summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/mn10200/mn10200.h
blob: 71d00f7eb0173632a8e2086752f104fa636d4387 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// license:BSD-3-Clause
// copyright-holders:Olivier Galibert, R. Belmont, hap
/*
    Panasonic MN10200 emulator

    Written by Olivier Galibert
    MAME conversion by R. Belmont

*/

#ifndef MAME_CPU_MN10200_MN10200_H
#define MAME_CPU_MN10200_MN10200_H

#pragma once

// port setup
#define MCFG_MN10200_READ_PORT_CB(X, _devcb) \
	devcb = &mn10200_device::set_read_port##X##_callback(*device, DEVCB_##_devcb);
#define MCFG_MN10200_WRITE_PORT_CB(X, _devcb) \
	devcb = &mn10200_device::set_write_port##X##_callback(*device, DEVCB_##_devcb);

enum
{
	MN10200_PORT0 = 0,
	MN10200_PORT1,
	MN10200_PORT2,
	MN10200_PORT3,
	MN10200_PORT4
};

enum
{
	MN10200_IRQ0 = 0,
	MN10200_IRQ1,
	MN10200_IRQ2,
	MN10200_IRQ3,

	MN10200_MAX_EXT_IRQ
};


class mn10200_device : public cpu_device
{
public:
	// static configuration helpers
	template <class Object> static devcb_base &set_read_port0_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_read_port0.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_read_port1_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_read_port1.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_read_port2_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_read_port2.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_read_port3_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_read_port3.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_read_port4_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_read_port4.set_callback(std::forward<Object>(cb)); }

	template <class Object> static devcb_base &set_write_port0_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_write_port0.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_write_port1_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_write_port1.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_write_port2_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_write_port2.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_write_port3_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_write_port3.set_callback(std::forward<Object>(cb)); }
	template <class Object> static devcb_base &set_write_port4_callback(device_t &device, Object &&cb) { return downcast<mn10200_device &>(device).m_write_port4.set_callback(std::forward<Object>(cb)); }

	DECLARE_READ8_MEMBER(io_control_r);
	DECLARE_WRITE8_MEMBER(io_control_w);

protected:
	static constexpr unsigned MN10200_NUM_PRESCALERS = 2;
	static constexpr unsigned MN10200_NUM_TIMERS_8BIT = 10;
	static constexpr unsigned MN10200_NUM_IRQ_GROUPS = 31;


	// construction/destruction
	mn10200_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock, address_map_constructor program);

	// device-level overrides
	virtual void device_start() override;
	virtual void device_reset() override;

	// device_execute_interface overrides
	virtual uint64_t execute_clocks_to_cycles(uint64_t clocks) const override { return (clocks + 2 - 1) / 2; } // internal /2 divider
	virtual uint64_t execute_cycles_to_clocks(uint64_t cycles) const override { return (cycles * 2); } // internal /2 divider
	virtual uint32_t execute_min_cycles() const override { return 1; }
	virtual uint32_t execute_max_cycles() const override { return 13+7; } // max opcode cycles + interrupt duration
	virtual uint32_t execute_input_lines() const override { return 4; }
	virtual void execute_run() override;
	virtual void execute_set_input(int inputnum, int state) override;

	// device_memory_interface overrides
	virtual std::vector<std::pair<int, const address_space_config *>> memory_space_config() const override;

	// device_state_interface overrides
	virtual void state_string_export(const device_state_entry &entry, std::string &str) const override;

	// device_disasm_interface overrides
	virtual uint32_t disasm_min_opcode_bytes() const override { return 1; }
	virtual uint32_t disasm_max_opcode_bytes() const override { return 7; }
	virtual offs_t disasm_disassemble(std::ostream &stream, offs_t pc, const uint8_t *oprom, const uint8_t *opram, uint32_t options) override;

private:
	address_space_config m_program_config;
	address_space *m_program;

	// i/o handlers
	devcb_read8 m_read_port0, m_read_port1, m_read_port2, m_read_port3, m_read_port4;
	devcb_write8 m_write_port0, m_write_port1, m_write_port2, m_write_port3, m_write_port4;

	int m_cycles;

	// The UINT32s are really UINT24
	uint32_t m_pc;
	uint32_t m_d[4];
	uint32_t m_a[4];
	uint16_t m_psw;
	uint16_t m_mdr;

	// interrupts
	void take_irq(int level, int group);
	void check_irq();
	void check_ext_irq();

	uint8_t m_icrl[MN10200_NUM_IRQ_GROUPS];
	uint8_t m_icrh[MN10200_NUM_IRQ_GROUPS];

	uint8_t m_nmicr;
	uint8_t m_iagr;
	uint8_t m_extmdl;
	uint8_t m_extmdh;
	bool m_possible_irq;

	// timers
	void refresh_timer(int tmr);
	void refresh_all_timers();
	int timer_tick_simple(int tmr);
	TIMER_CALLBACK_MEMBER( simple_timer_cb );

	attotime m_sysclock_base;
	emu_timer *m_timer_timers[MN10200_NUM_TIMERS_8BIT];

	struct
	{
		uint8_t mode;
		uint8_t base;
		uint8_t cur;
	} m_simple_timer[MN10200_NUM_TIMERS_8BIT];

	struct
	{
		uint8_t mode;
		uint8_t base;
		uint8_t cur;
	} m_prescaler[MN10200_NUM_PRESCALERS];

	// dma
	struct
	{
		uint32_t adr;
		uint32_t count;
		uint16_t iadr;
		uint8_t ctrll;
		uint8_t ctrlh;
		uint8_t irq;
	} m_dma[8];

	// serial
	struct
	{
		uint8_t ctrll;
		uint8_t ctrlh;
		uint8_t buf;
	} m_serial[2];

	// ports
	uint8_t m_pplul;
	uint8_t m_ppluh;
	uint8_t m_p3md;
	uint8_t m_p4;

	struct
	{
		uint8_t out;
		uint8_t dir;
	} m_port[4];

	// internal read/write
	inline uint8_t read_arg8(uint32_t address) { return m_program->read_byte(address); }
	inline uint16_t read_arg16(uint32_t address) { return m_program->read_byte(address) | m_program->read_byte(address + 1) << 8; }
	inline uint32_t read_arg24(uint32_t address) { return m_program->read_byte(address) | m_program->read_byte(address + 1) << 8 | m_program->read_byte(address + 2) << 16; }

	inline uint8_t read_mem8(uint32_t address) { return m_program->read_byte(address); }
	inline uint16_t read_mem16(uint32_t address) { return m_program->read_word(address & ~1); }
	inline uint32_t read_mem24(uint32_t address) { return m_program->read_word(address & ~1) | m_program->read_byte((address & ~1) + 2) << 16; }

	inline void write_mem8(uint32_t address, uint8_t data) { m_program->write_byte(address, data); }
	inline void write_mem16(uint32_t address, uint16_t data) { m_program->write_word(address & ~1, data); }
	inline void write_mem24(uint32_t address, uint32_t data) { m_program->write_word(address & ~1, data); m_program->write_byte((address & ~1) + 2, data >> 16); }

	inline void change_pc(uint32_t pc) { m_pc = pc & 0xffffff; }

	// opcode helpers
	void illegal(uint8_t prefix, uint8_t op);
	uint32_t do_add(uint32_t a, uint32_t b, uint32_t c = 0);
	uint32_t do_sub(uint32_t a, uint32_t b, uint32_t c = 0);
	void test_nz16(uint16_t v);
	void do_jsr(uint32_t to, uint32_t ret);
	void do_branch(int condition = 1);
};


class mn1020012a_device : public mn10200_device
{
public:
	mn1020012a_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock);
};



DECLARE_DEVICE_TYPE(MN1020012A, mn1020012a_device)


#endif // MAME_CPU_MN10200_MN10200_H