summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/m68000/m68kcpu.h
blob: adb45a04c78532c2ff2b6f4cb56eafdbc2a46aef (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
// license:BSD-3-Clause
// copyright-holders:Karl Stenerud
/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
 *                                  MUSASHI
 *                                Version 4.50
 *
 * A portable Motorola M680x0 processor emulation engine.
 * Copyright Karl Stenerud.  All rights reserved.
 *
 */

#ifndef MAME_CPU_M68000_M68KCPU_H
#define MAME_CPU_M68000_M68KCPU_H

#pragma once

#include <limits.h>

#if defined(__sun__) && defined(__svr4__)
#undef REG_SP
#undef REG_PC
#endif

/* ======================================================================== */
/* ==================== ARCHITECTURE-DEPENDANT DEFINES ==================== */
/* ======================================================================== */

/* Check for > 32bit sizes */
static constexpr int8_t MAKE_INT_8(uint32_t A) { return (int8_t)(A); }
static constexpr int16_t MAKE_INT_16(uint32_t A) { return (int16_t)(A); }
static constexpr int32_t MAKE_INT_32(uint32_t A) { return (int32_t)(A); }


/* ======================================================================== */
/* ============================ GENERAL DEFINES =========================== */
/* ======================================================================== */

/* Exception Vectors handled by emulation */
static constexpr int EXCEPTION_RESET                    = 0;
static constexpr int EXCEPTION_BUS_ERROR                = 2; /* This one is not emulated! */
static constexpr int EXCEPTION_ADDRESS_ERROR            = 3; /* This one is partially emulated (doesn't stack a proper frame yet) */
static constexpr int EXCEPTION_ILLEGAL_INSTRUCTION      = 4;
static constexpr int EXCEPTION_ZERO_DIVIDE              = 5;
static constexpr int EXCEPTION_CHK                      = 6;
static constexpr int EXCEPTION_TRAPV                    = 7;
static constexpr int EXCEPTION_PRIVILEGE_VIOLATION      = 8;
static constexpr int EXCEPTION_TRACE                    = 9;
static constexpr int EXCEPTION_1010                    = 10;
static constexpr int EXCEPTION_1111                    = 11;
static constexpr int EXCEPTION_FORMAT_ERROR            = 14;
static constexpr int EXCEPTION_UNINITIALIZED_INTERRUPT = 15;
static constexpr int EXCEPTION_SPURIOUS_INTERRUPT      = 24;
static constexpr int EXCEPTION_INTERRUPT_AUTOVECTOR    = 24;
static constexpr int EXCEPTION_TRAP_BASE               = 32;

/* Function codes set by CPU during data/address bus activity */
static constexpr int FUNCTION_CODE_USER_DATA          = 1;
static constexpr int FUNCTION_CODE_USER_PROGRAM       = 2;
static constexpr int FUNCTION_CODE_SUPERVISOR_DATA    = 5;
static constexpr int FUNCTION_CODE_SUPERVISOR_PROGRAM = 6;
static constexpr int FUNCTION_CODE_CPU_SPACE          = 7;

/* CPU types for deciding what to emulate */
static constexpr int CPU_TYPE_000    = (0x00000001);
static constexpr int CPU_TYPE_008    = (0x00000002);
static constexpr int CPU_TYPE_010    = (0x00000004);
static constexpr int CPU_TYPE_EC020  = (0x00000008);
static constexpr int CPU_TYPE_020    = (0x00000010);
static constexpr int CPU_TYPE_EC030  = (0x00000020);
static constexpr int CPU_TYPE_030    = (0x00000040);
static constexpr int CPU_TYPE_EC040  = (0x00000080);
static constexpr int CPU_TYPE_LC040  = (0x00000100);
static constexpr int CPU_TYPE_040    = (0x00000200);
static constexpr int CPU_TYPE_SCC070 = (0x00000400);
static constexpr int CPU_TYPE_FSCPU32  = (0x00000800);
static constexpr int CPU_TYPE_COLDFIRE = (0x00001000);

/* Different ways to stop the CPU */
static constexpr int STOP_LEVEL_STOP = 1;
static constexpr int STOP_LEVEL_HALT = 2;

/* Used for 68000 address error processing */
static constexpr int INSTRUCTION_YES = 0;
static constexpr int INSTRUCTION_NO  = 0x08;
static constexpr int MODE_READ       = 0x10;
static constexpr int MODE_WRITE      = 0;

static constexpr int RUN_MODE_NORMAL              = 0;
static constexpr int RUN_MODE_BERR_AERR_RESET_WSF = 1; // writing the stack frame
static constexpr int RUN_MODE_BERR_AERR_RESET     = 2; // stack frame done



static constexpr int M68K_CACR_IBE = 0x10; // Instruction Burst Enable
static constexpr int M68K_CACR_CI  = 0x08; // Clear Instruction Cache
static constexpr int M68K_CACR_CEI = 0x04; // Clear Entry in Instruction Cache
static constexpr int M68K_CACR_FI  = 0x02; // Freeze Instruction Cache
static constexpr int M68K_CACR_EI  = 0x01; // Enable Instruction Cache

/* ======================================================================== */
/* ================================ MACROS ================================ */
/* ======================================================================== */


/* ---------------------------- General Macros ---------------------------- */

/* Bit Isolation Macros */
static constexpr uint32_t BIT_0(uint32_t A)  { return ((A) & 0x00000001); }
static constexpr uint32_t BIT_1(uint32_t A)  { return ((A) & 0x00000002); }
static constexpr uint32_t BIT_2(uint32_t A)  { return ((A) & 0x00000004); }
static constexpr uint32_t BIT_3(uint32_t A)  { return ((A) & 0x00000008); }
static constexpr uint32_t BIT_4(uint32_t A)  { return ((A) & 0x00000010); }
static constexpr uint32_t BIT_5(uint32_t A)  { return ((A) & 0x00000020); }
static constexpr uint32_t BIT_6(uint32_t A)  { return ((A) & 0x00000040); }
static constexpr uint32_t BIT_7(uint32_t A)  { return ((A) & 0x00000080); }
static constexpr uint32_t BIT_8(uint32_t A)  { return ((A) & 0x00000100); }
static constexpr uint32_t BIT_9(uint32_t A)  { return ((A) & 0x00000200); }
static constexpr uint32_t BIT_A(uint32_t A)  { return ((A) & 0x00000400); }
static constexpr uint32_t BIT_B(uint32_t A)  { return ((A) & 0x00000800); }
static constexpr uint32_t BIT_C(uint32_t A)  { return ((A) & 0x00001000); }
static constexpr uint32_t BIT_D(uint32_t A)  { return ((A) & 0x00002000); }
static constexpr uint32_t BIT_E(uint32_t A)  { return ((A) & 0x00004000); }
static constexpr uint32_t BIT_F(uint32_t A)  { return ((A) & 0x00008000); }
static constexpr uint32_t BIT_10(uint32_t A) { return ((A) & 0x00010000); }
static constexpr uint32_t BIT_11(uint32_t A) { return ((A) & 0x00020000); }
static constexpr uint32_t BIT_12(uint32_t A) { return ((A) & 0x00040000); }
static constexpr uint32_t BIT_13(uint32_t A) { return ((A) & 0x00080000); }
static constexpr uint32_t BIT_14(uint32_t A) { return ((A) & 0x00100000); }
static constexpr uint32_t BIT_15(uint32_t A) { return ((A) & 0x00200000); }
static constexpr uint32_t BIT_16(uint32_t A) { return ((A) & 0x00400000); }
static constexpr uint32_t BIT_17(uint32_t A) { return ((A) & 0x00800000); }
static constexpr uint32_t BIT_18(uint32_t A) { return ((A) & 0x01000000); }
static constexpr uint32_t BIT_19(uint32_t A) { return ((A) & 0x02000000); }
static constexpr uint32_t BIT_1A(uint32_t A) { return ((A) & 0x04000000); }
static constexpr uint32_t BIT_1B(uint32_t A) { return ((A) & 0x08000000); }
static constexpr uint32_t BIT_1C(uint32_t A) { return ((A) & 0x10000000); }
static constexpr uint32_t BIT_1D(uint32_t A) { return ((A) & 0x20000000); }
static constexpr uint32_t BIT_1E(uint32_t A) { return ((A) & 0x40000000); }
static constexpr uint32_t BIT_1F(uint32_t A) { return ((A) & 0x80000000); }

/* Get the most significant bit for specific sizes */
static constexpr uint32_t GET_MSB_8(uint32_t A)  { return ((A) & 0x80); }
static constexpr uint32_t GET_MSB_9(uint32_t A)  { return ((A) & 0x100); }
static constexpr uint32_t GET_MSB_16(uint32_t A) { return ((A) & 0x8000); }
static constexpr uint32_t GET_MSB_17(uint32_t A) { return ((A) & 0x10000); }
static constexpr uint32_t GET_MSB_32(uint32_t A) { return ((A) & 0x80000000); }
static constexpr uint64_t GET_MSB_33(uint64_t A) { return ((A) & 0x100000000U); }

/* Isolate nibbles */
static constexpr uint32_t LOW_NIBBLE(uint32_t A)  { return ((A) & 0x0f); }
static constexpr uint32_t HIGH_NIBBLE(uint32_t A) { return ((A) & 0xf0); }

/* These are used to isolate 8, 16, and 32 bit sizes */
static constexpr uint32_t MASK_OUT_ABOVE_2(uint32_t A)  { return ((A) & 3); }
static constexpr uint32_t MASK_OUT_ABOVE_8(uint32_t A)  { return ((A) & 0xff); }
static constexpr uint32_t MASK_OUT_ABOVE_16(uint32_t A) { return ((A) & 0xffff); }
static constexpr uint32_t MASK_OUT_BELOW_2(uint32_t A)  { return ((A) & ~3); }
static constexpr uint32_t MASK_OUT_BELOW_8(uint32_t A)  { return ((A) & ~0xff); }
static constexpr uint32_t MASK_OUT_BELOW_16(uint32_t A) { return ((A) & ~0xffff); }

/* No need to mask if we are 32 bit */
static constexpr uint32_t MASK_OUT_ABOVE_32(uint32_t A) { return ((A) & u64(0xffffffffU)); }
static constexpr uint64_t MASK_OUT_BELOW_32(uint64_t A) { return ((A) & ~u64(0xffffffffU)); }

/* Shift & Rotate Macros. */
static constexpr uint32_t LSL(uint32 A, uint32_t C) { return ((A) << (C)); }
static constexpr uint32_t LSR(uint32 A, uint32_t C) { return ((A) >> (C)); }

/* We have to do this because the morons at ANSI decided that shifts
* by >= data size are undefined.
*/
static constexpr uint32_t LSR_32(uint32 A, uint32_t C) { return ((C) < 32 ? (A) >> (C) : 0); }
static constexpr uint32_t LSL_32(uint32 A, uint32_t C) { return ((C) < 32 ? (A) << (C) : 0); }

static constexpr uint64_t LSL_32_64(uint64_t A, uint32_t C) { return ((A) << (C)); }
static constexpr uint64_t LSR_32_64(uint64_t A, uint32_t C) { return ((A) >> (C)); }
static constexpr uint64_t ROL_33_64(uint64_t A, uint32_t C) { return (LSL_32_64(A, C) | LSR_32_64(A, 33 - (C))); }
static constexpr uint64_t ROR_33_64(uint64_t A, uint32_t C) { return (LSR_32_64(A, C) | LSL_32_64(A, 33 - (C))); }

static constexpr uint32_t ROL_8(uint32_t A, uint32_t C)     { return MASK_OUT_ABOVE_8(LSL(A, C) | LSR(A, 8-(C))); }
static constexpr uint32_t ROL_9(uint32_t A, uint32_t C)     { return                 (LSL(A, C) | LSR(A, 9-(C))); }
static constexpr uint32_t ROL_16(uint32_t A, uint32_t C)    { return MASK_OUT_ABOVE_16(LSL(A, C) | LSR(A, 16-(C))); }
static constexpr uint32_t ROL_17(uint32_t A, uint32_t C)    { return                 (LSL(A, C) | LSR(A, 17-(C))); }
static constexpr uint32_t ROL_32(uint32_t A, uint32_t C)    { return MASK_OUT_ABOVE_32(LSL_32(A, C) | LSR_32(A, 32-(C))); }

static constexpr uint32_t ROR_8(uint32_t A, uint32_t C)     { return MASK_OUT_ABOVE_8(LSR(A, C) | LSL(A, 8-(C))); }
static constexpr uint32_t ROR_9(uint32_t A, uint32_t C)     { return                  (LSR(A, C) | LSL(A, 9-(C))); }
static constexpr uint32_t ROR_16(uint32_t A, uint32_t C)    { return MASK_OUT_ABOVE_16(LSR(A, C) | LSL(A, 16-(C))); }
static constexpr uint32_t ROR_17(uint32_t A, uint32_t C)    { return                  (LSR(A, C) | LSL(A, 17-(C))); }
static constexpr uint32_t ROR_32(uint32_t A, uint32_t C)    { return MASK_OUT_ABOVE_32(LSR_32(A, C) | LSL_32(A, 32-(C))); }



/* ------------------------------ CPU Access ------------------------------ */

/* Access the CPU registers */
inline uint32_t (&REG_DA())[16]    { return m_dar; } /* easy access to data and address regs */
inline uint32_t (&REG_D())[16]     { return m_dar; }
inline uint32_t *REG_A()         { return (m_dar+8); }
inline uint32_t (&REG_SP_BASE())[7]{ return m_sp; }
inline uint32_t &REG_USP()         { return m_sp[0]; }
inline uint32_t &REG_ISP()         { return m_sp[4]; }
inline uint32_t &REG_MSP()         { return m_sp[6]; }
inline uint32_t &REG_SP()          { return m_dar[15]; }


/* ----------------------------- Configuration ---------------------------- */

/* These defines are dependant on the configuration defines in m68kconf.h */

/* Disable certain comparisons if we're not using all CPU types */
inline uint32_t CPU_TYPE_IS_COLDFIRE() const    { return ((m_cpu_type) & (CPU_TYPE_COLDFIRE)); }

inline uint32_t CPU_TYPE_IS_040_PLUS() const    { return ((m_cpu_type) & (CPU_TYPE_040 | CPU_TYPE_EC040)); }

inline uint32_t CPU_TYPE_IS_030_PLUS() const    { return ((m_cpu_type) & (CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040)); }

inline uint32_t CPU_TYPE_IS_020_PLUS() const    { return ((m_cpu_type) & (CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }

inline uint32_t CPU_TYPE_IS_020_VARIANT() const { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_FSCPU32)); }

inline uint32_t CPU_TYPE_IS_EC020_PLUS() const  { return ((m_cpu_type) & (CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_030 | CPU_TYPE_EC030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
inline uint32_t CPU_TYPE_IS_EC020_LESS() const  { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010 | CPU_TYPE_EC020)); }

inline uint32_t CPU_TYPE_IS_010() const         { return ((m_cpu_type) == CPU_TYPE_010); }
inline uint32_t CPU_TYPE_IS_010_PLUS() const    { return ((m_cpu_type) & (CPU_TYPE_010 | CPU_TYPE_EC020 | CPU_TYPE_020 | CPU_TYPE_EC030 | CPU_TYPE_030 | CPU_TYPE_040 | CPU_TYPE_EC040 | CPU_TYPE_FSCPU32 | CPU_TYPE_COLDFIRE)); }
inline uint32_t CPU_TYPE_IS_010_LESS() const    { return ((m_cpu_type) & (CPU_TYPE_000 | CPU_TYPE_008 | CPU_TYPE_010)); }

inline uint32_t CPU_TYPE_IS_000() const         { return ((m_cpu_type) == CPU_TYPE_000 || (m_cpu_type) == CPU_TYPE_008); }


/* Initiates trace checking before each instruction (t1) */
inline void m68ki_trace_t1() { m_tracing = m_t1_flag; }
/* adds t0 to trace checking if we encounter change of flow */
inline void m68ki_trace_t0() { m_tracing |= m_t0_flag; }
/* Clear all tracing */
inline void m68ki_clear_trace() { m_tracing = 0; }
/* Cause a trace exception if we are tracing */
inline void m68ki_exception_if_trace() { if(m_tracing) m68ki_exception_trace(); }

/* -------------------------- EA / Operand Access ------------------------- */

/*
 * The general instruction format follows this pattern:
 * .... XXX. .... .YYY
 * where XXX is register X and YYY is register Y
 */
/* Data Register Isolation */
inline uint32_t &DX() { return (REG_D()[(m_ir >> 9) & 7]); }
inline uint32_t &DY() { return (REG_D()[m_ir & 7]); }
/* Address Register Isolation */
inline uint32_t &AX() { return (REG_A()[(m_ir >> 9) & 7]); }
inline uint32_t &AY() { return (REG_A()[m_ir & 7]); }


/* Effective Address Calculations */
inline uint32_t EA_AY_AI_8()   { return AY(); }                              /* address register indirect */
inline uint32_t EA_AY_AI_16()  { return EA_AY_AI_8(); }
inline uint32_t EA_AY_AI_32()  { return EA_AY_AI_8(); }
inline uint32_t EA_AY_PI_8()   { return (AY()++); }                                /* postincrement (size = byte) */
inline uint32_t EA_AY_PI_16()  { return ((AY()+=2)-2); }                           /* postincrement (size = word) */
inline uint32_t EA_AY_PI_32()  { return ((AY()+=4)-4); }                           /* postincrement (size = long) */
inline uint32_t EA_AY_PD_8()   { return (--AY()); }                                /* predecrement (size = byte) */
inline uint32_t EA_AY_PD_16()  { return (AY()-=2); }                               /* predecrement (size = word) */
inline uint32_t EA_AY_PD_32()  { return (AY()-=4); }                               /* predecrement (size = long) */
inline uint32_t EA_AY_DI_8()   { return (AY()+MAKE_INT_16(m68ki_read_imm_16())); } /* displacement */
inline uint32_t EA_AY_DI_16()  { return EA_AY_DI_8(); }
inline uint32_t EA_AY_DI_32()  { return EA_AY_DI_8(); }
inline uint32_t EA_AY_IX_8()   { return m68ki_get_ea_ix(AY()); }                   /* indirect + index */
inline uint32_t EA_AY_IX_16()  { return EA_AY_IX_8(); }
inline uint32_t EA_AY_IX_32()  { return EA_AY_IX_8(); }

inline uint32_t EA_AX_AI_8()   { return AX(); }
inline uint32_t EA_AX_AI_16()  { return EA_AX_AI_8(); }
inline uint32_t EA_AX_AI_32()  { return EA_AX_AI_8(); }
inline uint32_t EA_AX_PI_8()   { return (AX()++); }
inline uint32_t EA_AX_PI_16()  { return ((AX()+=2)-2); }
inline uint32_t EA_AX_PI_32()  { return ((AX()+=4)-4); }
inline uint32_t EA_AX_PD_8()   { return (--AX()); }
inline uint32_t EA_AX_PD_16()  { return (AX()-=2); }
inline uint32_t EA_AX_PD_32()  { return (AX()-=4); }
inline uint32_t EA_AX_DI_8()   { return (AX()+MAKE_INT_16(m68ki_read_imm_16())); }
inline uint32_t EA_AX_DI_16()  { return EA_AX_DI_8(); }
inline uint32_t EA_AX_DI_32()  { return EA_AX_DI_8(); }
inline uint32_t EA_AX_IX_8()   { return m68ki_get_ea_ix(AX()); }
inline uint32_t EA_AX_IX_16()  { return EA_AX_IX_8(); }
inline uint32_t EA_AX_IX_32()  { return EA_AX_IX_8(); }

inline uint32_t EA_A7_PI_8()   { return ((REG_A()[7]+=2)-2); }
inline uint32_t EA_A7_PD_8()   { return (REG_A()[7]-=2); }

inline uint32_t EA_AW_8()      { return MAKE_INT_16(m68ki_read_imm_16()); }      /* absolute word */
inline uint32_t EA_AW_16()     { return EA_AW_8(); }
inline uint32_t EA_AW_32()     { return EA_AW_8(); }
inline uint32_t EA_AL_8()      { return m68ki_read_imm_32(); }                   /* absolute long */
inline uint32_t EA_AL_16()     { return EA_AL_8(); }
inline uint32_t EA_AL_32()     { return EA_AL_8(); }
inline uint32_t EA_PCDI_8()    { return m68ki_get_ea_pcdi(); }                   /* pc indirect + displacement */
inline uint32_t EA_PCDI_16()   { return EA_PCDI_8(); }
inline uint32_t EA_PCDI_32()   { return EA_PCDI_8(); }
inline uint32_t EA_PCIX_8()    { return m68ki_get_ea_pcix(); }                   /* pc indirect + index */
inline uint32_t EA_PCIX_16()   { return EA_PCIX_8(); }
inline uint32_t EA_PCIX_32()   { return EA_PCIX_8(); }


inline uint32_t OPER_I_8() { return m68ki_read_imm_8(); }
inline uint32_t OPER_I_16() { return m68ki_read_imm_16(); }
inline uint32_t OPER_I_32() { return m68ki_read_imm_32(); }



/* --------------------------- Status Register ---------------------------- */

/* Flag Calculation Macros */
static constexpr uint32_t CFLAG_8(uint32_t A) { return (A); }
static constexpr uint32_t CFLAG_16(uint32_t A) { return ((A)>>8); }

static constexpr uint32_t CFLAG_ADD_32(uint32_t S, uint32_t D, uint32_t R) { return (((S & D) | (~R & (S | D)))>>23); }
static constexpr uint32_t CFLAG_SUB_32(uint32_t S, uint32_t D, uint32_t R) { return (((S & R) | (~D & (S | R)))>>23); }

static constexpr uint32_t VFLAG_ADD_8(uint32_t S, uint32_t D, uint32_t R) { return ((S^R) & (D^R)); }
static constexpr uint32_t VFLAG_ADD_16(uint32_t S, uint32_t D, uint32_t R) { return (((S^R) & (D^R))>>8); }
static constexpr uint32_t VFLAG_ADD_32(uint32_t S, uint32_t D, uint32_t R) { return (((S^R) & (D^R))>>24); }

static constexpr uint32_t VFLAG_SUB_8(uint32_t S, uint32_t D, uint32_t R) { return ((S^D) & (R^D)); }
static constexpr uint32_t VFLAG_SUB_16(uint32_t S, uint32_t D, uint32_t R) { return (((S^D) & (R^D))>>8); }
static constexpr uint32_t VFLAG_SUB_32(uint32_t S, uint32_t D, uint32_t R) { return (((S^D) & (R^D))>>24); }

static constexpr uint32_t NFLAG_8(uint32_t A) { return (A); }
static constexpr uint32_t NFLAG_16(uint32_t A) { return ((A)>>8); }
static constexpr uint32_t NFLAG_32(uint32_t A) { return ((A)>>24); }
static constexpr uint32_t NFLAG_64(uint64_t A) { return ((A)>>56); }

static constexpr uint32_t ZFLAG_8(uint32_t A) { return MASK_OUT_ABOVE_8(A); }
static constexpr uint32_t ZFLAG_16(uint32_t A) { return MASK_OUT_ABOVE_16(A); }
static constexpr uint32_t ZFLAG_32(uint32_t A) { return MASK_OUT_ABOVE_32(A); }


/* Flag values */
static constexpr int NFLAG_SET   = 0x80;
static constexpr int NFLAG_CLEAR = 0;
static constexpr int CFLAG_SET   = 0x100;
static constexpr int CFLAG_CLEAR = 0;
static constexpr int XFLAG_SET   = 0x100;
static constexpr int XFLAG_CLEAR = 0;
static constexpr int VFLAG_SET   = 0x80;
static constexpr int VFLAG_CLEAR = 0;
static constexpr int ZFLAG_SET   = 0;
static constexpr int ZFLAG_CLEAR = 0xffffffff;

static constexpr int SFLAG_SET   = 4;
static constexpr int SFLAG_CLEAR = 0;
static constexpr int MFLAG_SET   = 2;
static constexpr int MFLAG_CLEAR = 0;

/* Turn flag values into 1 or 0 */
inline uint32_t XFLAG_1() const { return ((m_x_flag>>8)&1); }
inline uint32_t NFLAG_1() const { return ((m_n_flag>>7)&1); }
inline uint32_t VFLAG_1() const { return ((m_v_flag>>7)&1); }
inline uint32_t ZFLAG_1() const { return (!m_not_z_flag); }
inline uint32_t CFLAG_1() const { return ((m_c_flag>>8)&1); }


/* Conditions */
inline uint32_t COND_CS() const { return (m_c_flag&0x100); }
inline uint32_t COND_CC() const { return (!COND_CS()); }
inline uint32_t COND_VS() const { return (m_v_flag&0x80); }
inline uint32_t COND_VC() const { return (!COND_VS()); }
inline uint32_t COND_NE() const { return m_not_z_flag; }
inline uint32_t COND_EQ() const { return (!COND_NE()); }
inline uint32_t COND_MI() const { return (m_n_flag&0x80); }
inline uint32_t COND_PL() const { return (!COND_MI()); }
inline uint32_t COND_LT() const { return ((m_n_flag^m_v_flag)&0x80); }
inline uint32_t COND_GE() const { return (!COND_LT()); }
inline uint32_t COND_HI() const { return (COND_CC() && COND_NE()); }
inline uint32_t COND_LS() const { return (COND_CS() || COND_EQ()); }
inline uint32_t COND_GT() const { return (COND_GE() && COND_NE()); }
inline uint32_t COND_LE() const { return (COND_LT() || COND_EQ()); }

/* Reversed conditions */
inline uint32_t COND_NOT_CS() const { return COND_CC(); }
inline uint32_t COND_NOT_CC() const { return COND_CS(); }
inline uint32_t COND_NOT_VS() const { return COND_VC(); }
inline uint32_t COND_NOT_VC() const { return COND_VS(); }
inline uint32_t COND_NOT_NE() const { return COND_EQ(); }
inline uint32_t COND_NOT_EQ() const { return COND_NE(); }
inline uint32_t COND_NOT_MI() const { return COND_PL(); }
inline uint32_t COND_NOT_PL() const { return COND_MI(); }
inline uint32_t COND_NOT_LT() const { return COND_GE(); }
inline uint32_t COND_NOT_GE() const { return COND_LT(); }
inline uint32_t COND_NOT_HI() const { return COND_LS(); }
inline uint32_t COND_NOT_LS() const { return COND_HI(); }
inline uint32_t COND_NOT_GT() const { return COND_LE(); }
inline uint32_t COND_NOT_LE() const { return COND_GT(); }

/* Not real conditions, but here for convenience */
inline uint32_t COND_XS() const { return (m_x_flag&0x100); }
inline uint32_t COND_XC() const { return (!COND_XS()); }


/* Get the condition code register */
inline uint32_t m68ki_get_ccr() const    { return((COND_XS() >> 4) |
								(COND_MI() >> 4) |
								(COND_EQ() << 2) |
								(COND_VS() >> 6) |
								(COND_CS() >> 8)); }

/* Get the status register */
inline uint32_t m68ki_get_sr() const     { return (m_t1_flag         |
								m_t0_flag         |
							(m_s_flag << 11) |
							(m_m_flag << 11) |
								m_int_mask        |
								m68ki_get_ccr()); }



/* ----------------------------- Read / Write ----------------------------- */

/* Read from the current address space */
inline uint32_t m68ki_read_8(uint32_t address)          { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_16(uint32_t address)         { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_32(uint32_t address)         { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }

/* Write to the current data space */
inline void m68ki_write_8(uint32_t address, uint32_t value)      { m68ki_write_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
inline void m68ki_write_16(uint32_t address, uint32_t value)     { m68ki_write_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
inline void m68ki_write_32(uint32_t address, uint32_t value)     { m68ki_write_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }
inline void m68ki_write_32_pd(uint32_t address, uint32_t value)  { m68ki_write_32_pd_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA, value); }

/* map read immediate 8 to read immediate 16 */
inline uint32_t m68ki_read_imm_8()         { return MASK_OUT_ABOVE_8(m68ki_read_imm_16()); }

/* Map PC-relative reads */
inline uint32_t m68ki_read_pcrel_8(uint32_t address)    { return m68k_read_pcrelative_8(address); }
inline uint32_t m68ki_read_pcrel_16(uint32_t address)   { return m68k_read_pcrelative_16(address); }
inline uint32_t m68ki_read_pcrel_32(uint32_t address)   { return m68k_read_pcrelative_32(address); }

/* Read from the program space */
inline uint32_t m68ki_read_program_8(uint32_t address)  { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
inline uint32_t m68ki_read_program_16(uint32_t address) { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }
inline uint32_t m68ki_read_program_32(uint32_t address) { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_PROGRAM); }

/* Read from the data space */
inline uint32_t m68ki_read_data_8(uint32_t address)     { return m68ki_read_8_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_data_16(uint32_t address)    { return m68ki_read_16_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }
inline uint32_t m68ki_read_data_32(uint32_t address)    { return m68ki_read_32_fc(address, m_s_flag | FUNCTION_CODE_USER_DATA); }



/* ======================================================================== */
/* =============================== PROTOTYPES ============================= */
/* ======================================================================== */

void set_irq_line(int irqline, int state);

void m68k_cause_bus_error();



static const uint8_t    m68ki_shift_8_table[65];
static const uint16_t   m68ki_shift_16_table[65];
static const uint32_t   m68ki_shift_32_table[65];
static const uint8_t    m68ki_exception_cycle_table[7][256];
static const uint8_t    m68ki_ea_idx_cycle_table[64];

/* ======================================================================== */
/* =========================== UTILITY FUNCTIONS ========================== */
/* ======================================================================== */


inline unsigned int m68k_read_pcrelative_8(unsigned int address)
{
	return ((m_readimm16(address&~1)>>(8*(1-(address & 1))))&0xff);
}

inline unsigned int m68k_read_pcrelative_16(unsigned int address)
{
	if (!WORD_ALIGNED(address))
		return
			(m_readimm16(address-1) << 8) |
			(m_readimm16(address+1) >> 8);

	else
		return
			(m_readimm16(address  )      );
}

inline unsigned int m68k_read_pcrelative_32(unsigned int address)
{
	if (!WORD_ALIGNED(address))
		return
			(m_readimm16(address-1) << 24) |
			(m_readimm16(address+1) << 8)  |
			(m_readimm16(address+3) >> 8);

	else
		return
			(m_readimm16(address  ) << 16) |
			(m_readimm16(address+2)      );
}


/* Special call to simulate undocumented 68k behavior when move.l with a
 * predecrement destination mode is executed.
 * A real 68k first writes the high word to [address+2], and then writes the
 * low word to [address].
 */
inline void m68kx_write_memory_32_pd(unsigned int address, unsigned int value)
{
	m_write16(address+2, value>>16);
	m_write16(address, value&0xffff);
}


/* ---------------------------- Read Immediate ---------------------------- */

// clear the instruction cache
inline void m68ki_ic_clear()
{
	int i;
	for (i=0; i< M68K_IC_SIZE; i++) {
		m_ic_address[i] = ~0;
	}
}

// read immediate word using the instruction cache

inline uint32_t m68ki_ic_readimm16(uint32_t address)
{
	if (m_cacr & M68K_CACR_EI)
	{
		// 68020 series I-cache (MC68020 User's Manual, Section 4 - On-Chip Cache Memory)
		if (m_cpu_type & (CPU_TYPE_EC020 | CPU_TYPE_020))
		{
			uint32_t tag = (address >> 8) | (m_s_flag ? 0x1000000 : 0);
			int idx = (address >> 2) & 0x3f;    // 1-of-64 select

			// do a cache fill if the line is invalid or the tags don't match
			if ((!m_ic_valid[idx]) || (m_ic_address[idx] != tag))
			{
				// if the cache is frozen, don't update it
				if (m_cacr & M68K_CACR_FI)
				{
					return m_readimm16(address);
				}

				uint32_t data = m_read32(address & ~3);

				//printf("m68k: doing cache fill at %08x (tag %08x idx %d)\n", address, tag, idx);

				// if no buserror occurred, validate the tag
				if (!m_mmu_tmp_buserror_occurred)
				{
					m_ic_address[idx] = tag;
					m_ic_data[idx] = data;
					m_ic_valid[idx] = true;
				}
				else
				{
					return m_readimm16(address);
				}
			}

			// at this point, the cache is guaranteed to be valid, either as
			// a hit or because we just filled it.
			if (address & 2)
			{
				return m_ic_data[idx] & 0xffff;
			}
			else
			{
				return m_ic_data[idx] >> 16;
			}
		}
	}

	return m_readimm16(address);
}

/* Handles all immediate reads, does address error check, function code setting,
 * and prefetching if they are enabled in m68kconf.h
 */
inline uint32_t m68ki_read_imm_16()
{
	uint32_t result;

	m_mmu_tmp_fc = m_s_flag | FUNCTION_CODE_USER_PROGRAM;
	m_mmu_tmp_rw = 1;

	m68ki_check_address_error(m_pc, MODE_READ, m_s_flag | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */

	if (m_pc != m_pref_addr)
	{
		m_pref_data = m68ki_ic_readimm16(m_pc);
		m_pref_addr = m_mmu_tmp_buserror_occurred ? ~0 : m_pc;
	}
	result = MASK_OUT_ABOVE_16(m_pref_data);
	m_pc += 2;
	if (!m_mmu_tmp_buserror_occurred) {
		// prefetch only if no bus error occurred in opcode fetch
		m_pref_data = m68ki_ic_readimm16(m_pc);
		m_pref_addr = m_mmu_tmp_buserror_occurred ? ~0 : m_pc;
		// ignore bus error on prefetch
		m_mmu_tmp_buserror_occurred = 0;
	}

	return result;
}

inline uint32_t m68ki_read_imm_32()
{
	uint32_t temp_val;

	m_mmu_tmp_fc = m_s_flag | FUNCTION_CODE_USER_PROGRAM;
	m_mmu_tmp_rw = 1;

	m68ki_check_address_error(m_pc, MODE_READ, m_s_flag | FUNCTION_CODE_USER_PROGRAM); /* auto-disable (see m68kcpu.h) */

	if(m_pc != m_pref_addr)
	{
		m_pref_addr = m_pc;
		m_pref_data = m68ki_ic_readimm16(m_pref_addr);
	}
	temp_val = MASK_OUT_ABOVE_16(m_pref_data);
	m_pc += 2;
	m_pref_addr = m_pc;
	m_pref_data = m68ki_ic_readimm16(m_pref_addr);

	temp_val = MASK_OUT_ABOVE_32((temp_val << 16) | MASK_OUT_ABOVE_16(m_pref_data));
	m_pc += 2;
	m_pref_data = m68ki_ic_readimm16(m_pc);
	m_pref_addr = m_mmu_tmp_buserror_occurred ? ~0 : m_pc;

	return temp_val;
}



/* ------------------------- Top level read/write ------------------------- */

/* Handles all memory accesses (except for immediate reads if they are
 * configured to use separate functions in m68kconf.h).
 * All memory accesses must go through these top level functions.
 * These functions will also check for address error and set the function
 * code if they are enabled in m68kconf.h.
 */
inline uint32_t m68ki_read_8_fc(uint32_t address, uint32_t fc)
{
	m_mmu_tmp_fc = fc;
	m_mmu_tmp_rw = 1;
	return m_read8(address);
}
inline uint32_t m68ki_read_16_fc(uint32_t address, uint32_t fc)
{
	if (CPU_TYPE_IS_010_LESS())
	{
		m68ki_check_address_error(address, MODE_READ, fc);
	}
	m_mmu_tmp_fc = fc;
	m_mmu_tmp_rw = 1;
	return m_read16(address);
}
inline uint32_t m68ki_read_32_fc(uint32_t address, uint32_t fc)
{
	if (CPU_TYPE_IS_010_LESS())
	{
		m68ki_check_address_error(address, MODE_READ, fc);
	}
	m_mmu_tmp_fc = fc;
	m_mmu_tmp_rw = 1;
	return m_read32(address);
}

inline void m68ki_write_8_fc(uint32_t address, uint32_t fc, uint32_t value)
{
	m_mmu_tmp_fc = fc;
	m_mmu_tmp_rw = 0;
	m_write8(address, value);
}
inline void m68ki_write_16_fc(uint32_t address, uint32_t fc, uint32_t value)
{
	if (CPU_TYPE_IS_010_LESS())
	{
		m68ki_check_address_error(address, MODE_WRITE, fc);
	}
	m_mmu_tmp_fc = fc;
	m_mmu_tmp_rw = 0;
	m_write16(address, value);
}
inline void m68ki_write_32_fc(uint32_t address, uint32_t fc, uint32_t value)
{
	if (CPU_TYPE_IS_010_LESS())
	{
		m68ki_check_address_error(address, MODE_WRITE, fc);
	}
	m_mmu_tmp_fc = fc;
	m_mmu_tmp_rw = 0;
	m_write32(address, value);
}

/* Special call to simulate undocumented 68k behavior when move.l with a
 * predecrement destination mode is executed.
 * A real 68k first writes the high word to [address+2], and then writes the
 * low word to [address].
 */
inline void m68ki_write_32_pd_fc(uint32_t address, uint32_t fc, uint32_t value)
{
	if (CPU_TYPE_IS_010_LESS())
	{
		m68ki_check_address_error(address, MODE_WRITE, fc);
	}
	m_mmu_tmp_fc = fc;
	m_mmu_tmp_rw = 0;
	m_write16(address+2, value>>16);
	m_write16(address, value&0xffff);
}


/* --------------------- Effective Address Calculation -------------------- */

/* The program counter relative addressing modes cause operands to be
 * retrieved from program space, not data space.
 */
inline uint32_t m68ki_get_ea_pcdi()
{
	uint32_t old_pc = m_pc;
	return old_pc + MAKE_INT_16(m68ki_read_imm_16());
}


inline uint32_t m68ki_get_ea_pcix()
{
	return m68ki_get_ea_ix(m_pc);
}

/* Indexed addressing modes are encoded as follows:
 *
 * Base instruction format:
 * F E D C B A 9 8 7 6 | 5 4 3 | 2 1 0
 * x x x x x x x x x x | 1 1 0 | BASE REGISTER      (An)
 *
 * Base instruction format for destination EA in move instructions:
 * F E D C | B A 9    | 8 7 6 | 5 4 3 2 1 0
 * x x x x | BASE REG | 1 1 0 | X X X X X X       (An)
 *
 * Brief extension format:
 *  F  |  E D C   |  B  |  A 9  | 8 | 7 6 5 4 3 2 1 0
 * D/A | REGISTER | W/L | SCALE | 0 |  DISPLACEMENT
 *
 * Full extension format:
 *  F     E D C      B     A 9    8   7    6    5 4       3   2 1 0
 * D/A | REGISTER | W/L | SCALE | 1 | BS | IS | BD SIZE | 0 | I/IS
 * BASE DISPLACEMENT (0, 16, 32 bit)                (bd)
 * OUTER DISPLACEMENT (0, 16, 32 bit)               (od)
 *
 * D/A:     0 = Dn, 1 = An                          (Xn)
 * W/L:     0 = W (sign extend), 1 = L              (.SIZE)
 * SCALE:   00=1, 01=2, 10=4, 11=8                  (*SCALE)
 * BS:      0=add base reg, 1=suppress base reg     (An suppressed)
 * IS:      0=add index, 1=suppress index           (Xn suppressed)
 * BD SIZE: 00=reserved, 01=NULL, 10=Word, 11=Long  (size of bd)
 *
 * IS I/IS Operation
 * 0  000  No Memory Indirect
 * 0  001  indir prex with null outer
 * 0  010  indir prex with word outer
 * 0  011  indir prex with long outer
 * 0  100  reserved
 * 0  101  indir postx with null outer
 * 0  110  indir postx with word outer
 * 0  111  indir postx with long outer
 * 1  000  no memory indirect
 * 1  001  mem indir with null outer
 * 1  010  mem indir with word outer
 * 1  011  mem indir with long outer
 * 1  100-111  reserved
 */
inline uint32_t m68ki_get_ea_ix(uint32_t An)
{
	/* An = base register */
	uint32_t extension = m68ki_read_imm_16();
	uint32_t Xn = 0;                        /* Index register */
	uint32_t bd = 0;                        /* Base Displacement */
	uint32_t od = 0;                        /* Outer Displacement */

	if(CPU_TYPE_IS_010_LESS())
	{
		/* Calculate index */
		Xn = REG_DA()[extension>>12];     /* Xn */
		if(!BIT_B(extension))           /* W/L */
			Xn = MAKE_INT_16(Xn);

		/* Add base register and displacement and return */
		return An + Xn + MAKE_INT_8(extension);
	}

	/* Brief extension format */
	if(!BIT_8(extension))
	{
		/* Calculate index */
		Xn = REG_DA()[extension>>12];     /* Xn */
		if(!BIT_B(extension))           /* W/L */
			Xn = MAKE_INT_16(Xn);
		/* Add scale if proper CPU type */
		if(CPU_TYPE_IS_EC020_PLUS())
			Xn <<= (extension>>9) & 3;  /* SCALE */

		/* Add base register and displacement and return */
		return An + Xn + MAKE_INT_8(extension);
	}

	/* Full extension format */

	m_remaining_cycles -= m68ki_ea_idx_cycle_table[extension&0x3f];

	/* Check if base register is present */
	if(BIT_7(extension))                /* BS */
		An = 0;                         /* An */

	/* Check if index is present */
	if(!BIT_6(extension))               /* IS */
	{
		Xn = REG_DA()[extension>>12];     /* Xn */
		if(!BIT_B(extension))           /* W/L */
			Xn = MAKE_INT_16(Xn);
		Xn <<= (extension>>9) & 3;      /* SCALE */
	}

	/* Check if base displacement is present */
	if(BIT_5(extension))                /* BD SIZE */
		bd = BIT_4(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());

	/* If no indirect action, we are done */
	if(!(extension&7))                  /* No Memory Indirect */
		return An + bd + Xn;

	/* Check if outer displacement is present */
	if(BIT_1(extension))                /* I/IS:  od */
		od = BIT_0(extension) ? m68ki_read_imm_32() : MAKE_INT_16(m68ki_read_imm_16());

	/* Postindex */
	if(BIT_2(extension))                /* I/IS:  0 = preindex, 1 = postindex */
		return m68ki_read_32(An + bd) + Xn + od;

	/* Preindex */
	return m68ki_read_32(An + bd + Xn) + od;
}


/* Fetch operands */
inline uint32_t OPER_AY_AI_8()  {uint32_t ea = EA_AY_AI_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AY_AI_16() {uint32_t ea = EA_AY_AI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_AI_32() {uint32_t ea = EA_AY_AI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_PI_8()  {uint32_t ea = EA_AY_PI_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AY_PI_16() {uint32_t ea = EA_AY_PI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_PI_32() {uint32_t ea = EA_AY_PI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_PD_8()  {uint32_t ea = EA_AY_PD_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AY_PD_16() {uint32_t ea = EA_AY_PD_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_PD_32() {uint32_t ea = EA_AY_PD_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_DI_8()  {uint32_t ea = EA_AY_DI_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AY_DI_16() {uint32_t ea = EA_AY_DI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_DI_32() {uint32_t ea = EA_AY_DI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AY_IX_8()  {uint32_t ea = EA_AY_IX_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AY_IX_16() {uint32_t ea = EA_AY_IX_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AY_IX_32() {uint32_t ea = EA_AY_IX_32(); return m68ki_read_32(ea);}

inline uint32_t OPER_AX_AI_8()  {uint32_t ea = EA_AX_AI_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AX_AI_16() {uint32_t ea = EA_AX_AI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_AI_32() {uint32_t ea = EA_AX_AI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_PI_8()  {uint32_t ea = EA_AX_PI_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AX_PI_16() {uint32_t ea = EA_AX_PI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_PI_32() {uint32_t ea = EA_AX_PI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_PD_8()  {uint32_t ea = EA_AX_PD_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AX_PD_16() {uint32_t ea = EA_AX_PD_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_PD_32() {uint32_t ea = EA_AX_PD_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_DI_8()  {uint32_t ea = EA_AX_DI_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AX_DI_16() {uint32_t ea = EA_AX_DI_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_DI_32() {uint32_t ea = EA_AX_DI_32(); return m68ki_read_32(ea);}
inline uint32_t OPER_AX_IX_8()  {uint32_t ea = EA_AX_IX_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_AX_IX_16() {uint32_t ea = EA_AX_IX_16(); return m68ki_read_16(ea);}
inline uint32_t OPER_AX_IX_32() {uint32_t ea = EA_AX_IX_32(); return m68ki_read_32(ea);}

inline uint32_t OPER_A7_PI_8()  {uint32_t ea = EA_A7_PI_8();  return m68ki_read_8(ea); }
inline uint32_t OPER_A7_PD_8()  {uint32_t ea = EA_A7_PD_8();  return m68ki_read_8(ea); }

inline uint32_t OPER_AW_8()     {uint32_t ea = EA_AW_8();     return m68ki_read_8(ea); }
inline uint32_t OPER_AW_16()    {uint32_t ea = EA_AW_16();    return m68ki_read_16(ea);}
inline uint32_t OPER_AW_32()    {uint32_t ea = EA_AW_32();    return m68ki_read_32(ea);}
inline uint32_t OPER_AL_8()     {uint32_t ea = EA_AL_8();     return m68ki_read_8(ea); }
inline uint32_t OPER_AL_16()    {uint32_t ea = EA_AL_16();    return m68ki_read_16(ea);}
inline uint32_t OPER_AL_32()    {uint32_t ea = EA_AL_32();    return m68ki_read_32(ea);}
inline uint32_t OPER_PCDI_8()   {uint32_t ea = EA_PCDI_8();   return m68ki_read_pcrel_8(ea); }
inline uint32_t OPER_PCDI_16()  {uint32_t ea = EA_PCDI_16();  return m68ki_read_pcrel_16(ea);}
inline uint32_t OPER_PCDI_32()  {uint32_t ea = EA_PCDI_32();  return m68ki_read_pcrel_32(ea);}
inline uint32_t OPER_PCIX_8()   {uint32_t ea = EA_PCIX_8();   return m68ki_read_pcrel_8(ea); }
inline uint32_t OPER_PCIX_16()  {uint32_t ea = EA_PCIX_16();  return m68ki_read_pcrel_16(ea);}
inline uint32_t OPER_PCIX_32()  {uint32_t ea = EA_PCIX_32();  return m68ki_read_pcrel_32(ea);}



/* ---------------------------- Stack Functions --------------------------- */

/* Push/pull data from the stack */
inline void m68ki_push_16(uint32_t value)
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 2);
	m68ki_write_16(REG_SP(), value);
}

inline void m68ki_push_32(uint32_t value)
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 4);
	m68ki_write_32(REG_SP(), value);
}

inline uint32_t m68ki_pull_16()
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 2);
	return m68ki_read_16(REG_SP()-2);
}

inline uint32_t m68ki_pull_32()
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 4);
	return m68ki_read_32(REG_SP()-4);
}


/* Increment/decrement the stack as if doing a push/pull but
 * don't do any memory access.
 */
inline void m68ki_fake_push_16()
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 2);
}

inline void m68ki_fake_push_32()
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() - 4);
}

inline void m68ki_fake_pull_16()
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 2);
}

inline void m68ki_fake_pull_32()
{
	REG_SP() = MASK_OUT_ABOVE_32(REG_SP() + 4);
}


/* ----------------------------- Program Flow ----------------------------- */

/* Jump to a new program location or vector.
 * These functions will also call the pc_changed callback if it was enabled
 * in m68kconf.h.
 */
inline void m68ki_jump(uint32_t new_pc)
{
	m_pc = new_pc;
}

inline void m68ki_jump_vector(uint32_t vector)
{
	m_pc = (vector<<2) + m_vbr;
	m_pc = m68ki_read_data_32(m_pc);
}


/* Branch to a new memory location.
 * The 32-bit branch will call pc_changed if it was enabled in m68kconf.h.
 * So far I've found no problems with not calling pc_changed for 8 or 16
 * bit branches.
 */
inline void m68ki_branch_8(uint32_t offset)
{
	m_pc += MAKE_INT_8(offset);
}

inline void m68ki_branch_16(uint32_t offset)
{
	m_pc += MAKE_INT_16(offset);
}

inline void m68ki_branch_32(uint32_t offset)
{
	m_pc += offset;
}



/* ---------------------------- Status Register --------------------------- */

/* Set the S flag and change the active stack pointer.
 * Note that value MUST be 4 or 0.
 */
inline void m68ki_set_s_flag(uint32_t value)
{
	/* Backup the old stack pointer */
	REG_SP_BASE()[m_s_flag | ((m_s_flag>>1) & m_m_flag)] = REG_SP();
	/* Set the S flag */
	m_s_flag = value;
	/* Set the new stack pointer */
	REG_SP() = REG_SP_BASE()[m_s_flag | ((m_s_flag>>1) & m_m_flag)];
}

/* Set the S and M flags and change the active stack pointer.
 * Note that value MUST be 0, 2, 4, or 6 (bit2 = S, bit1 = M).
 */
inline void m68ki_set_sm_flag(uint32_t value)
{
	/* Backup the old stack pointer */
	REG_SP_BASE()[m_s_flag | ((m_s_flag >> 1) & m_m_flag)] = REG_SP();
	/* Set the S and M flags */
	m_s_flag = value & SFLAG_SET;
	m_m_flag = value & MFLAG_SET;
	/* Set the new stack pointer */
	REG_SP() = REG_SP_BASE()[m_s_flag | ((m_s_flag>>1) & m_m_flag)];
}

/* Set the S and M flags.  Don't touch the stack pointer. */
inline void m68ki_set_sm_flag_nosp(uint32_t value)
{
	/* Set the S and M flags */
	m_s_flag = value & SFLAG_SET;
	m_m_flag = value & MFLAG_SET;
}


/* Set the condition code register */
inline void m68ki_set_ccr(uint32_t value)
{
	m_x_flag = BIT_4(value)<< 4;
	m_n_flag = BIT_3(value)<< 4;
	m_not_z_flag = !BIT_2(value);
	m_v_flag = BIT_1(value)<< 6;
	m_c_flag = BIT_0(value)<< 8;
}

/* Set the status register but don't check for interrupts */
inline void m68ki_set_sr_noint(uint32_t value)
{
	/* Mask out the "unimplemented" bits */
	value &= m_sr_mask;

	/* Now set the status register */
	m_t1_flag = BIT_F(value);
	m_t0_flag = BIT_E(value);
	m_int_mask = value & 0x0700;
	m68ki_set_ccr(value);
	m68ki_set_sm_flag((value >> 11) & 6);
}

/* Set the status register but don't check for interrupts nor
 * change the stack pointer
 */
inline void m68ki_set_sr_noint_nosp(uint32_t value)
{
	/* Mask out the "unimplemented" bits */
	value &= m_sr_mask;

	/* Now set the status register */
	m_t1_flag = BIT_F(value);
	m_t0_flag = BIT_E(value);
	m_int_mask = value & 0x0700;
	m68ki_set_ccr(value);
	m68ki_set_sm_flag_nosp((value >> 11) & 6);
}

/* Set the status register and check for interrupts */
inline void m68ki_set_sr(uint32_t value)
{
	m68ki_set_sr_noint(value);
	m68ki_check_interrupts();
}


/* ------------------------- Exception Processing ------------------------- */

/* Initiate exception processing */
inline uint32_t m68ki_init_exception()
{
	/* Save the old status register */
	uint32_t sr = m68ki_get_sr();

	/* Turn off trace flag, clear pending traces */
	m_t1_flag = m_t0_flag = 0;
	m68ki_clear_trace();
	/* Enter supervisor mode */
	m68ki_set_s_flag(SFLAG_SET);

	return sr;
}

/* 3 word stack frame (68000 only) */
inline void m68ki_stack_frame_3word(uint32_t pc, uint32_t sr)
{
	m68ki_push_32(pc);
	m68ki_push_16(sr);
}

/* Format 0 stack frame.
 * This is the standard stack frame for 68010+.
 */
inline void m68ki_stack_frame_0000(uint32_t pc, uint32_t sr, uint32_t vector)
{
	/* Stack a 3-word frame if we are 68000 */
	if(m_cpu_type == CPU_TYPE_000 || m_cpu_type == CPU_TYPE_008)
	{
		m68ki_stack_frame_3word(pc, sr);
		return;
	}
	m68ki_push_16(vector<<2);
	m68ki_push_32(pc);
	m68ki_push_16(sr);
}

/* Format 1 stack frame (68020).
 * For 68020, this is the 4 word throwaway frame.
 */
inline void m68ki_stack_frame_0001(uint32_t pc, uint32_t sr, uint32_t vector)
{
	m68ki_push_16(0x1000 | (vector<<2));
	m68ki_push_32(pc);
	m68ki_push_16(sr);
}

/* Format 2 stack frame.
 * This is used only by 68020 for trap exceptions.
 */
inline void m68ki_stack_frame_0010(uint32_t sr, uint32_t vector)
{
	m68ki_push_32(m_ppc);
	m68ki_push_16(0x2000 | (vector<<2));
	m68ki_push_32(m_pc);
	m68ki_push_16(sr);
}


/* Bus error stack frame (68000 only).
 */
inline void m68ki_stack_frame_buserr(uint32_t sr)
{
	m68ki_push_32(m_pc);
	m68ki_push_16(sr);
	m68ki_push_16(m_ir);
	m68ki_push_32(m_aerr_address);    /* access address */
	/* 0 0 0 0 0 0 0 0 0 0 0 R/W I/N FC
	 * R/W  0 = write, 1 = read
	 * I/N  0 = instruction, 1 = not
	 * FC   3-bit function code
	 */
	m68ki_push_16(m_aerr_write_mode | m_instr_mode | m_aerr_fc);
}

/* Format 8 stack frame (68010).
 * 68010 only.  This is the 29 word bus/address error frame.
 */
inline void m68ki_stack_frame_1000(uint32_t pc, uint32_t sr, uint32_t vector)
{
	/* VERSION
	 * NUMBER
	 * INTERNAL INFORMATION, 16 WORDS
	 */
	m68ki_fake_push_32();
	m68ki_fake_push_32();
	m68ki_fake_push_32();
	m68ki_fake_push_32();
	m68ki_fake_push_32();
	m68ki_fake_push_32();
	m68ki_fake_push_32();
	m68ki_fake_push_32();

	/* INSTRUCTION INPUT BUFFER */
	m68ki_push_16(0);

	/* UNUSED, RESERVED (not written) */
	m68ki_fake_push_16();

	/* DATA INPUT BUFFER */
	m68ki_push_16(0);

	/* UNUSED, RESERVED (not written) */
	m68ki_fake_push_16();

	/* DATA OUTPUT BUFFER */
	m68ki_push_16(0);

	/* UNUSED, RESERVED (not written) */
	m68ki_fake_push_16();

	/* FAULT ADDRESS */
	m68ki_push_32(0);

	/* SPECIAL STATUS WORD */
	m68ki_push_16(0);

	/* 1000, VECTOR OFFSET */
	m68ki_push_16(0x8000 | (vector<<2));

	/* PROGRAM COUNTER */
	m68ki_push_32(pc);

	/* STATUS REGISTER */
	m68ki_push_16(sr);
}

/* Format A stack frame (short bus fault).
 * This is used only by 68020 for bus fault and address error
 * if the error happens at an instruction boundary.
 * PC stacked is address of next instruction.
 */
inline void m68ki_stack_frame_1010(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address)
{
	int orig_rw = m_mmu_tmp_buserror_rw;    // this gets splatted by the following pushes, so save it now
	int orig_fc = m_mmu_tmp_buserror_fc;

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* DATA OUTPUT BUFFER (2 words) */
	m68ki_push_32(0);

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* DATA CYCLE FAULT ADDRESS (2 words) */
	m68ki_push_32(fault_address);

	/* INSTRUCTION PIPE STAGE B */
	m68ki_push_16(0);

	/* INSTRUCTION PIPE STAGE C */
	m68ki_push_16(0);

	/* SPECIAL STATUS REGISTER */
	// set bit for: Rerun Faulted bus Cycle, or run pending prefetch
	// set FC
	m68ki_push_16(0x0100 | orig_fc | orig_rw<<6);

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* 1010, VECTOR OFFSET */
	m68ki_push_16(0xa000 | (vector<<2));

	/* PROGRAM COUNTER */
	m68ki_push_32(pc);

	/* STATUS REGISTER */
	m68ki_push_16(sr);
}

/* Format B stack frame (long bus fault).
 * This is used only by 68020 for bus fault and address error
 * if the error happens during instruction execution.
 * PC stacked is address of instruction in progress.
 */
inline void m68ki_stack_frame_1011(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address)
{
	int orig_rw = m_mmu_tmp_buserror_rw;    // this gets splatted by the following pushes, so save it now
	int orig_fc = m_mmu_tmp_buserror_fc;

	/* INTERNAL REGISTERS (18 words) */
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);

	/* VERSION# (4 bits), INTERNAL INFORMATION */
	m68ki_push_16(0);

	/* INTERNAL REGISTERS (3 words) */
	m68ki_push_32(0);
	m68ki_push_16(0);

	/* DATA INTPUT BUFFER (2 words) */
	m68ki_push_32(0);

	/* INTERNAL REGISTERS (2 words) */
	m68ki_push_32(0);

	/* STAGE B ADDRESS (2 words) */
	m68ki_push_32(0);

	/* INTERNAL REGISTER (4 words) */
	m68ki_push_32(0);
	m68ki_push_32(0);

	/* DATA OUTPUT BUFFER (2 words) */
	m68ki_push_32(0);

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* DATA CYCLE FAULT ADDRESS (2 words) */
	m68ki_push_32(fault_address);

	/* INSTRUCTION PIPE STAGE B */
	m68ki_push_16(0);

	/* INSTRUCTION PIPE STAGE C */
	m68ki_push_16(0);

	/* SPECIAL STATUS REGISTER */
	m68ki_push_16(0x0100 | orig_fc | orig_rw<<6);

	/* INTERNAL REGISTER */
	m68ki_push_16(0);

	/* 1011, VECTOR OFFSET */
	m68ki_push_16(0xb000 | (vector<<2));

	/* PROGRAM COUNTER */
	m68ki_push_32(pc);

	/* STATUS REGISTER */
	m68ki_push_16(sr);
}

/* Type 7 stack frame (access fault).
 * This is used by the 68040 for bus fault and mmu trap
 * 30 words
 */
inline void m68ki_stack_frame_0111(uint32_t sr, uint32_t vector, uint32_t pc, uint32_t fault_address, bool in_mmu)
{
	int orig_rw = m_mmu_tmp_buserror_rw;    // this gets splatted by the following pushes, so save it now
	int orig_fc = m_mmu_tmp_buserror_fc;

	/* INTERNAL REGISTERS (18 words) */
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);
	m68ki_push_32(0);

	/* FAULT ADDRESS (2 words) */
	m68ki_push_32(fault_address);

	/* INTERNAL REGISTERS (3 words) */
	m68ki_push_32(0);
	m68ki_push_16(0);

	/* SPECIAL STATUS REGISTER (1 word) */
	m68ki_push_16((in_mmu ? 0x400 : 0) | orig_fc | (orig_rw<<8));

	/* EFFECTIVE ADDRESS (2 words) */
	m68ki_push_32(fault_address);

	/* 0111, VECTOR OFFSET (1 word) */
	m68ki_push_16(0x7000 | (vector<<2));

	/* PROGRAM COUNTER (2 words) */
	m68ki_push_32(pc);

	/* STATUS REGISTER (1 word) */
	m68ki_push_16(sr);
}


/* Used for Group 2 exceptions.
 * These stack a type 2 frame on the 020.
 */
inline void m68ki_exception_trap(uint32_t vector)
{
	uint32_t sr = m68ki_init_exception();

	if(CPU_TYPE_IS_010_LESS())
		m68ki_stack_frame_0000(m_pc, sr, vector);
	else
		m68ki_stack_frame_0010(sr, vector);

	m68ki_jump_vector(vector);

	/* Use up some clock cycles */
	m_remaining_cycles -= m_cyc_exception[vector];
}

/* Trap#n stacks a 0 frame but behaves like group2 otherwise */
inline void m68ki_exception_trapN(uint32_t vector)
{
	uint32_t sr = m68ki_init_exception();
	m68ki_stack_frame_0000(m_pc, sr, vector);
	m68ki_jump_vector(vector);

	/* Use up some clock cycles */
	m_remaining_cycles -= m_cyc_exception[vector];
}

/* Exception for trace mode */
inline void m68ki_exception_trace()
{
	uint32_t sr = m68ki_init_exception();

	if(CPU_TYPE_IS_010_LESS())
	{
		if(CPU_TYPE_IS_000())
		{
			m_instr_mode = INSTRUCTION_NO;
		}
		m68ki_stack_frame_0000(m_pc, sr, EXCEPTION_TRACE);
	}
	else
		m68ki_stack_frame_0010(sr, EXCEPTION_TRACE);

	m68ki_jump_vector(EXCEPTION_TRACE);

	/* Trace nullifies a STOP instruction */
	m_stopped &= ~STOP_LEVEL_STOP;

	/* Use up some clock cycles */
	m_remaining_cycles -= m_cyc_exception[EXCEPTION_TRACE];
}

/* Exception for privilege violation */
inline void m68ki_exception_privilege_violation()
{
	uint32_t sr = m68ki_init_exception();

	if(CPU_TYPE_IS_000())
	{
		m_instr_mode = INSTRUCTION_NO;
	}

	m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_PRIVILEGE_VIOLATION);
	m68ki_jump_vector(EXCEPTION_PRIVILEGE_VIOLATION);

	/* Use up some clock cycles and undo the instruction's cycles */
	m_remaining_cycles -= m_cyc_exception[EXCEPTION_PRIVILEGE_VIOLATION] - m_cyc_instruction[m_ir];
}

/* Exception for A-Line instructions */
inline void m68ki_exception_1010()
{
	uint32_t sr;

	sr = m68ki_init_exception();
	m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_1010);
	m68ki_jump_vector(EXCEPTION_1010);

	/* Use up some clock cycles and undo the instruction's cycles */
	m_remaining_cycles -= m_cyc_exception[EXCEPTION_1010] - m_cyc_instruction[m_ir];
}

/* Exception for F-Line instructions */
inline void m68ki_exception_1111()
{
	uint32_t sr;

	sr = m68ki_init_exception();
	m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_1111);
	m68ki_jump_vector(EXCEPTION_1111);

	/* Use up some clock cycles and undo the instruction's cycles */
	m_remaining_cycles -= m_cyc_exception[EXCEPTION_1111] - m_cyc_instruction[m_ir];
}

/* Exception for illegal instructions */
inline void m68ki_exception_illegal()
{
	uint32_t sr;

	sr = m68ki_init_exception();

	if(CPU_TYPE_IS_000())
	{
		m_instr_mode = INSTRUCTION_NO;
	}

	m68ki_stack_frame_0000(m_ppc, sr, EXCEPTION_ILLEGAL_INSTRUCTION);
	m68ki_jump_vector(EXCEPTION_ILLEGAL_INSTRUCTION);

	/* Use up some clock cycles and undo the instruction's cycles */
	m_remaining_cycles -= m_cyc_exception[EXCEPTION_ILLEGAL_INSTRUCTION] - m_cyc_instruction[m_ir];
}

/* Exception for format errror in RTE */
inline void m68ki_exception_format_error()
{
	uint32_t sr = m68ki_init_exception();
	m68ki_stack_frame_0000(m_pc, sr, EXCEPTION_FORMAT_ERROR);
	m68ki_jump_vector(EXCEPTION_FORMAT_ERROR);

	/* Use up some clock cycles and undo the instruction's cycles */
	m_remaining_cycles -= m_cyc_exception[EXCEPTION_FORMAT_ERROR] - m_cyc_instruction[m_ir];
}

/* Exception for address error */
inline void m68ki_exception_address_error()
{
	uint32_t sr = m68ki_init_exception();

	/* If we were processing a bus error, address error, or reset,
	 * this is a catastrophic failure.
	 * Halt the CPU
	 */
	if(m_run_mode == RUN_MODE_BERR_AERR_RESET_WSF)
	{
		m_read8(0x00ffff01);
		m_stopped = STOP_LEVEL_HALT;
		return;
	}

	m_run_mode = RUN_MODE_BERR_AERR_RESET_WSF;

	if (!CPU_TYPE_IS_010_PLUS())
	{
		/* Note: This is implemented for 68000 only! */
		m68ki_stack_frame_buserr(sr);
	}
	else if (CPU_TYPE_IS_010())
	{
		/* only the 68010 throws this unique type-1000 frame */
		m68ki_stack_frame_1000(m_ppc, sr, EXCEPTION_BUS_ERROR);
	}
	else if (m_mmu_tmp_buserror_address == m_ppc)
	{
		m68ki_stack_frame_1010(sr, EXCEPTION_BUS_ERROR, m_ppc, m_mmu_tmp_buserror_address);
	}
	else
	{
		m68ki_stack_frame_1011(sr, EXCEPTION_BUS_ERROR, m_ppc, m_mmu_tmp_buserror_address);
	}

	m68ki_jump_vector(EXCEPTION_ADDRESS_ERROR);

	m_run_mode = RUN_MODE_BERR_AERR_RESET;

	/* Use up some clock cycles and undo the instruction's cycles */
	m_remaining_cycles -= m_cyc_exception[EXCEPTION_ADDRESS_ERROR] - m_cyc_instruction[m_ir];
}



/* ASG: Check for interrupts */
inline void m68ki_check_interrupts()
{
	if(m_nmi_pending)
	{
		m_nmi_pending = false;
		m68ki_exception_interrupt(7);
	}
	else if(m_int_level > m_int_mask)
		m68ki_exception_interrupt(m_int_level>>8);
}



/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */

#endif // MAME_CPU_M68000_M68KCPU_H