, RTWP, S,
	SB, SBO, SBZ, SETO, SLA, SOC, SOCB, SRA, SRC, SRL,
	STCR, STST, STWP, SWPB, SZC, SZCB, TB, X, XOP, XOR,
	INTR
};

/*
    Formats:

          0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
    ----+------------------------------------------------+
    1   | Opcode | B | Td |  RegNr     | Ts |    RegNr   |
        +--------+---+----+------------+----+------------+
    2   |  Opcode               |      Displacement      |
        +-----------------------+------------------------+
    3   |  Opcode         |  RegNr     | Ts |    RegNr   |
        +-----------------+------------+----+------------+
    4   |  Opcode         |  Count     | Ts |    RegNr   |
        +-----------------+------------+----+------------+
    5   |  Opcode               |  Count    |    RegNr   |
        +-----------------------+-----------+------------+
    6   |  Opcode                      | Ts |    RegNr   |
        +------------------------------+----+------------+
    7   |  Opcode                         |0| 0| 0| 0| 0 |
        +---------------------------------+-+--+--+--+---+
    8   |  Opcode                         |0|    RegNr   |
        +---------------------------------+-+------------+
    9   |  Opcode         |   Reg/Nr   | Ts |    RegNr   |
        +-----------------+------------+----+------------+
*/

/*
    Defines the number of bits from the left which are significant for the
    command in the respective format.
*/
static const int format_mask_len[] =
{
	0, 4, 8, 6, 6, 8, 10, 16, 12, 6
};

const tms99xx_device::tms_instruction tms99xx_device::s_command[] =
{
	// Opcode, ID, format, microprg
	{ 0x0200, LI, 8, li_mp },
	{ 0x0220, AI, 8, ai_ori_mp },
	{ 0x0240, ANDI, 8, ai_ori_mp },
	{ 0x0260, ORI, 8, ai_ori_mp },
	{ 0x0280, CI, 8, ci_mp },
	{ 0x02a0, STWP, 8, stwp_stst_mp },
	{ 0x02c0, STST, 8, stwp_stst_mp },
	{ 0x02e0, LWPI, 8, lwpi_mp },
	{ 0x0300, LIMI, 8, limi_mp },
	{ 0x0340, IDLE, 7, external_mp },
	{ 0x0360, RSET, 7, external_mp },
	{ 0x0380, RTWP, 7, rtwp_mp },
	{ 0x03a0, CKON, 7, external_mp },
	{ 0x03c0, CKOF, 7, external_mp },
	{ 0x03e0, LREX, 7, external_mp },
	{ 0x0400, BLWP, 6, blwp_mp },
	{ 0x0440, B, 6, b_mp },
	{ 0x0480, X, 6, x_mp },
	{ 0x04c0, CLR, 6, clr_swpb_mp },
	{ 0x0500, NEG, 6, clr_swpb_mp },
	{ 0x0540, INV, 6, clr_swpb_mp },
	{ 0x0580, INC, 6, clr_swpb_mp },
	{ 0x05c0, INCT, 6, clr_swpb_mp },
	{ 0x0600, DEC, 6, clr_swpb_mp },
	{ 0x0640, DECT, 6, clr_swpb_mp },
	{ 0x0680, BL, 6, bl_mp },
	{ 0x06c0, SWPB, 6, clr_swpb_mp },
	{ 0x0700, SETO, 6, clr_swpb_mp },
	{ 0x0740, ABS, 6, abs_mp },
	{ 0x0800, SRA, 5, shift_mp },
	{ 0x0900, SRL, 5, shift_mp },
	{ 0x0a00, SLA, 5, shift_mp },
	{ 0x0b00, SRC, 5, shift_mp },
	{ 0x1000, JMP, 2, jmp_mp },
	{ 0x1100, JLT, 2, jmp_mp },
	{ 0x1200, JLE, 2, jmp_mp },
	{ 0x1300, JEQ, 2, jmp_mp },
	{ 0x1400, JHE, 2, jmp_mp },
	{ 0x1500, JGT, 2, jmp_mp },
	{ 0x1600, JNE, 2, jmp_mp },
	{ 0x1700, JNC, 2, jmp_mp },
	{ 0x1800, JOC, 2, jmp_mp },
	{ 0x1900, JNO, 2, jmp_mp },
	{ 0x1a00, JL, 2, jmp_mp },
	{ 0x1b00, JH, 2, jmp_mp },
	{ 0x1c00, JOP, 2, jmp_mp },
	{ 0x1d00, SBO, 2, sbz_sbo_mp },
	{ 0x1e00, SBZ, 2, sbz_sbo_mp },
	{ 0x1f00, TB, 2, tb_mp },
	{ 0x2000, COC, 3, f3_mp },
	{ 0x2400, CZC, 3, f3_mp },
	{ 0x2800, XOR, 3, xor_mp },
	{ 0x2c00, XOP, 3, xop_mp },
	{ 0x3000, LDCR, 4, ldcr_mp },
	{ 0x3400, STCR, 4, stcr_mp },
	{ 0x3800, MPY, 9, mult_mp },
	{ 0x3c00, DIV, 9, div_mp },
	{ 0x4000, SZC, 1, f1_mp },
	{ 0x5000, SZCB, 1, f1_mp },
	{ 0x6000, S, 1, f1_mp },
	{ 0x7000, SB, 1, f1_mp },
	{ 0x8000, C, 1, comp_mp },
	{ 0x9000, CB, 1, comp_mp },
	{ 0xa000, A, 1, f1_mp },
	{ 0xb000, AB, 1, f1_mp },
	{ 0xc000, MOV, 1, f1_mp },
	{ 0xd000, MOVB, 1, f1_mp },
	{ 0xe000, SOC, 1, f1_mp },
	{ 0xf000, SOCB, 1, f1_mp },
	{ 0x0000, INTR, 1, int_mp}      // special entry for the interrupt microprogram, not in lookup table
};

/*
    Create a B-tree for looking up the commands. Each node can carry up to
    16 entries, indexed by 4 consecutive bits in the opcode.

    Works as follows:

    Opcode = 0201 (Load immediate value into register 1)
    Opcode = 0284 (Compare immediate value with register 4)

    Table: [ Table0, table1, table2, ... tableF ]
               |
       +-------+
       v
    table0: [ table00, table01, table02, ... table0f ]
                                  |
        +-------------------------+
        v
    table02: [ table020, table021, ... table028, ... table02f ]
                   |         |             |
                   v         v             v
                 Entry      NULL          Entry
                for LI                   for CI

    For each level in the tree, four more bits are compared. The search
    terminates when the number of compared bits is equal or higher than
    the number of significant bits of the format of this opcode. The entry
    points to the respective line in s_command.

    This way we can decode all format 1 commands by a single pass (including the
    most frequent command MOV), and almost all commands by less than four passes.

    The disadvantage is that we have to build these tables from the opcode
    list at runtime, and many positions are empty. But we do not need more
    than 20 tables for the TMS command set.
*/
void tms99xx_device::build_command_lookup_table()
{
	int i = 0;
	int cmdindex;
	int bitcount;
	const tms_instruction *inst;
	uint16_t opcode;

	m_command_lookup_table = std::make_unique<lookup_entry[]>(16);

	lookup_entry* table = m_command_lookup_table.get();
	for (int j=0; j < 16; j++)
	{
		table[j].next_digit = nullptr;
		table[j].index = NOPRG;
	}

	do
	{
		inst = &s_command[i];
		table = m_command_lookup_table.get();
		if (TRACE_SETUP) logerror("=== opcode=%04x, len=%d\n", inst->opcode, format_mask_len[inst->format]);
		bitcount = 4;
		opcode = inst->opcode;
		cmdindex = (opcode>>12) & 0x000f;

		while (bitcount < format_mask_len[inst->format])
		{
			// Descend
			if (table[cmdindex].next_digit == nullptr)
			{
				if (TRACE_SETUP) logerror("create new table at bitcount=%d for index=%d\n", bitcount, cmdindex);
				table[cmdindex].next_digit = std::make_unique<lookup_entry[]>(16);
				for (int j=0; j < 16; j++)
				{
					table[cmdindex].next_digit[j].next_digit = nullptr;
					table[cmdindex].next_digit[j].index = NOPRG;
				}
			}
			else
			{
				if (TRACE_SETUP) logerror("found a table at bitcount=%d\n", bitcount);
			}

			table = table[cmdindex].next_digit.get();

			bitcount = bitcount+4;
			opcode <<= 4;
			cmdindex = (opcode>>12) & 0x000f;
			if (TRACE_SETUP) logerror("next index=%x\n", cmdindex);
		}

		if (TRACE_SETUP) logerror("bitcount=%d\n", bitcount);
		// We are at the target level
		// Need to fill in the same entry for all values in the bitcount
		// (if a command needs 10 bits we have to copy it four
		// times for all combinations with 12 bits)
		for (int j=0; j < (1<<(bitcount-format_mask_len[inst->format])); j++)
		{
			if (TRACE_SETUP) logerror("opcode=%04x at position %d\n", inst->opcode, cmdindex+j);
			table[cmdindex+j].index = i;
		}
		i++;
	} while (inst->opcode != 0xf000);

	m_interrupt_mp_index = i;
}

/*
    Main execution loop

    For each invocation of execute_run, a number of loop iterations has been
    calculated before (m_icount). Each loop iteration is one clock cycle.
    The loop must be executed for the number of times that corresponds to the
    time until the next timer event.

    In this implementation, each loop iteration also causes the clock line to
    pulse once. External devices may use this pulse to decrement counters
    which control the READY line.

    Machine cycles to clock input:

      +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
      | | | | | | | | | | | | | | | | | |  clock (1 of 4 phases)
    +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +
    |-------|-------|-------|-------|----  cycles (2 clock pulses each)

    Wait states only have effect for memory operations. They are processed as
    follows:

    1) The CPU sets the address bus for reading. If READY is low, the CPU
    waits for the next clock tick repeatedly until READY is high again.
    When this is the case, the data bus is sampled on the next clock tick
    and the read operation is complete.

    As we do not have a split-phase read operation in this emulation
    we actually read the data bus instantly but wait for the READY line to
    be high again.

    2) The CPU sets the address bus for writing. In the same moment, the data
    bus is loaded with the word to be written. On the next clock tick,
    the CPU checks the READY line and waits until it is high. When READY
    is high at a clock tick, the operation is complete on the next clock tick.
*/
void tms99xx_device::execute_run()
{
	if (m_reset) service_interrupt();

	if (TRACE_EMU) logerror("calling execute_run for %d cycles\n", m_icount);
	do
	{
		// Only when last instruction has completed
		if (m_program_index == NOPRG)
		{
			if (m_load_state)
			{
				logerror("LOAD interrupt\n");
				m_irq_level = LOAD_INT;
				m_irq_state = false;
				service_interrupt();
			}
			else
			{
				// Interrupts are serviced when
				// - an interrupt condition is signaled over INTREQ and
				// - the level indicated by IC0-IC3 is lower than the interrupt mask value and
				// - the previous instruction is not an XOP or BLWP
				if (m_irq_state && (m_irq_level <= (ST & 0x000f)) && (m_command != XOP && m_command != BLWP))
					service_interrupt();
			}
		}

		if (m_program_index == NOPRG && m_idle_state)
		{
			if (TRACE_WAIT) logerror("idle state\n");
			pulse_clock(1);
			if (!m_external_operation.isnull())
			{
				m_external_operation(IDLE_OP, 0, 0xff);
				m_external_operation(IDLE_OP, 1, 0xff);
			}
		}
		else
		{
			const uint8_t* program = nullptr;
			// When we are in the data derivation sequence, the caller_index is set
			if (m_program_index != NOPRG)
				program = (m_caller_index == NOPRG)? (uint8_t*)s_command[m_program_index].prog : data_derivation;

			// Handle HOLD
			// A HOLD request is signalled through the input line HOLD.
			// The hold state will be entered with the next non-memory access cycle.
			if (m_hold_state &&
				(m_program_index == NOPRG ||
				(program[MPC] != IAQ &&
				program[MPC] != MEMORY_READ && program[MPC] != MEMORY_WRITE &&
				program[MPC] != REG_READ && program[MPC] != REG_WRITE)))
			{
				if (TRACE_WAIT) logerror("hold\n");
				if (!m_hold_acknowledged) acknowledge_hold();
				pulse_clock(1);
			}
			else
			{
				// Normal operation
				if (m_check_ready && m_ready == false)
				{
					// We are in a wait state
					set_wait_state(true);
					if (TRACE_WAIT) logerror("wait\n");
					// The clock output should be used to change the state of an outer
					// device which operates the READY line
					pulse_clock(1);
				}
				else
				{
					set_wait_state(false);
					m_check_ready = false;
					// If we don't have a microprogram, acquire the next instruction
					uint8_t op = (m_program_index==NOPRG)? IAQ : program[MPC];

					if (TRACE_MICRO) logerror("MPC = %d, op = %d\n", MPC, op);
					// Call the operation of the microprogram
					(this->*s_microoperation[op])();
					// If we have multiple passes (as in the TMS9980)
					m_pass--;
					if (m_pass<=0)
					{
						m_pass = 1;
						MPC++;
						m_mem_phase = 1;
						if (!m_iaq_line.isnull()) m_iaq_line(CLEAR_LINE);
					}
				}
			}
		}
	} while (m_icount>0 && !m_reset);
	if (TRACE_EMU) logerror("cycles expired; will return soon.\n");
}

/**************************************************************************/

/*
    Interrupt input
*/
void tms99xx_device::execute_set_input(int irqline, int state)
{
	if (irqline==INT_9900_RESET && state==ASSERT_LINE)
	{
		m_reset = true;
	}
	else
	{
		if (irqline == INT_9900_LOAD)
		{
			m_load_state = (state==ASSERT_LINE);
			m_irq_level = -1;
			m_reset = false;
		}
		else
		{
			m_irq_state = (state==ASSERT_LINE);
			if (state==ASSERT_LINE)
			{
				m_irq_level = get_intlevel(state);
				if (TRACE_INT) logerror("/INT asserted, level=%d, ST=%04x\n", m_irq_level, ST);
			}
			else
			{
				if (TRACE_INT) logerror("/INT cleared\n");
			}
		}
	}
}

/*
    This can be overloaded by variants of TMS99xx.
*/
int tms99xx_device::get_intlevel(int state)
{
	if (!m_get_intlevel.isnull()) return m_get_intlevel(0);
	return 0;
}

void tms99xx_device::service_interrupt()
{
	m_program_index = m_interrupt_mp_index;

	m_command = INTR;
	m_idle_state = false;
	if (!m_external_operation.isnull()) m_external_operation(IDLE_OP, 0, 0xff);

	m_state = 0;

	if (!m_dbin_line.isnull()) m_dbin_line(ASSERT_LINE);

	// If reset, we just start with execution, otherwise we put the MPC
	// on the first microinstruction, which also means that the main loop shall
	// leave it where it is. So we pretend we have another pass to do.
	m_pass = m_reset? 1 : 2;

	if (m_reset)
	{
		m_irq_level = RESET_INT;

		m_ready_bufd = true;
		m_ready = true;
		m_load_state = false;
		m_hold_state = false;
		m_hold_acknowledged = false;
		m_wait_state = false;
		IR = 0;
		ST = 0;
		m_mem_phase = 1;

		m_reset = false;
	}
	if (TRACE_INT)
	{
		switch (m_irq_level)
		{
		case RESET_INT: logerror("**** triggered a RESET interrupt\n"); break;
		case LOAD_INT: logerror("**** triggered a LOAD (NMI) interrupt\n"); break;
		default: logerror("** triggered an interrupt on level %d\n", m_irq_level); break;
		}
	}

	MPC = 0;
	m_first_cycle = m_icount;
}

/*
    Issue a pulse on the clock line.
*/
void tms99xx_device::pulse_clock(int count)
{
	for (int i=0; i < count; i++)
	{
		if (!m_clock_out_line.isnull()) m_clock_out_line(ASSERT_LINE);
		m_ready = m_ready_bufd;              // get the latched READY state
		if (!m_clock_out_line.isnull()) m_clock_out_line(CLEAR_LINE);
		m_icount--;                         // This is the only location where we count down the cycles.
		if (TRACE_CLOCK)
		{
			if (m_check_ready) logerror("pulse_clock, READY=%d\n", m_ready? 1:0);
			else logerror("pulse_clock\n");
		}
	}
}

/*
    Enter the hold state.
*/
void tms99xx_device::set_hold(int state)
{
	m_hold_state = (state==ASSERT_LINE);
	if (!m_hold_state)
	{
		m_hold_acknowledged = false;
		if (!m_holda_line.isnull()) m_holda_line(CLEAR_LINE);
	}
}

/*
    Acknowledge the HOLD request.
*/
inline void tms99xx_device::acknowledge_hold()
{
	m_hold_acknowledged = true;
	if (!m_holda_line.isnull()) m_holda_line(ASSERT_LINE);
}

/*
    Signal READY to the CPU. When cleared, the CPU enters wait states. This
    becomes effective on a clock pulse.
*/
void tms99xx_device::set_ready(int state)
{
	m_ready_bufd = (state==ASSERT_LINE);
}

void tms99xx_device::abort_operation()
{
	command_completed();
}

/*
    Enter or leave the wait state. We only operate the WAIT line when there is a change.
*/
inline void tms99xx_device::set_wait_state(bool state)
{
	if (m_wait_state != state)
		if (!m_wait_line.isnull()) m_wait_line(state? ASSERT_LINE : CLEAR_LINE);
	m_wait_state = state;
}

/*
    Acquire the next word as an instruction. The program counter advances by
    one word.
*/
void tms99xx_device::decode(uint16_t inst)
{
	int ix = 0;
	lookup_entry* table = m_command_lookup_table.get();
	uint16_t opcode = inst;
	bool complete = false;

	m_state = 0;
	IR = inst;
	m_get_destination = false;
	m_byteop = false;

	while (!complete)
	{
		ix = (opcode >> 12) & 0x000f;
		if (TRACE_MICRO) logerror("Check next hex digit of instruction %x\n", ix);
		if (table[ix].next_digit != nullptr)
		{
			table = table[ix].next_digit.get();
			opcode = opcode << 4;
		}
		else complete = true;
	}
	m_program_index = table[ix].index;
	if (m_program_index == NOPRG)
	{
		// not found
		logerror("Address %04x: Illegal opcode %04x\n", PC, inst);
		IR = 0;
		// This will cause another instruction acquisition in the next machine cycle
		// with an asserted IAQ line (can be used to indicate this illegal opcode detection).
	}
	else
	{
		const tms_instruction decoded = s_command[m_program_index];
		MPC = -1;
		m_command = decoded.id;
		if (TRACE_MICRO) logerror("Command decoded as id %d, %s, base opcode %04x\n", m_command, opname[m_command], decoded.opcode);
		// Byte operations are either format 1 with the byte flag set
		// or format 4 (CRU multi bit operations) with 1-8 bits to transfer.
		m_byteop = ((decoded.format==1 && ((IR & 0x1000)!=0))
				|| (decoded.format==4 && (((IR >> 6)&0x000f) > 0) && (((IR >> 6)&0x000f) > 9)));
	}
	m_pass = 1;
}

inline bool tms99xx_device::byte_operation()
{
	return (IR & 0x1000)!=0;
}

void tms99xx_device::acquire_instruction()
{
	if (m_mem_phase == 1)
	{
		if (!m_iaq_line.isnull()) m_iaq_line(ASSERT_LINE);
		m_address = PC;
		m_first_cycle = m_icount;
	}

	mem_read();

	if (m_mem_phase == 1)
	{
		decode(m_current_value);
		if (TRACE_EXEC) logerror("%04x: %04x (%s)\n", PC, IR, opname[m_command]);
		debugger_instruction_hook(this, PC);
		PC = (PC + 2) & 0xfffe & m_prgaddr_mask;
		// IAQ will be cleared in the main loop
	}
}

/*
    Memory read
    Clock cycles: 2 + W, W = number of wait states
*/
void tms99xx_device::mem_read()
{
	// After set_address, any device attached to the address bus may pull down
	// READY in order to put the CPU into wait state before the read_word
	// operation will be performed
	// set_address and read_word should pass the same address as argument
	if (m_mem_phase==1)
	{
		if (!m_dbin_line.isnull()) m_dbin_line(ASSERT_LINE);
		m_prgspace->set_address(m_address & m_prgaddr_mask & 0xfffe);
		m_check_ready = true;
		m_mem_phase = 2;
		m_pass = 2;
		if (TRACE_ADDRESSBUS) logerror("set address (r) %04x\n", m_address);

		pulse_clock(1); // Concludes the first cycle
		// If READY has been found to be low, the CPU will now stay in the wait state loop
	}
	else
	{
		// Second phase (after READY was raised again)
		m_current_value = m_prgspace->read_word(m_address & m_prgaddr_mask & 0xfffe);
		pulse_clock(1);
		if (!m_dbin_line.isnull()) m_dbin_line(CLEAR_LINE);
		m_mem_phase = 1;        // reset to phase 1
		if (TRACE_MEM) logerror("mem r %04x -> %04x\n", m_address, m_current_value);
	}
}

void tms99xx_device::mem_write()
{
	if (m_mem_phase==1)
	{
		if (!m_dbin_line.isnull()) m_dbin_line(CLEAR_LINE);
		// When writing, the data bus is asserted immediately after the address bus
		if (TRACE_ADDRESSBUS) logerror("set address (w) %04x\n", m_address);
		m_prgspace->set_address(m_address & m_prgaddr_mask & 0xfffe);
		if (TRACE_MEM) logerror("mem w %04x <- %04x\n",  m_address, m_current_value);
		m_prgspace->write_word(m_address & m_prgaddr_mask & 0xfffe, m_current_value);
		m_check_ready = true;
		m_mem_phase = 2;
		m_pass = 2;
		pulse_clock(1);
	}
	else
	{
		// Second phase (we arrive here when the wait states are over)
		pulse_clock(1);
	}
}

void tms99xx_device::register_read()
{
	// Need to set m_address for F1/F3 (we don't know what the data_derive did)
	if (m_mem_phase==1)
	{
		m_address = WP + (m_regnumber<<1);
	}

	mem_read();

	if (m_mem_phase==1)
	{
		m_register_contents = m_current_value;
	}
}

/*
    Memory write:

    Clock cycles: 2 + W, W = number of wait states
*/
void tms99xx_device::register_write()
{
	// This will be called twice; m_pass is set by the embedded mem_write
	uint16_t addr_save = m_address;
	m_address = (WP + (m_regnumber<<1)) & m_prgaddr_mask & 0xfffe;
	mem_write();
	m_address = addr_save;
}

/*
    CRU support code

    The CRU bus is a 1-bit-wide I/O bus.  The CPU can read or write bits at random address.
    Special instructions are dedicated to reading and writing one or several consecutive bits.

    The CRU uses the same address bus as the normal memory access. For writing,
    the CRUCLK line is pulsed, but not for reading where CRUCLK stays cleared.
    This means that each normal memory access also causes read accesses on the
    CRU side. The /MEMEN line may be used to distinguish the kinds of accesses
    as it stays cleared during CRU operations.

    We do not emulate this here as it seems there are no real applications of
    this side effect. Real designs must ensure that CRU read operations are
    idempotent (i.e. they must not change the state of the queried device).

    Read returns the number of consecutive CRU bits, with increasing CRU address
    from the least significant to the most significant bit; right-aligned

    There seems to be no handling of wait states during CRU operations on the
    TMS9900. The TMS9995, in contrast, respects wait states during the transmission
    of each single bit.

    Usage of this method:
       CRU write: First bit is at rightmost position of m_value.
*/

void tms99xx_device::cru_input_operation()
{
	int value, value1;
	int offset, location;

	location = (m_cru_address >> 4) & (m_cruaddr_mask>>3);
	offset   = (m_cru_address>>1) & 0x07;

	// Read 8 bits (containing the desired bits)
	value = m_cru->read_byte(location);

	if ((offset + m_count) > 8) // spans two 8 bit cluster
	{
		// Read next 8 bits
		location = (location + 1) & (m_cruaddr_mask>>3);
		value1 = m_cru->read_byte(location);
		value |= (value1 << 8);

		if ((offset + m_count) > 16)    // spans three 8 bit cluster
		{
			// Read next 8 bits
			location = (location + 1) & (m_cruaddr_mask>>3);
			value1 = m_cru->read_byte(location);
			value |= (value1 << 16);
		}
	}

	// On each machine cycle (2 clocks) only one CRU bit is transmitted
	pulse_clock(m_count<<1);

	// Shift back the bits so that the first bit is at the rightmost place
	m_value = (value >> offset);

	// Mask out what we want
	m_value &= (0x0000ffff >> (16-m_count));
}

void tms99xx_device::cru_output_operation()
{
	int value;
	int location;
	location = (m_cru_address >> 1) & m_cruaddr_mask;
	value = m_value;

	// Write m_count bits from cru_address
	for (int i=0; i < m_count; i++)
	{
		if (TRACE_CRU) logerror("CRU output operation, address %04x, value %d\n", location<<1, value & 0x01);
		m_cru->write_byte(location, (value & 0x01));
		value >>= 1;
		location = (location + 1) & m_cruaddr_mask;
		pulse_clock(2);
	}
}

void tms99xx_device::return_from_subprogram()
{
	// Return from data derivation
	// The result should be in m_current_value
	// and the address in m_address
	m_program_index = m_caller_index;
	m_caller_index = NOPRG;
	MPC = m_caller_MPC; // will be increased on return
}

void tms99xx_device::command_completed()
{
	// Pseudo state at the end of the current instruction cycle sequence
	if (TRACE_CYCLES)
	{
		logerror("------");
		int cycles =  m_first_cycle - m_icount;
		// Avoid nonsense values due to expired and resumed main loop
		if (cycles > 0 && cycles < 10000) logerror(" %d cycles", cycles);
		logerror("\n");
	}
	m_program_index = NOPRG;
}

/*
    This is a switch to a subprogram; there is only one, the data
    derivation. In terms of cycles, it does not take any time; execution
    continues with the first instruction of the subprogram.
*/
void tms99xx_device::data_derivation_subprogram()
{
	uint16_t ircopy = IR;

	// Save the return program and position
	m_caller_index = m_program_index;
	m_caller_MPC = MPC;

	// Source or destination argument?
	if (m_get_destination) ircopy >>= 6;

	m_regnumber = ircopy & 0x000f;

	MPC = ircopy & 0x0030;

	if (((MPC == 0x0020) && (m_regnumber != 0))         // indexed
		|| ((MPC == 0x0030) && m_byteop))       // byte operation
	{
		MPC += 8;   // the second option
	}
	m_get_destination = true;   // when we call this the second time before END it's the destination
	m_pass = 2;
}


/**************************************************************************
    Status bit operations
**************************************************************************/

inline void tms99xx_device::set_status_bit(int bit, bool state)
{
	if (state) ST |= bit;
	else ST &= ~bit;
}

void tms99xx_device::set_status_parity(uint8_t value)
{
	int count = 0;
	for (int i=0; i < 8; i++)
	{
		if ((value & 0x80)!=0) count++;
		value <<= 1;
	}
	set_status_bit(ST_OP, (count & 1)!=0);
}

inline void tms99xx_device::compare_and_set_lae(uint16_t value1, uint16_t value2)
{
	set_status_bit(ST_EQ, value1 == value2);
	set_status_bit(ST_LH, value1 > value2);
	set_status_bit(ST_AGT, (int16_t)value1 > (int16_t)value2);
	if (TRACE_STATUS) logerror("ST = %04x (val1=%04x, val2=%04x)\n", ST, value1, value2);
}

/**************************************************************************
    ALU operations
**************************************************************************/

void tms99xx_device::alu_nop()
{
	// Do nothing (or nothing that is externally visible)
	pulse_clock(2);
	return;
}

void tms99xx_device::alu_source()
{
	// Copy the current value into the source data register
	m_source_even = ((m_address & 1)==0);
	m_source_value = m_current_value;
	m_source_address = m_address;
	pulse_clock(2);
}

void tms99xx_device::alu_clear()
{
	// Clears the register contents
	m_register_contents = 0;
	pulse_clock(2);
}

void tms99xx_device::alu_setaddr()
{
	// Load the current value into the address register
	m_address = m_current_value;
	pulse_clock(2);
}

void tms99xx_device::alu_addone()
{
	m_current_value++;
	pulse_clock(2);
}

void tms99xx_device::alu_setaddr_addone()
{
	// Set the address register and increase the recent value
	m_address = m_current_value;
	m_current_value++;
	pulse_clock(2);
}

void tms99xx_device::alu_pcaddr_advance()
{
	// Set PC as new read address, increase by 2
	m_address = PC;
	PC = (PC + 2) & 0xfffe & m_prgaddr_mask;
	pulse_clock(2);
}

void tms99xx_device::alu_add_register()
{
	// Add the register contents to the current value and set as address
	m_address = m_current_value + m_register_contents;
	pulse_clock(2);
}

void tms99xx_device::alu_imm()
{
	m_value_copy = m_current_value;
	m_address_copy = m_address;
	m_address = PC;
	PC = (PC + 2) & 0xfffe & m_prgaddr_mask;
	pulse_clock(2);
}

void tms99xx_device::alu_reg()
{
	m_address = (WP + ((IR & 0x000f)<<1)) & m_prgaddr_mask;
	pulse_clock(2);
}

void tms99xx_device::alu_f1()
{
	uint32_t dest_new = 0;

	// Save the destination value
	uint16_t prev_dest_value = m_current_value;

	m_destination_even = ((m_address & 1)==0);  // this is the destination address; the source address has already been saved
	bool byteop = byte_operation();

	if (byteop)
	{
		if (!m_destination_even) m_current_value <<= 8;
		if (!m_source_even) m_source_value <<= 8;
		// We have to strip away the low byte, or byte operations may fail
		// e.g. 0x10ff + 0x0101 = 0x1200
		// or   0x2000 - 0x0101 = 0x1eff
		m_source_value &= 0xff00;
		m_current_value &= 0xff00;
	}

	switch (m_command)
	{
		case A:
		case AB:
			// Add the contents of the source data to the destination data
			// May exceed 0xffff (for carry check)
			dest_new = m_current_value + m_source_value;

			// 1000 + e000 = f000 (L)
			// c000 + c000 = 8000 (LC)
			// 7000 + 4000 = b000 (LO)
			// 2000 + f000 = 1000 (LAC)
			// c000 + b000 = 7000 (LACO)
			// 2000 + e000 = 0000 (EC)
			// 8000 + 8000 = 0000 (ECO)

			// When adding, a carry occurs when we exceed the 0xffff value.
			set_status_bit(ST_C, (dest_new & 0x10000) != 0);
			// If the result has a sign bit that is different from both arguments, we have an overflow
			// (i.e. getting a negative value from two positive values and vice versa)
			set_status_bit(ST_OV, ((dest_new ^ m_current_value) & (dest_new ^ m_source_value) & 0x8000)!=0);
			break;

		case S:
		case SB:
			// Subtract the contents of the source data from the destination data
			dest_new = m_current_value + ((~m_source_value) & 0xffff) + 1;
			// LAECO(P)
			// 8000 - 8000 = 0000 (EC)
			// 2000 - 8000 = a000 (LO)
			// 8000 - 2000 = 6000 (LACO)
			// 2000 - 1000 = 1000 (LAC)
			// 1000 - 2000 = f000 (L)
			// 1000 - 1000 = 0000 (EC)
			// 1000 - f000 = 2000 (LA)
			// f000 - 2000 = d000 (LC)

			// Subtraction means adding the 2s complement, so the carry bit
			// is set whenever adding the 2s complement exceeds ffff
			// In fact the CPU adds the one's complement, then adds a one. This
			// explains why subtracting 0 sets the carry bit.
			set_status_bit(ST_C, (dest_new & 0x10000) != 0);

			// If the arguments have different sign bits and the result has a
			// sign bit different from the destination value, we have an overflow
			// e.g. value1 = 0x7fff, value2 = 0xffff; value1-value2 = 0x8000
			// or   value1 = 0x8000, value2 = 0x0001; value1-value2 = 0x7fff
			// value1 is the destination value
			set_status_bit(ST_OV, (m_current_value ^ m_source_value) & (m_current_value ^ dest_new) & 0x8000);
			break;

		case SOC:
		case SOCB:
			// OR the contents of the source data on the destination data
			dest_new = m_current_value | m_source_value;
			break;

		case SZC:
		case SZCB:
			// AND the one's complement of the contents of the source data on the destination data
			dest_new = m_current_value & ~m_source_value;
			break;

		case MOV:
		case MOVB:
			// Copy the source data to the destination data
			dest_new = m_source_value;
			break;
	}

	if (byteop)
	{
		set_status_parity((uint8_t)(dest_new>>8));

		// destnew is the new value to be written (high byte); needs to be
		// merged with the existing word
		if (m_destination_even)
			m_current_value = (prev_dest_value & 0x00ff) | (dest_new & 0xff00);
		else
			m_current_value = (prev_dest_value & 0xff00) | ((dest_new >> 8) & 0x00ff);
		compare_and_set_lae((uint16_t)(dest_new & 0xff00), 0);
	}
	else
	{
		m_current_value = (uint16_t)(dest_new & 0xffff);
		compare_and_set_lae((uint16_t)(dest_new & 0xffff), 0);
	}

	pulse_clock(2);
}

void tms99xx_device::alu_comp()
{
	m_destination_even = ((m_address & 1)==0);  // this is the destination address; the source address has already been saved
	if (byte_operation())
	{
		if (!m_destination_even) m_current_value <<= 8;
		if (!m_source_even) m_source_value <<= 8;
		set_status_parity((uint8_t)(m_source_value>>8));
		compare_and_set_lae(m_source_value & 0xff00, m_current_value & 0xff00);
	}
	else
		compare_and_set_lae(m_source_value, m_current_value);

	pulse_clock(2);
}

void tms99xx_device::alu_f3()
{
	switch (m_state)
	{
	case 0:
		// Get register address
		m_address = WP + ((IR >> 5) & 0x001e);
		m_source_value = m_current_value;
		break;
	case 1:
		if (m_command == COC)
		{
			set_status_bit(ST_EQ, (m_current_value & m_source_value) == m_source_value);
		}
		else
		{
			if (m_command == CZC)
			{
				set_status_bit(ST_EQ, (~m_current_value & m_source_value) == m_source_value);
			}
			else
			{
				// XOR
				// The workspace register address is still in m_address
				m_current_value = (m_current_value ^ m_source_value);
				compare_and_set_lae(m_current_value, 0);
			}
		}
		if (TRACE_STATUS) logerror("ST = %04x\n", ST);
		break;
	}

	m_state++;
	pulse_clock(2);
}

void tms99xx_device::alu_multiply()
{
	uint32_t result;

	switch (m_state)
	{
	case 0: // After data derivation
		m_source_value = m_current_value;
		m_address = ((IR >> 5) & 0x001e) + WP;
		break;
	case 1: // After reading the register (multiplier)
		if (TRACE_ALU) logerror("Multiply %04x by %04x\n", m_current_value, m_source_value);
		result = (m_source_value & 0x0000ffff) * (m_current_value & 0x0000ffff);
		m_current_value = (result >> 16) & 0xffff;
		m_value_copy = result & 0xffff;
		pulse_clock(34);                                // add 36 clock cycles (18 machine cycles); last one in main loop
		break;
	case 2: // After writing the high word to the destination register
		m_current_value = m_value_copy;                     // Prepare to save low word
		m_address = (m_address + 2) & m_prgaddr_mask;
		break;
	}
	pulse_clock(2);
	m_state++;
}

void tms99xx_device::alu_divide()
{
	// Format is DIV Divisor,REG(dividend)
	uint32_t uval32;
	bool overflow = true;
	uint16_t value1;

	switch (m_state)
	{
	case 0:
		m_source_value = m_current_value;   // store divisor
		// Set address of register
		m_address = WP + ((IR >> 5) & 0x001e);
		m_address_copy = m_address;
		break;
	case 1:
		// We have an overflow when the quotient cannot be stored in 16 bits
		// This is the case when the dividend / divisor >= 0x10000,
		// or equivalently, dividend / 0x10000 >= divisor

		if (m_current_value < m_source_value)   // also if source=0
		{
			MPC++;  // skip the abort
			overflow = false;
		}
		set_status_bit(ST_OV, overflow);
		m_value_copy = m_current_value;         // Save the high word
		m_address = (m_address + 2) & m_prgaddr_mask;       // Read next word
		break;
	case 2:
		// W2 is in m_current_value
		// Create full word and perform division
		uval32 = (m_value_copy << 16) | m_current_value;

		if (TRACE_ALU) logerror("Dividing %08x by %04x\n", uval32, m_source_value);
		m_current_value = uval32 / m_source_value;
		m_value_copy = uval32 % m_source_value;

		if (TRACE_ALU) logerror("Quotient %04x, remainder %04x\n", m_current_value, m_value_copy);

		m_address = m_address_copy;

		// The number of ALU cycles depends on the number of steps in
		// the division algorithm. The number of cycles is between 32 and
		// 48 (*2 for clock cycles)
		// As I don't have a description of the actual algorithm, I'll use
		// the following heuristic: We use 32 ALU cycles in general, then
		// we need as many cycles as it takes to
		// shift away the dividend. Thus, bigger dividends need more cycles.

		pulse_clock(62);    // one pulse is at the start, one at the end
		value1 = m_value_copy & 0xffff;

		while (value1 != 0)
		{
			value1 = (value1 >> 1) & 0xffff;
			pulse_clock(2);
		}
		// We still have m_regnumber; this is where m_current_value will go to
		break;
	case 3:
		// Prepare to write the remainder
		m_current_value = m_value_copy;
		m_address = m_address + 2;
		if (TRACE_STATUS) logerror("ST = %04x (div)\n", ST);
		break;
	}
	pulse_clock(2);
	m_state++;
}

void tms99xx_device::alu_xop()
{
	switch (m_state)
	{
	case 0:
		// We have the effective address of the source operand in m_address
		m_address_saved = m_address;
		// Now we take the XOP number from the instruction register
		// and calculate the vector location
		// [0010 11xx xx tt SSSS]  shift 6 right, then *4 => shift 4 right
		m_address = 0x0040 + ((IR >> 4) & 0x003c);
		// Takes some additional cycles
		pulse_clock(4);
		break;
	case 1:
		m_value_copy = WP;                      // save the old WP
		WP = m_current_value & m_prgaddr_mask & 0xfffe;  // the new WP has been read in the previous microoperation
		m_current_value = m_address_saved;      // we saved the address of the source operand; retrieve it
		m_address = WP + 0x0016;                // Next register is R11
		break;
	case 2:
		m_address = WP + 0x001e;
		m_current_value = ST;
		break;
	case 3:
		m_address = WP + 0x001c;
		m_current_value = PC;
		break;
	case 4:
		m_address = WP + 0x001a;
		m_current_value = m_value_copy;         // old WP into new R13
		break;
	case 5:
		m_address =  0x0042 + ((IR >> 4) & 0x003c);     // location of new PC
		set_status_bit(ST_X, true);
		break;
	case 6:
		PC = m_current_value & m_prgaddr_mask & 0xfffe;
		break;
	}
	pulse_clock(2);
	m_state++;
}

void tms99xx_device::alu_clr_swpb()
{
	uint32_t dest_new = 0;
	uint32_t src_val = m_current_value & 0x0000ffff;
	uint16_t sign = 0;

	bool setstatus = true;
	bool check_ov = true;

	switch (m_command)
	{
	case CLR:
		// no status bits
		m_current_value = 0x0000;
		setstatus = false;
		break;
	case SETO:
		// no status bits
		m_current_value = 0xffff;
		setstatus = false;
		break;
	case INV:
		// LAE
		dest_new = ~src_val & 0xffff;
		check_ov = false;
		break;
	case NEG:
		// LAECO
		// Overflow occurs for value=0x8000
		dest_new = ((~src_val) & 0x0000ffff) + 1;
		check_ov = false;
		set_status_bit(ST_OV, src_val == 0x8000);
		break;
	case INC:
		// LAECO
		// Overflow for result value = 0x8000
		// Carry for result value = 0x0000
		dest_new = src_val + 1;
		break;
	case INCT:
		// LAECO
		// Overflow for result value = 0x8000 / 0x8001
		// Carry for result value = 0x0000 / 0x0001
		dest_new = src_val + 2;
		break;
	case DEC:
		// LAECO
		// Carry for result value != 0xffff
		// Overflow for result value == 0x7fff
		dest_new = src_val + 0xffff;
		sign = 0x8000;
		break;
	case DECT:
		// Carry for result value != 0xffff / 0xfffe
		// Overflow for result value = 0x7fff / 0x7ffe
		dest_new = src_val + 0xfffe;
		sign = 0x8000;
		break;
	case SWPB:
		m_current_value = ((m_current_value << 8) | (m_current_value >> 8)) & 0xffff;
		setstatus = false;
		break;
	}

	if (setstatus)
	{
		if (check_ov) set_status_bit(ST_OV, ((src_val & 0x8000)==sign) && ((dest_new & 0x8000)!=sign));
		set_status_bit(ST_C, (dest_new & 0x10000) != 0);
		m_current_value = dest_new & 0xffff;
		compare_and_set_lae(m_current_value, 0);
	}

	pulse_clock(2);
	// No states here
}

void tms99xx_device::alu_abs()
{
	// LAECO (from original word!)
	// O if >8000
	// C is alwas reset
	set_status_bit(ST_OV, m_current_value == 0x8000);
	set_status_bit(ST_C, false);
	compare_and_set_lae(m_current_value, 0);

	if ((m_current_value & 0x8000)!=0)
	{
		m_current_value = (((~m_current_value) & 0x0000ffff) + 1) & 0xffff;
		pulse_clock(2);     // If ABS is performed it takes one machine cycle more
	}
	else
	{
		MPC++; // skips over the next micro operation (MEMORY_WRITE)
	}
	pulse_clock(2);
}

void tms99xx_device::alu_x()
{
	if (TRACE_ALU) logerror("Substituting current command by %04x\n", m_current_value);
	decode(m_current_value);
	pulse_clock(2);
}

/*
    Also used by other microprograms
*/
void tms99xx_device::alu_b()
{
	// no status bits
	// Although we got the contents of the source data, we do not use them
	// but directly branch there. That is, we are only interested in the
	// address of the source data.
	// If we have a B *R5 and R5 contains the value 0xa000, the CPU actually
	// retrieves the value at 0xa000, but in fact it will load the PC
	// with the address 0xa000
	m_current_value = PC;
	PC = m_address & m_prgaddr_mask & 0xfffe;
	m_address = WP + 22;
	if (TRACE_ALU) logerror("Set new PC = %04x\n", PC);
	pulse_clock(2);
}

void tms99xx_device::alu_blwp()
{
	switch (m_state)
	{
	case 0:
		m_value_copy = WP;
		WP = m_current_value & m_prgaddr_mask & 0xfffe;              // set new WP (*m_destination)
		m_address_saved = (m_address + 2) & m_prgaddr_mask; // Save the location of the WP
		m_address = WP + 30;
		m_current_value = ST;                           // get status register
		break;
	case 1:
		m_current_value = PC;                           // get program counter
		m_address = m_address - 2;
		break;
	case 2:
		m_current_value = m_value_copy;                 // retrieve the old WP
		m_address = m_address - 2;
		break;
	case 3:
		m_address = m_address_saved;                    // point to PC component of branch vector
		break;
	case 4:
		PC = m_current_value & m_prgaddr_mask & 0xfffe;
		if (TRACE_ALU) logerror("tms9900: Context switch complete; WP=%04x, PC=%04x, ST=%04x\n", WP, PC, ST);
		break;
	}
	pulse_clock(2);
	m_state++;
}

void tms99xx_device::alu_ldcr()
{
	uint16_t value;

	// Spec: "If the source operand address is odd, the address is truncated
	//        to an even address prior to data transfer."
	// (Editor/Assembler, page 151)
	// This refers to transfers with more than 8 bits. In this case, for
	// LDCR the first bit is taken from the least significant bit of the
	// source word. If the address is odd (e.g. 0x1001), it is
	// treated as 0x1000, that is, truncated to an even address.
	// For transfers with 1-8 bits, the first bit is the least significant
	// bit of the source byte (any address).

	if (m_state == 0)
	{
		m_address = WP + 24;
	}
	else
	{
		value = m_source_value; // copied by ALU_SOURCE
		m_count = (IR >> 6) & 0x000f;
		if (m_count == 0) m_count = 16;
		if (m_count <= 8)
		{
			if (m_source_even) value>>=8;
			set_status_parity((uint8_t)(value & 0xff));
			compare_and_set_lae(value<<8, 0);
		}
		else
		{
			compare_and_set_lae(value, 0);
		}
		m_cru_address = m_current_value;
		m_value = value;
		if (TRACE_CRU) logerror("Load CRU address %04x (%d bits), value = %04x\n", m_cru_address, m_count, m_value);
	}
	m_state++;
	pulse_clock(2);
}

void tms99xx_device::alu_stcr()
{
	uint16_t value;
	int n = 2;
	// For STCR transfers with more than 8 bits, the first CRU bit is
	// always put into the least significant bit of the destination word.
	// If the address is odd (e.g. 0x1001), it is treated as 0x1000, that is,
	// truncated to an even boundary.
	// For transfers with 1-8 bits, the destination address is handled as
	// in MOVB operations, i.e. the other byte of the word is kept unchanged.

	switch (m_state)
	{
	case 0: // After getting the destination operand and saving the address/value
		m_address = WP + 24;
		n = 0;
		break;
	case 1: // After getting R12
		m_cru_address = m_current_value;
		m_count = (IR >> 6) & 0x000f;
		if (m_count == 0) m_count = 16;
		break;
	case 2: // After the cru operation; value starts at LSB of m_value
		value = m_value & 0xffff;
		if (m_count < 9)
		{
			if (TRACE_CRU) logerror("Store CRU at %04x (%d bits) in %04x, result = %02x\n", m_cru_address, m_count, m_source_address, value);
			set_status_parity((uint8_t)(value & 0xff));
			compare_and_set_lae(value<<8, 0);
			if (m_source_even)
				m_current_value = (m_source_value & 0x00ff) | (value<<8);
			else
				m_current_value = (m_source_value & 0xff00) | (value & 0xff);

			pulse_clock(2*(5 + (8-m_count)));
		}
		else
		{
			if (TRACE_CRU) logerror("Store CRU at %04x (%d bits) in %04x, result = %04x\n", m_cru_address, m_count, m_source_address, value);
			m_current_value = value;
			compare_and_set_lae(value, 0);
			pulse_clock(2*(5 + (16-m_count)));
		}
		m_address = m_source_address;
		break;
	}

	m_state++;
	pulse_clock(n);
}

void tms99xx_device::alu_sbz_sbo()
{
	int8_t displacement;
	if (m_state==0)
	{
		m_address = WP + 24;
	}
	else
	{
		m_value = (m_command==SBO)? 1 : 0;
		displacement = (int8_t)(IR & 0xff);
		m_cru_address = m_current_value + (displacement<<1);
		m_count = 1;
	}
	m_state++;
	pulse_clock(2);
}

void tms99xx_device::alu_tb()
{
	int8_t displacement;
	switch (m_state)
	{
	case 0:
		m_address = WP + 24;
		break;
	case 1:
		displacement = (int8_t)(IR & 0xff);
		m_cru_address = m_current_value + (displacement<<1);
		m_count = 1;
		break;
	case 2:
		set_status_bit(ST_EQ, m_value!=0);
		if (TRACE_STATUS) logerror("ST = %04x\n", ST);
		break;
	}
	m_state++;
	pulse_clock(2);
}

void tms99xx_device::alu_jmp()
{
	int8_t displacement;
	bool cond = false;

	if (m_state==0)
	{
		switch (m_command)
		{
		case JMP:
			cond = true;
			break;
		case JLT:   // LAECOP == x00xxx
			cond = ((ST & (ST_AGT | ST_EQ))==0);
			break;
		case JLE:   // LAECOP == 0xxxxx
			cond = ((ST & ST_LH)==0);
			break;
		case JEQ:   // LAECOP == xx1xxx
			cond = ((ST & ST_EQ)!=0);
			break;
		case JHE:   // LAECOP == 1x0xxx, 0x1xxx
			cond = ((ST & (ST_LH | ST_EQ)) != 0);
			break;
		case JGT:   // LAECOP == x1xxxx
			cond = ((ST & ST_AGT)!=0);
			break;
		case JNE:   // LAECOP == xx0xxx
			cond = ((ST & ST_EQ)==0);
			break;
		case JNC:   // LAECOP == xxx0xx
			cond = ((ST & ST_C)==0);
			break;
		case JOC:   // LAECOP == xxx1xx
			cond = ((ST & ST_C)!=0);
			break;
		case JNO:   // LAECOP == xxxx0x
			cond = ((ST & ST_OV)==0);
			break;
		case JL:    // LAECOP == 0x0xxx
			cond = ((ST & (ST_LH | ST_EQ)) == 0);
			break;
		case JH:    // LAECOP == 1xxxxx
			cond = ((ST & ST_LH)!=0);
			break;
		case JOP:   // LAECOP == xxxxx1
			cond = ((ST & ST_OP)!=0);
			break;
		}
		if (!cond)
		{
			if (TRACE_ALU) logerror("Jump condition false\n");
			MPC+=1; // skip next ALU call
		}
		else
			if (TRACE_ALU) logerror("Jump condition true\n");
	}
	else
	{
		displacement = (IR & 0xff);
		PC = (PC + (displacement<<1)) & m_prgaddr_mask & 0xfffe;
	}
	m_state++;
	pulse_clock(2);
}

void tms99xx_device::alu_shift()
{
	bool carry = false;
	bool overflow = false;
	uint16_t sign = 0;
	uint32_t value;
	int count;

	switch (m_state)
	{
	case 0:
		m_address = WP + ((IR & 0x000f)<<1);
		pulse_clock(2);
		break;
	case 1:
		// we have the value of the register in m_current_value
		// Save it (we may have to read R0)
		m_value_copy = m_current_value;
		m_address_saved = m_address;
		m_address = WP;
		m_current_value = (IR >> 4) & 0x000f;

		if (m_current_value != 0)
		{
			// skip the next read and ALU operation
			MPC = MPC+2;
			m_state++;
		}
		else
		{
			if (TRACE_ALU) logerror("Shift operation gets count from R0\n");
			pulse_clock(2);
		}
		pulse_clock(2);
		break;
	case 2:
		// after READ
		pulse_clock(2);
		pulse_clock(2);
		break;
	case 3:
		count = m_current_value & 0x000f; // from the instruction or from R0
		if (count==0) count = 16;

		value = m_value_copy;

		// we are re-implementing the shift operations because we have to pulse
		// the clock at each single shift anyway.
		// Also, it is easier to implement the status bit setting.
		// Note that count is never 0
		if (m_command == SRA) sign = value & 0x8000;

		for (int i=0; i < count; i++)
		{
			switch (m_command)
			{
			case SRL:
			case SRA:
				carry = ((value & 1)!=0);
				value = (value >> 1) | sign;
				break;
			case SLA:
				carry = ((value & 0x8000)!=0);
				value <<= 1;
				if (carry != ((value&0x8000)!=0)) overflow = true;
				break;
			case SRC:
				carry = ((value & 1)!=0);
				value = (value>>1) | (carry? 0x8000 : 0x0000);
				break;
			}
			pulse_clock(2);
		}

		m_current_value = value & 0xffff;
		set_status_bit(ST_C, carry);
		set_status_bit(ST_OV, overflow);
		compare_and_set_lae(m_current_value, 0);
		m_address = m_address_saved;        // Register address
		if (TRACE_STATUS) logerror("ST = %04x (val=%04x)\n", ST, m_current_value);
		break;
	}
	m_state++;
}

void tms99xx_device::alu_ai_ori()
{
	uint32_t dest_new = 0;
	switch (m_command)
	{
	case AI:
		dest_new = m_current_value + m_value_copy;
		// See status bit handling for Add
		set_status_bit(ST_C, (dest_new & 0x10000) != 0);
		set_status_bit(ST_OV, ((dest_new ^ m_current_value) & (dest_new ^ m_value_copy) & 0x8000)!=0);
		break;
	case ANDI:
		dest_new = m_current_value & m_value_copy;
		break;
	case ORI:
		dest_new = m_current_value | m_value_copy;
		break;
	}
	m_current_value = dest_new & 0xffff;
	m_address = m_address_copy;
	compare_and_set_lae(m_current_value, 0);
	pulse_clock(2);
}

void tms99xx_device::alu_ci()
{
	compare_and_set_lae(m_value_copy, m_current_value);
	pulse_clock(2);
}

void tms99xx_device::alu_li()
{
	compare_and_set_lae(m_current_value, 0);
	pulse_clock(2);
}

void tms99xx_device::alu_lwpi()
{
	WP = m_current_value & m_prgaddr_mask & 0xfffe;
	pulse_clock(2);
}

void tms99xx_device::alu_limi()
{
	ST = (ST & 0xfff0) | (m_current_value & 0x000f);
	if (TRACE_STATUS) logerror("ST = %04x\n", ST);
	pulse_clock(2);
}

void tms99xx_device::alu_stwp_stst()
{
	if (m_command==STST) m_current_value = ST;
	else m_current_value = WP;
	pulse_clock(2);
}

void tms99xx_device::alu_external()
{
	// Call some possibly attached external device
	// We pass the bit pattern of the address bus to the external function

	// IDLE = 0000 0011 0100 0000
	// RSET = 0000 0011 0110 0000
	// CKON = 0000 0011 1010 0000
	// CKOF = 0000 0011 1100 0000
	// LREX = 0000 0011 1110 0000
	//                  ---
	if (m_command == IDLE)
		m_idle_state = true;

	if (!m_external_operation.isnull()) m_external_operation((IR >> 5) & 0x07, 1, 0xff);
	pulse_clock(2);
}

void tms99xx_device::alu_rtwp()
{
	switch (m_state)
	{
	case 0:
		m_address = WP + 30;        // R15
		pulse_clock(2);
		break;
	case 1:
		ST = m_current_value;
		m_address -= 2;             // R14
		break;
	case 2:
		PC = m_current_value & m_prgaddr_mask & 0xfffe;
		m_address -= 2;             // R13
		break;
	case 3:
		WP = m_current_value & m_prgaddr_mask & 0xfffe;
		pulse_clock(2);
		break;
	}
	m_state++;
}


void tms99xx_device::alu_int()
{
	if (TRACE_EMU) logerror("INT state %d; irq_level %d\n", m_state, m_irq_level);
	switch (m_state)
	{
	case 0:
		if (m_irq_level == RESET_INT)
		{
			m_address = 0;
			pulse_clock(2);
		}
		else
		{
			if (m_irq_level == LOAD_INT) m_address = 0xfffc; // will be truncated for TMS9980
			else
			{
				m_address = (m_irq_level << 2);
			}
		}
		break;
	case 1:
		m_address_copy = m_address;
		m_value_copy = WP;                          // old WP
		WP = m_current_value & m_prgaddr_mask & 0xfffe;      // new WP
		m_current_value = ST;
		m_address = (WP + 30) & m_prgaddr_mask;
		break;
	case 2:
		m_current_value = PC;
		m_address = (WP + 28) & m_prgaddr_mask;
		break;
	case 3:
		m_current_value = m_value_copy; // old WP
		m_address = (WP + 26) & m_prgaddr_mask;
		break;
	case 4:
		m_address = (m_address_copy + 2) & 0xfffe & m_prgaddr_mask;
		if (TRACE_ALU) logerror("read from %04x\n", m_address);
		break;
	case 5:
		PC = m_current_value & m_prgaddr_mask & 0xfffe;
		if (m_irq_level > 0 )
		{
			ST = (ST & 0xfff0) | (m_irq_level - 1);
		}
		break;
	}
	m_state++;
	pulse_clock(2);
}

/**************************************************************************/
uint32_t tms99xx_device::execute_min_cycles() const
{
	return 2;
}

// TODO: Compute this value, just a wild guess for the average
uint32_t tms99xx_device::execute_max_cycles() const
{
	return 10;
}

uint32_t tms99xx_device::execute_input_lines() const
{
	return 2;
}

// clocks to cycles, cycles to clocks = id
// execute_default_irq_vector = 0
// execute_burn = nop

// device_disasm_interface overrides
uint32_t tms99xx_device::disasm_min_opcode_bytes() const
{
	return 2;
}

uint32_t tms99xx_device::disasm_max_opcode_bytes() const
{
	return 6;
}

offs_t tms99xx_device::disasm_disassemble(std::ostream &stream, offs_t pc, const uint8_t *oprom, const uint8_t *opram, uint32_t options)
{
	extern CPU_DISASSEMBLE( tms9900 );
	return CPU_DISASSEMBLE_NAME(tms9900)(this, stream, pc, oprom, opram, options);
}


DEFINE_DEVICE_TYPE(TMS9900, tms9900_device, "tms9900", "TMS9900")