1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
// license:BSD-3-Clause
// copyright-holders:hap, Jonathan Gevaryahu
/*
Sharp SM590 MCU core implementation
TODO:
- finish SM590/SM595 emulation (NES/SNES CIC)
http://bitsavers.informatik.uni-stuttgart.de/pdf/sharp/_dataBooks/1990_Sharp_Microcomputers_Data_Book.pdf
pdf page 35/doc page 26 thru pdf page 44/doc page 35
*/
#include "emu.h"
#include "sm590.h"
#include "sm510d.h"
#include "debugger.h"
// MCU types
DEFINE_DEVICE_TYPE(SM590, sm590_device, "sm590", "Sharp SM590") // 512x8 ROM, 32x4 RAM
//DEFINE_DEVICE_TYPE(SM591, sm591_device, "sm591", "Sharp SM591") // 1kx8 ROM, 56x4 RAM
//DEFINE_DEVICE_TYPE(SM595, sm595_device, "sm595", "Sharp SM595") // 768x8 ROM, 32x4 RAM
// internal memory maps
void sm590_device::program_1x128x4(address_map &map)
{
map(0x000, 0x1ff).rom();
}
void sm590_device::data_16x2x4(address_map &map)
{
map(0x00, 0x0f).ram();
map(0x10, 0x1f).ram();
}
// device definitions
sm590_device::sm590_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock) :
sm590_device(mconfig, SM590, tag, owner, clock, 4 /* stack levels */, 9 /* prg width */, address_map_constructor(FUNC(sm590_device::program_1x128x4), this), 5 /* data width */, address_map_constructor(FUNC(sm590_device::data_16x2x4), this))
{ }
//sm591_device::sm591_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock) :
// sm510_base_device(mconfig, SM591, tag, owner, clock, 4 /* stack levels */, 10 /* prg width */, address_map_constructor(FUNC(sm591_device::program_2x128x4), this), 6 /* data width */, address_map_constructor(FUNC(sm591_device::data_16x3.5x4), this))
//{ }
//sm595_device::sm595_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock) :
// sm510_base_device(mconfig, SM595, tag, owner, clock, 4 /* stack levels */, 10 /* prg width */, address_map_constructor(FUNC(sm595_device::program_1x128x4_1x128x2), this), 5 /* data width */, address_map_constructor(FUNC(sm595_device::data_16x2x4), this))
//{ }
sm590_device::sm590_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, u32 clock, int stack_levels, int prgwidth, address_map_constructor program, int datawidth, address_map_constructor data) :
sm510_base_device(mconfig, type, tag, owner, clock, stack_levels, prgwidth, program, datawidth, data)
{ }
std::unique_ptr<util::disasm_interface> sm590_device::create_disassembler()
{
return std::make_unique<sm590_disassembler>();
}
//-------------------------------------------------
// device_reset - device-specific reset
//-------------------------------------------------
void sm590_device::device_reset()
{
// ACL
m_skip = false;
m_halt = false;
m_sbm = false; // needed?
m_op = m_prev_op = 0;
reset_vector();
m_prev_pc = m_pc;
m_clk_div = 4; // 4 clock oscillations per cycle on SM59x, see datasheet page 30/pdf page 39
m_rports[0] = m_rports[1] = m_rports[2] = m_rports[3] = 0;
//m_write_r(0); // TODO: are the four ports zeroed on reset?
}
//-------------------------------------------------
// execute
//-------------------------------------------------
void sm590_device::increment_pc()
{
// PL(program counter low 7 bits) is a simple LFSR: newbit = (bit0==bit1)
// PU,PM(high bits) specify page, PL specifies steps within page
int feed = ((m_pc >> 1 ^ m_pc) & 1) ? 0 : 0x40;
m_pc = feed | (m_pc >> 1 & 0x3f) | (m_pc & ~0x7f);
}
void sm590_device::execute_one()
{
switch (m_op & 0xf0) // opcodes with 4 bit params
{
case 0x00: op_adx(); break;
case 0x10: op_tax(); break;
case 0x20: op_lblx(); break;
case 0x30: op_lax(); break;
case 0x80: case 0x90: case 0xa0: case 0xb0:
case 0xc0: case 0xd0: case 0xe0: case 0xf0:
op_t(); break; // aka tr
default: // opcodes with 2 bit params
switch (m_op & 0xfc)
{
case 0x60: op_tmi(); break; // aka tm
case 0x64: op_tba(); break;
case 0x68: op_rm(); break;
case 0x6c: op_sm(); break;
case 0x74: op_lbmx(); break;
case 0x78: op_tl(); break;
case 0x7c: op_tml(); break; // aka tls
default: // everything else
switch (m_op)
{
case 0x40: op_lda(); break;
case 0x41: op_exc(); break;
case 0x42: op_exci(); break;
case 0x43: op_excd(); break;
case 0x44: op_coma(); break;
case 0x45: op_tam(); break;
case 0x46: op_atr(); break;
case 0x47: op_mtr(); break;
case 0x48: op_rc(); break;
case 0x49: op_sc(); break;
case 0x4a: op_str(); break;
case 0x4b: op_cend(); break; // aka cctrl
case 0x4c: op_rtn0(); break; // aka rtn
case 0x4d: op_rtn1(); break; // aka rtns
// 4e, 4f illegal
case 0x50: op_inbm(); break;
case 0x51: op_debm(); break;
case 0x52: op_incb(); break; // aka inbl
case 0x53: op_decb(); break; // aka debl
case 0x54: op_tc(); break;
case 0x55: op_rta(); break;
case 0x56: op_blta(); break;
case 0x57: op_exbla(); break; // aka xbla
// 58, 59, 5a, 5b illegal
case 0x5c: op_atx(); break;
case 0x5d: op_exax(); break;
// 5e is illegal???
// 5f is illegal
case 0x70: op_add(); break;
case 0x71: op_ads(); break;
case 0x72: op_adc(); break;
case 0x73: op_add11(); break; // aka adcs
default: op_illegal(); break;
}
break; // 0xff
}
break; // 0xfc
} // big switch
}
bool sm590_device::op_argument()
{
// TL, TLS(TML) opcodes are 2 bytes
return (m_op & 0xf8) == 0x78;
}
|