summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/cpu/clipper/clipper.cpp
blob: e59a20ffc45b96cc0af79f0ea5e7b69d2d51bdbc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
// license:BSD-3-Clause
// copyright-holders:Patrick Mackinlay

/*
 * An implementation of the Fairchild/Intergraph CLIPPER CPU family.
 *
 * Primary source: http://bitsavers.org/pdf/fairchild/clipper/Clipper_Instruction_Set_Oct85.pdf
 *
 * TODO:
 *   - unimplemented C400 instructions (cdb, cnvx[ds]w, loadts, waitd)
 *   - correct boot logic
 *   - instruction timing
 *   - big endian support (not present in the wild)
 */

#include "emu.h"
#include "clipper.h"
#include "clipperd.h"

#define LOG_GENERAL   (1U << 0)
#define LOG_EXCEPTION (1U << 1)
#define LOG_SYSCALLS  (1U << 2)

//#define VERBOSE (LOG_GENERAL | LOG_EXCEPTION)
#define VERBOSE (LOG_SYSCALLS)

#include "logmacro.h"

// convenience macros for frequently used instruction fields
#define R1 (m_info.r1)
#define R2 (m_info.r2)

#define BIT31(x) BIT(x, 31)
#define BIT63(x) BIT(x, 63)

// macros for computing and setting condition codes
#define FLAGS(C,V,Z,N) \
	m_psw = (m_psw & ~(PSW_C | PSW_V | PSW_Z | PSW_N)) | (((C) << 3) | ((V) << 2) | ((Z) << 1) | ((N) << 0))

#define FLAGS_ADD(op2, op1, result) FLAGS(                                        \
	(BIT31(op2) && BIT31(op1)) || (!BIT31(result) && (BIT31(op2) || BIT31(op1))), \
	(BIT31(op2) == BIT31(op1)) && (BIT31(result) != BIT31(op2)),                  \
	result == 0, BIT31(result))

#define FLAGS_SUB(op2, op1, result) FLAGS(                                         \
	(!BIT31(op2) && BIT31(op1)) || (BIT31(result) && (!BIT31(op2) || BIT31(op1))), \
	(BIT31(op2) != BIT31(op1)) && (BIT31(result) != BIT31(op2)),                   \
	result == 0, BIT31(result))

DEFINE_DEVICE_TYPE(CLIPPER_C100, clipper_c100_device, "clipper_c100", "C100 CLIPPER")
DEFINE_DEVICE_TYPE(CLIPPER_C300, clipper_c300_device, "clipper_c300", "C300 CLIPPER")
DEFINE_DEVICE_TYPE(CLIPPER_C400, clipper_c400_device, "clipper_c400", "C400 CLIPPER")

clipper_c100_device::clipper_c100_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock)
	: clipper_device(mconfig, CLIPPER_C100, tag, owner, clock, ENDIANNESS_LITTLE, SSW_ID_C1R1)
	, m_icammu(*this, "^cammu_i")
	, m_dcammu(*this, "^cammu_d")
{
}

clipper_c300_device::clipper_c300_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock)
	: clipper_device(mconfig, CLIPPER_C300, tag, owner, clock, ENDIANNESS_LITTLE, SSW_ID_C3R1)
	, m_icammu(*this, "^cammu_i")
	, m_dcammu(*this, "^cammu_d")
{
}

clipper_c400_device::clipper_c400_device(const machine_config &mconfig, const char *tag, device_t *owner, u32 clock)
	: clipper_device(mconfig, CLIPPER_C400, tag, owner, clock, ENDIANNESS_LITTLE, SSW_ID_C4R4)
	, m_db_pc(0)
	, m_cammu(*this, "^cammu")
{
}

clipper_device::clipper_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, u32 clock, const endianness_t endianness, const u32 cpuid)
	: cpu_device(mconfig, type, tag, owner, clock)
	, m_main_config("main", endianness, 32, 32, 0)
	, m_io_config("io", endianness, 32, 32, 0)
	, m_boot_config("boot", endianness, 32, 32, 0)
	, m_icount(0)
	, m_psw(endianness == ENDIANNESS_BIG ? PSW_BIG : 0)
	, m_ssw(cpuid)
	, m_r(m_rs)
	, m_ru{0}
	, m_rs{0}
	, m_f{0}
	, m_fp_pc(0)
	, m_fp_dst(0)
	, m_info{0}
{
}

// rotate helpers to replace MSVC intrinsics
inline u32 rotl32(u32 x, u8 shift)
{
  shift &= 31;
  return (x << shift) | (x >> ((32 - shift) & 31));
}

inline u32 rotr32(u32 x, u8 shift)
{
  shift &= 31;
  return (x >> shift) | (x << ((32 - shift) & 31));
}

inline u64 rotl64(u64 x, u8 shift)
{
  shift &= 63;
  return (x << shift) | (x >> ((64 - shift) & 63));
}

inline u64 rotr64(u64 x, u8 shift)
{
  shift &= 63;
  return (x >> shift) | (x << ((64 - shift) & 63));
}

void clipper_device::device_start()
{
	// configure the cammu address spaces
	get_dcammu().set_spaces(space(0), space(1), space(2));
	get_icammu().set_spaces(space(0), space(1), space(2));

	// set our instruction counter
	set_icountptr(m_icount);

	// program-visible cpu state
	save_item(NAME(m_pc));
	save_item(NAME(m_psw));
	save_item(NAME(m_ssw));
	save_item(NAME(m_ru));
	save_item(NAME(m_rs));
	save_item(NAME(m_f));
	save_item(NAME(m_fp_pc));
	save_item(NAME(m_fp_dst));

	// non-visible cpu state
	save_item(NAME(m_wait));
	save_item(NAME(m_nmi));
	save_item(NAME(m_irq));
	save_item(NAME(m_ivec));
	save_item(NAME(m_exception));

	state_add(STATE_GENPC, "GENPC", m_pc).noshow();
	state_add(STATE_GENPCBASE, "CURPC", m_pc).noshow();
	state_add(STATE_GENFLAGS, "GENFLAGS", m_psw).mask(0xf).formatstr("%4s").noshow();

	state_add(CLIPPER_PC, "pc", m_pc);
	state_add(CLIPPER_PSW, "psw", m_psw);
	state_add(CLIPPER_SSW, "ssw", m_ssw);

	// integer regsters
	for (int i = 0; i < get_ireg_count(); i++)
		state_add(CLIPPER_UREG + i, util::string_format("ur%d", i).c_str(), m_ru[i]);
	for (int i = 0; i < get_ireg_count(); i++)
		state_add(CLIPPER_SREG + i, util::string_format("sr%d", i).c_str(), m_rs[i]);

	// floating point registers
	for (int i = 0; i < get_freg_count(); i++)
		state_add(CLIPPER_FREG + i, util::string_format("f%d", i).c_str(), m_f[i]);
}

void clipper_c400_device::device_start()
{
	clipper_device::device_start();

	save_item(NAME(m_db_pc));
}

void clipper_device::device_reset()
{
	/*
	 * From C300 documentation, on reset:
	 *   psw: T cleared, BIG set from hardware, others undefined
	 *   ssw: EI, TP, M, U, K, KU, UU, P cleared, ID set from hardware, others undefined
	 */

	// clear the psw and ssw
	set_psw(0);
	set_ssw(0);

	// FIXME: figure out how to branch to the boot code properly
	m_pc = 0x7f100000;

	m_wait = false;
	m_nmi = CLEAR_LINE;
	m_irq = CLEAR_LINE;
	m_ivec = 0;
	m_exception = 0;
}

void clipper_device::state_string_export(const device_state_entry &entry, std::string &str) const
{
	switch (entry.index())
	{
	case STATE_GENFLAGS:
		str = string_format("%c%c%c%c",
			PSW(C) ? 'C' : '.',
			PSW(V) ? 'V' : '.',
			PSW(Z) ? 'Z' : '.',
			PSW(N) ? 'N' : '.');
		break;
	}
}

void clipper_device::execute_run()
{
	// check for non-maskable and prioritised interrupts
	if (m_nmi)
	{
		// acknowledge non-maskable interrupt
		standard_irq_callback(INPUT_LINE_NMI);

		LOGMASKED(LOG_EXCEPTION, "non-maskable interrupt\n");
		m_pc = intrap(EXCEPTION_INTERRUPT_BASE, m_pc);
	}
	else if (SSW(EI) && m_irq)
	{
		LOGMASKED(LOG_EXCEPTION, "prioritised interrupt vector 0x%02x\n", m_ivec);

		// allow equal/higher priority interrupts
		if ((m_ivec & IVEC_LEVEL) <= SSW(IL))
		{
			// acknowledge interrupt
			standard_irq_callback(INPUT_LINE_IRQ0);

			m_pc = intrap(EXCEPTION_INTERRUPT_BASE + m_ivec * 8, m_pc);

			LOGMASKED(LOG_EXCEPTION, "transferring control to vector 0x%02x address 0x%08x\n", m_ivec, m_pc);
		}
	}

	while (m_icount > 0)
	{
		debugger_instruction_hook(m_pc);

		if (m_wait)
		{
			m_icount = 0;
			continue;
		}

		// fetch and decode an instruction
		if (decode_instruction())
		{
			softfloat_exceptionFlags = 0;

			// execute instruction
			execute_instruction();

			// check floating point exceptions
			if (softfloat_exceptionFlags)
				fp_exception();
		}

		if (m_exception)
		{
			debugger_exception_hook(m_exception);

			/*
			 * For traced instructions which are interrupted or cause traps, the TP
			 * flag is set by hardware when the interrupt or trap occurs to ensure
			 * that the trace trap will occur immediately after the interrupt or other
			 * trap has been serviced.
			 */
			// FIXME: don't know why/when the trace pending flag is needed
			if (PSW(T))
				m_ssw |= SSW_TP;

			switch (m_exception)
			{
				// data memory trap group
			case EXCEPTION_D_CORRECTED_MEMORY_ERROR:
			case EXCEPTION_D_UNCORRECTABLE_MEMORY_ERROR:
			case EXCEPTION_D_ALIGNMENT_FAULT:
			case EXCEPTION_D_PAGE_FAULT:
			case EXCEPTION_D_READ_PROTECT_FAULT:
			case EXCEPTION_D_WRITE_PROTECT_FAULT:

				// instruction memory trap group
			case EXCEPTION_I_CORRECTED_MEMORY_ERROR:
			case EXCEPTION_I_UNCORRECTABLE_MEMORY_ERROR:
			case EXCEPTION_I_ALIGNMENT_FAULT:
			case EXCEPTION_I_PAGE_FAULT:
			case EXCEPTION_I_EXECUTE_PROTECT_FAULT:

				// illegal operation trap group
			case EXCEPTION_ILLEGAL_OPERATION:
			case EXCEPTION_PRIVILEGED_INSTRUCTION:
				// return address is faulting instruction
				m_pc = intrap(m_exception, m_info.pc);
				break;

			default:
				// return address is following instruction
				m_pc = intrap(m_exception, m_pc);
				break;
			}
		}

		// FIXME: trace trap logic not working properly yet
		//else if (PSW(T))
		//  m_pc = intrap(EXCEPTION_TRACE, m_pc);

		// FIXME: some instructions take longer (significantly) than one cycle
		// and also the timings are often slower for the C100 and C300
		m_icount -= 4;
	}
}

void clipper_device::execute_set_input(int inputnum, int state)
{
	if (state)
		m_wait = false;

	switch (inputnum)
	{
	case INPUT_LINE_IRQ0:
		m_irq = state;
		break;

	case INPUT_LINE_NMI:
		m_nmi = state;
		break;
	}
}

device_memory_interface::space_config_vector clipper_device::memory_space_config() const
{
	return space_config_vector {
		std::make_pair(0, &m_main_config),
		std::make_pair(1, &m_io_config),
		std::make_pair(2, &m_boot_config)
	};
}

bool clipper_device::memory_translate(int spacenum, int intention, offs_t &address)
{
	return ((intention & TRANSLATE_TYPE_MASK) == TRANSLATE_FETCH ? get_icammu() : get_dcammu()).memory_translate(m_ssw, spacenum, intention, address);
}

void clipper_device::set_exception(u16 data)
{
	LOGMASKED(LOG_EXCEPTION, "external exception 0x%04x triggered\n", data);

	// check if corrected memory errors are masked
	if (!SSW(ECM) && (data == EXCEPTION_D_CORRECTED_MEMORY_ERROR || data == EXCEPTION_I_CORRECTED_MEMORY_ERROR))
		return;

	m_exception = data;
}

/*
 * Fetch and decode an instruction and compute an effective address (for
 * instructions with addressing modes). The results are contained in the m_info
 * structure to simplify passing between here and execute_instruction().
 */
bool clipper_device::decode_instruction()
{
	// record the current instruction address
	m_info.pc = m_pc;

	// fetch and decode the primary parcel
	if (!get_icammu().fetch<u16>(m_ssw, m_pc + 0, [this](u16 insn) {
		m_info.opcode = insn >> 8;
		m_info.subopcode = insn & 0xff;
		m_info.r1 = (insn & 0x00f0) >> 4;
		m_info.r2 = insn & 0x000f;
	}))
		return false;

	// initialise the other fields
	m_info.imm = 0;
	m_info.macro = 0;
	m_info.address = 0;

	// default instruction size is 2 bytes
	int size = 2;

	if ((m_info.opcode & 0xf8) == 0x38)
	{
		// fetch 16 bit immediate and sign extend
		if (!get_icammu().fetch<s16>(m_ssw, m_pc + 2, [this](s32 v) { m_info.imm = v; }))
			return false;
		size = 4;
	}
	else if ((m_info.opcode & 0xd3) == 0x83)
	{
		// instruction has an immediate operand, either 16 or 32 bit
		if (m_info.subopcode & 0x80)
		{
			// fetch 16 bit immediate and sign extend
			if (!get_icammu().fetch<s16>(m_ssw, m_pc + 2, [this](s32 v) { m_info.imm = v; }))
				return false;
			size = 4;
		}
		else
		{
			// fetch 32 bit immediate
			if (!get_icammu().fetch<u32>(m_ssw, m_pc + 2, [this](u32 v) { m_info.imm = v; }))
				return false;
			size = 6;
		}
	}
	else if ((m_info.opcode & 0xc0) == 0x40)
	{
		// instructions with addresses
		if (m_info.opcode & 0x01)
		{
			// instructions with complex modes
			switch (m_info.subopcode & 0xf0)
			{
			case ADDR_MODE_PC32:
				if (!get_icammu().fetch<u32>(m_ssw, m_pc + 2, [this](u32 v) { m_info.address = m_pc + v; }))
					return false;
				size = 6;
				break;

			case ADDR_MODE_ABS32:
				if (!get_icammu().fetch<u32>(m_ssw, m_pc + 2, [this](u32 v) { m_info.address = v; }))
					return false;
				size = 6;
				break;

			case ADDR_MODE_REL32:
				if (!get_icammu().fetch<u16>(m_ssw, m_pc + 2, [this](u16 v) { m_info.r2 = v & 0xf; }))
					return false;

				if (!get_icammu().fetch<u32>(m_ssw, m_pc + 4, [this](u32 v) { m_info.address = m_r[m_info.subopcode & 0xf] + v; }))
					return false;
				size = 8;
				break;

			case ADDR_MODE_PC16:
				if (!get_icammu().fetch<s16>(m_ssw, m_pc + 2, [this](s16 v) { m_info.address = m_pc + v; }))
					return false;
				size = 4;
				break;

			case ADDR_MODE_REL12:
				if (!get_icammu().fetch<s16>(m_ssw, m_pc + 2, [this](s16 v) {
					m_info.r2 = v & 0xf;
					m_info.address = m_r[m_info.subopcode & 0xf] + (v >> 4);
				}))
					return false;
				size = 4;
				break;

			case ADDR_MODE_ABS16:
				if (!get_icammu().fetch<s16>(m_ssw, m_pc + 2, [this](s32 v) { m_info.address = v; }))
					return false;
				size = 4;
				break;

			case ADDR_MODE_PCX:
				if (!get_icammu().fetch<u16>(m_ssw, m_pc + 2, [this](u16 v) {
					m_info.r2 = v & 0xf;
					m_info.address = m_pc + m_r[(v >> 4) & 0xf];
				}))
					return false;
				size = 4;
				break;

			case ADDR_MODE_RELX:
				if (!get_icammu().fetch<u16>(m_ssw, m_pc + 2, [this](u16 v) {
					m_info.r2 = v & 0xf;
					m_info.address = m_r[m_info.subopcode & 0xf] + m_r[(v >> 4) & 0xf];
				}))
					return false;
				size = 4;
				break;

			default:
				m_exception = EXCEPTION_ILLEGAL_OPERATION;
				return false;
			}
		}
		else
			// relative addressing mode
			m_info.address = m_r[m_info.r1];
	}
	else if ((m_info.opcode & 0xfd) == 0xb4)
	{
		// macro instructions
		if (!get_icammu().fetch<u16>(m_ssw, m_pc + 2, [this](u16 v) { m_info.macro = v; }))
			return false;
		size = 4;
	}

	// instruction fetch and decode complete
	m_pc = m_pc + size;

	return true;
}

void clipper_device::execute_instruction()
{
	switch (m_info.opcode)
	{
	case 0x00: // noop
		break;

	case 0x10:
		// movwp: move word to processor register
		// treated as a noop if target ssw in user mode
		// R1 == 3 means "fast" mode - avoids pipeline flush
		if (R1 == 0)
			set_psw(m_r[R2]);
		else if (!SSW(U) && (R1 == 1 || R1 == 3))
			set_ssw(m_r[R2]);
		// FLAGS: CVZN
		break;
	case 0x11:
		// movpw: move processor register to word
		switch (R1)
		{
		case 0: m_r[R2] = m_psw; break;
		case 1: m_r[R2] = m_ssw; break;
		}
		break;
	case 0x12:
		// calls: call supervisor
		m_exception = EXCEPTION_SUPERVISOR_CALL_BASE + (m_info.subopcode & 0x7f) * 8;
		if (VERBOSE & LOG_SYSCALLS)
			switch (m_info.subopcode & 0x7f)
			{
			case 0x3b: // execve
				LOGMASKED(LOG_SYSCALLS, "execve(\"%s\", [ %s ], envp)\n",
					debug_string(m_r[0]), debug_string_array(m_r[1]));
				break;
			}
		break;
	case 0x13:
		// ret: return from subroutine
		get_dcammu().load<u32>(m_ssw, m_r[R2], [this](u32 v) {
			m_pc = v;
			m_r[R2] += 4;
		});
		// TRAPS: C,U,A,P,R
		break;
	case 0x14:
		// pushw: push word
		get_dcammu().store<u32>(m_ssw, m_r[R1] - 4, m_r[R2]);
		m_r[R1] -= 4;
		// TRAPS: A,P,W
		break;

	case 0x16:
		// popw: pop word
		get_dcammu().load<u32>(m_ssw, m_r[R1], [this](u32 v) {
			m_r[R1] += 4;
			m_r[R2] = v;
		});
		// TRAPS: C,U,A,P,R
		break;

	case 0x20:
		// adds: add single floating
		set_fp(R2, f32_add(get_fp32(R2), get_fp32(R1)), F_IVUX);
		// TRAPS: F_IVUX
		break;
	case 0x21:
		// subs: subtract single floating
		set_fp(R2, f32_sub(get_fp32(R2), get_fp32(R1)), F_IVUX);
		// TRAPS: F_IVUX
		break;
	case 0x22:
		// addd: add double floating
		set_fp(R2, f64_add(get_fp64(R2), get_fp64(R1)), F_IVUX);
		// TRAPS: F_IVUX
		break;
	case 0x23:
		// subd: subtract double floating
		set_fp(R2, f64_sub(get_fp64(R2), get_fp64(R1)), F_IVUX);
		// TRAPS: F_IVUX
		break;
	case 0x24:
		// movs: move single floating
		set_fp(R2, get_fp32(R1), F_NONE);
		break;
	case 0x25:
		// cmps: compare single floating
		FLAGS(0, 0, f32_eq(get_fp32(R2), get_fp32(R1)), f32_lt(get_fp32(R2), get_fp32(R1)));
		// flag unordered
		if (softfloat_exceptionFlags & softfloat_flag_invalid)
			m_psw |= PSW_Z | PSW_N;
		softfloat_exceptionFlags &= F_NONE;
		break;
	case 0x26:
		// movd: move double floating
		set_fp(R2, get_fp64(R1), F_NONE);
		break;
	case 0x27:
		// cmpd: compare double floating
		FLAGS(0, 0, f64_eq(get_fp64(R2), get_fp64(R1)), f64_lt(get_fp64(R2), get_fp64(R1)));
		// flag unordered
		if (softfloat_exceptionFlags & softfloat_flag_invalid)
			m_psw |= PSW_Z | PSW_N;
		softfloat_exceptionFlags &= F_NONE;
		break;
	case 0x28:
		// muls: multiply single floating
		set_fp(R2, f32_mul(get_fp32(R2), get_fp32(R1)), F_IVUX);
		// TRAPS: F_IVUX
		break;
	case 0x29:
		// divs: divide single floating
		set_fp(R2, f32_div(get_fp32(R2), get_fp32(R1)), F_IVDUX);
		// TRAPS: F_IVDUX
		break;
	case 0x2a:
		// muld: multiply double floating
		set_fp(R2, f64_mul(get_fp64(R2), get_fp64(R1)), F_IVUX);
		// TRAPS: F_IVUX
		break;
	case 0x2b:
		// divd: divide double floating
		set_fp(R2, f64_div(get_fp64(R2), get_fp64(R1)), F_IVDUX);
		// TRAPS: F_IVDUX
		break;
	case 0x2c:
		// movsw: move single floating to word
		m_r[R2] = get_fp32(R1).v;
		break;
	case 0x2d:
		// movws: move word to single floating
		set_fp(R2, float32_t{ m_r[R1] }, F_NONE);
		break;
	case 0x2e:
		// movdl: move double floating to longword
		set_64(R2, get_fp64(R1).v);
		break;
	case 0x2f:
		// movld: move longword to double floating
		set_fp(R2, float64_t{ get_64(R1) }, F_NONE);
		break;
	case 0x30:
		// shaw: shift arithmetic word
		if (!BIT31(m_r[R1]))
		{
			// save the bits that will be shifted out plus new sign bit
			const s32 v = s32(m_r[R2]) >> (31 - m_r[R1]);

			m_r[R2] <<= m_r[R1];

			// overflow is set if sign changes during shift
			FLAGS(0, v != 0 && v != -1, m_r[R2] == 0, BIT31(m_r[R2]));
		}
		else
		{
			m_r[R2] = s32(m_r[R2]) >> -m_r[R1];
			FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		}
		// FLAGS: 0VZN
		break;
	case 0x31:
		// shal: shift arithmetic longword
		if (!BIT31(m_r[R1]))
		{
			// save the bits that will be shifted out plus new sign bit
			const s64 v = s64(get_64(R2)) >> (63 - m_r[R1]);

			set_64(R2, get_64(R2) << m_r[R1]);

			// overflow is set if sign changes during shift
			FLAGS(0, v != 0 && v != -1, get_64(R2) == 0, BIT63(get_64(R2)));
		}
		else
		{
			set_64(R2, s64(get_64(R2)) >> -m_r[R1]);
			FLAGS(0, 0, get_64(R2) == 0, BIT63(get_64(R2)));
		}
		// FLAGS: 0VZN
		break;
	case 0x32:
		// shlw: shift logical word
		if (!BIT31(m_r[R1]))
			m_r[R2] <<= m_r[R1];
		else
			m_r[R2] >>= -m_r[R1];
		// FLAGS: 00ZN
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		break;
	case 0x33:
		// shll: shift logical longword
		if (!BIT31(m_r[R1]))
			set_64(R2, get_64(R2) << m_r[R1]);
		else
			set_64(R2, get_64(R2) >> -m_r[R1]);
		// FLAGS: 00ZN
		FLAGS(0, 0, get_64(R2) == 0, BIT63(get_64(R2)));
		break;
	case 0x34:
		// rotw: rotate word
		if (!BIT31(m_r[R1]))
			m_r[R2] = rotl32(m_r[R2], m_r[R1]);
		else
			m_r[R2] = rotr32(m_r[R2], -m_r[R1]);
		// FLAGS: 00ZN
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		break;
	case 0x35:
		// rotl: rotate longword
		if (!BIT31(m_r[R1]))
			set_64(R2, rotl64(get_64(R2), m_r[R1]));
		else
			set_64(R2, rotr64(get_64(R2), -m_r[R1]));
		// FLAGS: 00ZN
		FLAGS(0, 0, get_64(R2) == 0, BIT63(get_64(R2)));
		break;

	case 0x38:
		// shai: shift arithmetic immediate
		if (!BIT31(m_info.imm))
		{
			// save the bits that will be shifted out plus new sign bit
			const s32 v = s32(m_r[R2]) >> (31 - m_info.imm);

			m_r[R2] <<= m_info.imm;

			// overflow is set if sign changes during shift
			FLAGS(0, v != 0 && v != -1, m_r[R2] == 0, BIT31(m_r[R2]));
		}
		else
		{
			m_r[R2] = s32(m_r[R2]) >> -m_info.imm;
			FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		}
		// FLAGS: 0VZN
		// TRAPS: I
		break;
	case 0x39:
		// shali: shift arithmetic longword immediate
		if (!BIT31(m_info.imm))
		{
			// save the bits that will be shifted out plus new sign bit
			const s64 v = s64(get_64(R2)) >> (63 - m_info.imm);

			set_64(R2, get_64(R2) << m_info.imm);

			// overflow is set if sign changes during shift
			FLAGS(0, v != 0 && v != -1, get_64(R2) == 0, BIT63(get_64(R2)));
		}
		else
		{
			set_64(R2, s64(get_64(R2)) >> -m_info.imm);
			FLAGS(0, 0, get_64(R2) == 0, BIT63(get_64(R2)));
		}
		// FLAGS: 0VZN
		// TRAPS: I
		break;
	case 0x3a:
		// shli: shift logical immediate
		if (!BIT31(m_info.imm))
			m_r[R2] <<= m_info.imm;
		else
			m_r[R2] >>= -m_info.imm;
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		// TRAPS: I
		break;
	case 0x3b:
		// shlli: shift logical longword immediate
		if (!BIT31(m_info.imm))
			set_64(R2, get_64(R2) << m_info.imm);
		else
			set_64(R2, get_64(R2) >> -m_info.imm);
		FLAGS(0, 0, get_64(R2) == 0, BIT63(get_64(R2)));
		// FLAGS: 00ZN
		// TRAPS: I
		break;
	case 0x3c:
		// roti: rotate immediate
		if (!BIT31(m_info.imm))
			m_r[R2] = rotl32(m_r[R2], m_info.imm);
		else
			m_r[R2] = rotr32(m_r[R2], -m_info.imm);
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		// TRAPS: I
		break;
	case 0x3d:
		// rotli: rotate longword immediate
		if (!BIT31(m_info.imm))
			set_64(R2, rotl64(get_64(R2), m_info.imm));
		else
			set_64(R2, rotr64(get_64(R2), -m_info.imm));
		FLAGS(0, 0, get_64(R2) == 0, BIT63(get_64(R2)));
		// FLAGS: 00ZN
		// TRAPS: I
		break;

	case 0x44:
	case 0x45:
		// call: call subroutine
		if (get_dcammu().store<u32>(m_ssw, m_r[R2] - 4, m_pc))
		{
			m_pc = m_info.address;
			m_r[R2] -= 4;
		}
		// TRAPS: A,P,W
		break;

	case 0x48:
	case 0x49:
		// b*: branch on condition
		if (evaluate_branch())
			m_pc = m_info.address;
		// TRAPS: A,I
		break;

	case 0x4c:
	case 0x4d:
		// bf*: branch on floating exception
		// FIXME: documentation is not clear, implementation is guesswork
		switch (R2)
		{
		case BF_ANY:
			// bfany: floating any exception
			if (m_psw & (PSW_FI | PSW_FV | PSW_FD | PSW_FU | PSW_FX))
				m_pc = m_info.address;
			break;
		case BF_BAD:
			// bfbad: floating bad result
			if (m_psw & (PSW_FI | PSW_FD))
				m_pc = m_info.address;
			break;
		default:
			// reserved
			// FIXME: not sure if this should trigger an exception?
			m_exception = EXCEPTION_ILLEGAL_OPERATION;
			break;
		}
		break;

	case 0x60:
	case 0x61:
		// loadw: load word
		get_dcammu().load<u32>(m_ssw, m_info.address, [this](u32 v) { m_r[R2] = v; });
		// TRAPS: C,U,A,P,R,I
		break;
	case 0x62:
	case 0x63:
		// loada: load address
		m_r[R2] = m_info.address;
		// TRAPS: I
		break;
	case 0x64:
	case 0x65:
		// loads: load single floating
		get_dcammu().load<u32>(m_ssw, m_info.address, [this](u32 v) { set_fp(R2, float32_t{ v }, F_NONE); });
		// TRAPS: C,U,A,P,R,I
		break;
	case 0x66:
	case 0x67:
		// loadd: load double floating
		get_dcammu().load<u64>(m_ssw, m_info.address, [this](u64 v) { set_fp(R2, float64_t{ v }, F_NONE); });
		// TRAPS: C,U,A,P,R,I
		break;
	case 0x68:
	case 0x69:
		// loadb: load byte
		get_dcammu().load<s8>(m_ssw, m_info.address, [this](s32 v) { m_r[R2] = v; });
		// TRAPS: C,U,A,P,R,I
		break;
	case 0x6a:
	case 0x6b:
		// loadbu: load byte unsigned
		get_dcammu().load<u8>(m_ssw, m_info.address, [this](u32 v) { m_r[R2] = v; });
		// TRAPS: C,U,A,P,R,I
		break;
	case 0x6c:
	case 0x6d:
		// loadh: load halfword
		get_dcammu().load<s16>(m_ssw, m_info.address, [this](s32 v) { m_r[R2] = v; });
		// TRAPS: C,U,A,P,R,I
		break;
	case 0x6e:
	case 0x6f:
		// loadhu: load halfword unsigned
		get_dcammu().load<u16>(m_ssw, m_info.address, [this](u32 v) { m_r[R2] = v; });
		// TRAPS: C,U,A,P,R,I
		break;
	case 0x70:
	case 0x71:
		// storw: store word
		get_dcammu().store<u32>(m_ssw, m_info.address, m_r[R2]);
		// TRAPS: A,P,W,I
		break;
	case 0x72:
	case 0x73:
		// tsts: test and set
		get_dcammu().modify<u32>(m_ssw, m_info.address, [this](u32 v) {
			m_r[R2] = v;
			return v | 0x80000000U;
		});
		// TRAPS: C,U,A,P,R,W,I
		break;
	case 0x74:
	case 0x75:
		// stors: store single floating
		get_dcammu().store<u32>(m_ssw, m_info.address, get_fp32(R2).v);
		// TRAPS: A,P,W,I
		break;
	case 0x76:
	case 0x77:
		// stord: store double floating
		get_dcammu().store<u64>(m_ssw, m_info.address, get_fp64(R2).v);
		// TRAPS: A,P,W,I
		break;
	case 0x78:
	case 0x79:
		// storb: store byte
		get_dcammu().store<u8>(m_ssw, m_info.address, m_r[R2]);
		// TRAPS: A,P,W,I
		break;

	case 0x7c:
	case 0x7d:
		// storh: store halfword
		get_dcammu().store<u16>(m_ssw, m_info.address, m_r[R2]);
		// TRAPS: A,P,W,I
		break;

	case 0x80:
		// addw: add word
		{
			const u32 result = m_r[R2] + m_r[R1];

			FLAGS_ADD(m_r[R2], m_r[R1], result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		break;

	case 0x82:
		// addq: add quick
		{
			const u32 result = m_r[R2] + m_info.r1;

			FLAGS_ADD(m_r[R2], m_info.r1, result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		break;
	case 0x83:
		// addi: add immediate
		{
			const u32 result = m_r[R2] + m_info.imm;

			FLAGS_ADD(m_r[R2], m_info.imm, result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		// TRAPS: I
		break;
	case 0x84:
		// movw: move word
		m_r[R2] = m_r[R1];
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		break;

	case 0x86:
		// loadq: load quick
		m_r[R2] = m_info.r1;
		FLAGS(0, 0, m_r[R2] == 0, 0);
		// FLAGS: 00Z0
		break;
	case 0x87:
		// loadi: load immediate
		m_r[R2] = m_info.imm;
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		// TRAPS: I
		break;
	case 0x88:
		// andw: and word
		m_r[R2] &= m_r[R1];
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		break;

	case 0x8b:
		// andi: and immediate
		m_r[R2] &= m_info.imm;
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		// TRAPS: I
		break;
	case 0x8c:
		// orw: or word
		m_r[R2] |= m_r[R1];
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		break;

	case 0x8f:
		// ori: or immediate
		m_r[R2] |= m_info.imm;
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		// TRAPS: I
		break;
	case 0x90:
		// addwc: add word with carry
		{
			const u32 result = m_r[R2] + m_r[R1] + (PSW(C) ? 1 : 0);

			FLAGS_ADD(m_r[R2], m_r[R1], result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		break;
	case 0x91:
		// subwc: subtract word with carry
		{
			const u32 result = m_r[R2] - m_r[R1] - (PSW(C) ? 1 : 0);

			FLAGS_SUB(m_r[R2], m_r[R1], result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		break;

	case 0x93:
		// negw: negate word
		{
			const u32 result = -m_r[R1];

			FLAGS(
				m_r[R1] != 0,
				s32(m_r[R1]) == INT32_MIN,
				result == 0,
				BIT31(result));

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		break;

	case 0x98:
		// mulw: multiply word
		{
			const s64 product = mul_32x32(m_r[R1], m_r[R2]);
			m_r[R2] = s32(product);
			FLAGS(0, (u64(product) >> 32) != (BIT31(product) ? ~u32(0) : 0), 0, 0);
			// FLAGS: 0V00
		}
		break;
	case 0x99:
		// mulwx: multiply word extended
		{
			const s64 product = mul_32x32(m_r[R1], m_r[R2]);
			set_64(R2, product);
			FLAGS(0, (u64(product) >> 32) != (BIT31(product) ? ~u32(0) : 0), 0, 0);
			// FLAGS: 0V00
		}
		break;
	case 0x9a:
		// mulwu: multiply word unsigned
		{
			const u64 product = mulu_32x32(m_r[R1], m_r[R2]);
			m_r[R2] = u32(product);
			FLAGS(0, (product >> 32) != 0, 0, 0);
			// FLAGS: 0V00
		}
		break;
	case 0x9b:
		// mulwux: multiply word unsigned extended
		{
			const u64 product = mulu_32x32(m_r[R1], m_r[R2]);
			set_64(R2, product);
			FLAGS(0, (product >> 32) != 0, 0, 0);
			// FLAGS: 0V00
		}
		break;
	case 0x9c:
		// divw: divide word
		if (m_r[R1] != 0)
		{
			// FLAGS: 0V00
			FLAGS(0, s32(m_r[R2]) == INT32_MIN && s32(m_r[R1]) == -1, 0, 0);
			m_r[R2] = s32(m_r[R2]) / s32(m_r[R1]);
		}
		else
			// TRAPS: D
			m_exception = EXCEPTION_INTEGER_DIVIDE_BY_ZERO;
		break;
	case 0x9d:
		// modw: modulus word
		if (m_r[R1] != 0)
		{
			// FLAGS: 0V00
			FLAGS(0, s32(m_r[R2]) == INT32_MIN && s32(m_r[R1]) == -1, 0, 0);
			m_r[R2] = s32(m_r[R2]) % s32(m_r[R1]);
		}
		else
			// TRAPS: D
			m_exception = EXCEPTION_INTEGER_DIVIDE_BY_ZERO;
		break;
	case 0x9e:
		// divwu: divide word unsigned
		if (m_r[R1] != 0)
		{
			m_r[R2] = m_r[R2] / m_r[R1];
			// FLAGS: 0000
			FLAGS(0, 0, 0, 0);
		}
		else
			// TRAPS: D
			m_exception = EXCEPTION_INTEGER_DIVIDE_BY_ZERO;
		break;
	case 0x9f:
		// modwu: modulus word unsigned
		if (m_r[R1] != 0)
		{
			m_r[R2] = m_r[R2] % m_r[R1];
			// FLAGS: 0000
			FLAGS(0, 0, 0, 0);
		}
		else
			// TRAPS: D
			m_exception = EXCEPTION_INTEGER_DIVIDE_BY_ZERO;
		break;
	case 0xa0:
		// subw: subtract word
		{
			const u32 result = m_r[R2] - m_r[R1];

			FLAGS_SUB(m_r[R2], m_r[R1], result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		break;

	case 0xa2:
		// subq: subtract quick
		{
			const u32 result = m_r[R2] - m_info.r1;

			FLAGS_SUB(m_r[R2], m_info.r1, result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		break;
	case 0xa3:
		// subi: subtract immediate
		{
			const u32 result = m_r[R2] - m_info.imm;

			FLAGS_SUB(m_r[R2], m_info.imm, result);

			m_r[R2] = result;
		}
		// FLAGS: CVZN
		// TRAPS: I
		break;
	case 0xa4:
		// cmpw: compare word
		{
			const u32 result = m_r[R2] - m_r[R1];

			FLAGS_SUB(m_r[R2], m_r[R1], result);
		}
		// FLAGS: CVZN
		break;

	case 0xa6:
		// cmpq: compare quick
		{
			const u32 result = m_r[R2] - m_info.r1;

			FLAGS_SUB(m_r[R2], m_info.r1, result);
		}
		// FLAGS: CVZN
		break;
	case 0xa7:
		// cmpi: compare immediate
		{
			const u32 result = m_r[R2] - m_info.imm;

			FLAGS_SUB(m_r[R2], m_info.imm, result);
		}
		// FLAGS: CVZN
		// TRAPS: I
		break;
	case 0xa8:
		// xorw: exclusive or word
		m_r[R2] ^= m_r[R1];
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		break;

	case 0xab:
		// xori: exclusive or immediate
		m_r[R2] ^= m_info.imm;
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		// TRAPS: I
		break;
	case 0xac:
		// notw: not word
		m_r[R2] = ~m_r[R1];
		FLAGS(0, 0, m_r[R2] == 0, BIT31(m_r[R2]));
		// FLAGS: 00ZN
		break;

	case 0xae:
		// notq: not quick
		m_r[R2] = ~R1;
		FLAGS(0, 0, 0, 1);
		// FLAGS: 0001
		break;

	case 0xb4:
		// unprivileged macro instructions
		switch (m_info.subopcode)
		{
		case 0x00: case 0x01: case 0x02: case 0x03:
		case 0x04: case 0x05: case 0x06: case 0x07:
		case 0x08: case 0x09: case 0x0a: case 0x0b:
		case 0x0c:
			// savew0..savew12: push registers rN:r14

			// store ri at sp - 4 * (15 - i)
			for (int i = R2; i < 15 && !m_exception; i++)
				get_dcammu().store<u32>(m_ssw, m_r[15] - 4 * (15 - i), m_r[i]);

			// decrement sp after push to allow restart on exceptions
			if (!m_exception)
				m_r[15] -= 4 * (15 - R2);
			// TRAPS: A,P,W
			break;
		// NOTE: the movc, initc and cmpc macro instructions are implemented in a very basic way because
		// at some point they will need to be improved to deal with possible exceptions (e.g. page faults)
		// that may occur during execution. The implementation here is intended to allow the instructions
		// to be "continued" after such exceptions.
		case 0x0d:
			// movc: copy r0 bytes from r1 to r2

			while (m_r[0])
			{
				get_dcammu().load<u8>(m_ssw, m_r[1], [this](u8 byte) { get_dcammu().store<u8>(m_ssw, m_r[2], byte); });

				if (m_exception)
					break;

				m_r[0]--;
				m_r[1]++;
				m_r[2]++;
			}
			// TRAPS: C,U,P,R,W
			break;
		case 0x0e:
			// initc: initialise r0 bytes at r1 with value in r2
			while (m_r[0])
			{
				if (!get_dcammu().store<u8>(m_ssw, m_r[1], m_r[2]))
					break;

				m_r[0]--;
				m_r[1]++;
				m_r[2] = rotr32(m_r[2], 8);
			}
			// TRAPS: P,W
			break;
		case 0x0f:
			// cmpc: compare r0 bytes at r1 with r2

			// set condition codes assuming strings match
			FLAGS(0, 0, 1, 0);

			while (m_r[0])
			{
				// read and compare bytes (as signed 32 bit integers)
				get_dcammu().load<s8>(m_ssw, m_r[1], [this](s32 byte1)
				{
					get_dcammu().load<s8>(m_ssw, m_r[2], [this, byte1](s32 byte2)
					{
						const s32 result = byte2 - byte1;

						FLAGS_SUB(byte2, byte1, result);
					});
				});

				// abort on exception or mismatch
				if (m_exception || !PSW(Z))
					break;

				m_r[0]--;
				m_r[1]++;
				m_r[2]++;
			}
			// TRAPS: C,U,P,R
			break;
		case 0x10: case 0x11: case 0x12: case 0x13:
		case 0x14: case 0x15: case 0x16: case 0x17:
		case 0x18: case 0x19: case 0x1a: case 0x1b:
		case 0x1c:
			// restwN..restw12: pop registers rN:r14

			// load ri from sp + 4 * (i - N)
			for (int i = R2; i < 15 && !m_exception; i++)
				get_dcammu().load<u32>(m_ssw, m_r[15] + 4 * (i - R2), [this, i](u32 v) { m_r[i] = v; });

			// increment sp after pop to allow restart on exceptions
			if (!m_exception)
				m_r[15] += 4 * (15 - R2);
			// TRAPS: C,U,A,P,R
			break;

		case 0x20: case 0x21: case 0x22: case 0x23:
		case 0x24: case 0x25: case 0x26: case 0x27:
			// saved0..saved7: push registers fN:f7

			// store fi at sp - 8 * (8 - i)
			for (int i = m_info.subopcode & 0x7; i < 8 && !m_exception; i++)
				get_dcammu().store<u64>(m_ssw, m_r[15] - 8 * (8 - i), get_fp64(i).v);

			// decrement sp after push to allow restart on exceptions
			if (!m_exception)
				m_r[15] -= 8 * (8 - (m_info.subopcode & 0x7));
			// TRAPS: A,P,W
			break;
		case 0x28: case 0x29: case 0x2a: case 0x2b:
		case 0x2c: case 0x2d: case 0x2e: case 0x2f:
			// restd0..restd7: pop registers fN:f7

			// load fi from sp + 8 * (i - N)
			for (int i = m_info.subopcode & 0x7; i < 8 && !m_exception; i++)
				get_dcammu().load<u64>(m_ssw, m_r[15] + 8 * (i - (m_info.subopcode & 0x7)), [this, i](u64 v) { set_fp(i, float64_t{ v }, F_NONE); });

			// increment sp after pop to allow restart on exceptions
			if (!m_exception)
				m_r[15] += 8 * (8 - (m_info.subopcode & 0x7));
			// TRAPS: C,U,A,P,R
			break;
		case 0x30:
			// cnvsw: convert single floating to word
			m_fp_pc = m_info.pc;

			m_r[m_info.macro & 0xf] = f32_to_i32(get_fp32((m_info.macro >> 4) & 0xf), softfloat_roundingMode, true);
			// TRAPS: F_IX
			softfloat_exceptionFlags &= F_IX;
			break;
		case 0x31:
			// cnvrsw: convert rounding single floating to word (non-IEEE +0.5/-0.5 rounding)
			m_fp_pc = m_info.pc;

			if (f32_lt(get_fp32((m_info.macro >> 4) & 0xf), float32_t{ 0 }))
				m_r[m_info.macro & 0xf] = f32_to_i32(f32_sub(get_fp32((m_info.macro >> 4) & 0xf),
					f32_div(i32_to_f32(1), i32_to_f32(2))), softfloat_round_minMag, true);
			else
				m_r[m_info.macro & 0xf] = f32_to_i32(f32_add(get_fp32((m_info.macro >> 4) & 0xf),
					f32_div(i32_to_f32(1), i32_to_f32(2))), softfloat_round_minMag, true);
			// TRAPS: F_IX
			softfloat_exceptionFlags &= F_IX;
			break;
		case 0x32:
			// cnvtsw: convert truncating single floating to word
			m_fp_pc = m_info.pc;

			m_r[m_info.macro & 0xf] = f32_to_i32(get_fp32((m_info.macro >> 4) & 0xf), softfloat_round_minMag, true);
			// TRAPS: F_IX
			softfloat_exceptionFlags &= F_IX;
			break;
		case 0x33:
			// cnvws: convert word to single floating
			set_fp(m_info.macro & 0xf, i32_to_f32(m_r[(m_info.macro >> 4) & 0xf]), F_X);
			// TRAPS: F_X
			break;
		case 0x34:
			// cnvdw: convert double floating to word
			m_fp_pc = m_info.pc;

			m_r[m_info.macro & 0xf] = f64_to_i32(get_fp64((m_info.macro >> 4) & 0xf), softfloat_roundingMode, true);
			// TRAPS: F_IX
			softfloat_exceptionFlags &= F_IX;
			break;
		case 0x35:
			// cnvrdw: convert rounding double floating to word (non-IEEE +0.5/-0.5 rounding)
			m_fp_pc = m_info.pc;

			if (f64_lt(get_fp64((m_info.macro >> 4) & 0xf), float64_t{ 0 }))
				m_r[m_info.macro & 0xf] = f64_to_i32(f64_sub(get_fp64((m_info.macro >> 4) & 0xf),
					f64_div(i32_to_f64(1), i32_to_f64(2))), softfloat_round_minMag, true);
			else
				m_r[m_info.macro & 0xf] = f64_to_i32(f64_add(get_fp64((m_info.macro >> 4) & 0xf),
					f64_div(i32_to_f64(1), i32_to_f64(2))), softfloat_round_minMag, true);
			// TRAPS: F_IX
			softfloat_exceptionFlags &= F_IX;
			break;
		case 0x36:
			// cnvtdw: convert truncating double floating to word
			m_fp_pc = m_info.pc;

			m_r[m_info.macro & 0xf] = f64_to_i32(get_fp64((m_info.macro >> 4) & 0xf), softfloat_round_minMag, true);
			// TRAPS: F_IX
			softfloat_exceptionFlags &= F_IX;
			break;
		case 0x37:
			// cnvwd: convert word to double floating
			set_fp(m_info.macro & 0xf, i32_to_f64(m_r[(m_info.macro >> 4) & 0xf]), F_NONE);
			break;
		case 0x38:
			// cnvsd: convert single to double floating
			set_fp(m_info.macro & 0xf, f32_to_f64(get_fp32((m_info.macro >> 4) & 0xf)), F_I);
			// TRAPS: F_I
			break;
		case 0x39:
			// cnvds: convert double to single floating
			set_fp(m_info.macro & 0xf, f64_to_f32(get_fp64((m_info.macro >> 4) & 0xf)), F_IVUX);
			// TRAPS: F_IVUX
			break;
		case 0x3a:
			// negs: negate single floating
			set_fp(m_info.macro & 0xf, f32_mul(get_fp32((m_info.macro >> 4) & 0xf), i32_to_f32(-1)), F_NONE);
			break;
		case 0x3b:
			// negd: negate double floating
			set_fp(m_info.macro & 0xf, f64_mul(get_fp64((m_info.macro >> 4) & 0xf), i32_to_f64(-1)), F_NONE);
			break;
		case 0x3c:
			/*
			 * This implementation for scalbd and scalbs is a bit opaque, but
			 * essentially we check if the integer value is within range, and
			 * directly create a floating constant representing 2^n or NaN
			 * respectively, which is used as an input to a multiply, producing
			 * the desired result. While doing an actual multiply is both
			 * inefficient and unnecessary, it's a tidy way to ensure the
			 * correct exception flags are set.
			 */
			// scalbs: scale by, single floating
			set_fp(m_info.macro & 0xf, f32_mul(get_fp32(m_info.macro & 0xf),
				((s32(m_r[(m_info.macro >> 4) & 0xf]) > -127 && s32(m_r[(m_info.macro >> 4) & 0xf]) < 128)
					? float32_t{ u32(s32(m_r[(m_info.macro >> 4) & 0xf]) + 127) << 23 }
					: float32_t{ ~u32(0) })), F_IVUX);
			// TRAPS: F_IVUX
			break;
		case 0x3d:
			// scalbd: scale by, double floating
			set_fp(m_info.macro & 0xf, f64_mul(get_fp64(m_info.macro & 0xf),
				(s32(m_r[(m_info.macro >> 4) & 0xf]) > -1023 && s32(m_r[(m_info.macro >> 4) & 0xf]) < 1024)
					? float64_t{ u64(s32(m_r[(m_info.macro >> 4) & 0xf]) + 1023) << 52 }
					: float64_t{ ~u64(0) }), F_IVUX);
			// TRAPS: F_IVUX
			break;
		case 0x3e:
			// trapfn: trap floating unordered
			// TRAPS: I
			if (PSW(Z) && PSW(N))
				m_exception = EXCEPTION_ILLEGAL_OPERATION;
			break;
		case 0x3f:
			// loadfs: load floating status
			m_r[(m_info.macro >> 4) & 0xf] = m_fp_pc;
			m_f[m_info.macro & 0xf] = m_fp_dst;
			m_ssw |= SSW_FRD;
			break;

		default:
			m_exception = EXCEPTION_ILLEGAL_OPERATION;
			break;
		}
		break;

	case 0xb6:
		// privileged macro instructions
		if (!SSW(U))
		{
			switch (m_info.subopcode)
			{
			case 0x00:
				// movus: move user to supervisor
				m_rs[m_info.macro & 0xf] = m_ru[(m_info.macro >> 4) & 0xf];
				FLAGS(0, 0, m_rs[m_info.macro & 0xf] == 0, BIT31(m_rs[m_info.macro & 0xf]));
				// FLAGS: 00ZN
				// TRAPS: S
				break;
			case 0x01:
				// movsu: move supervisor to user
				m_ru[m_info.macro & 0xf] = m_rs[(m_info.macro >> 4) & 0xf];
				FLAGS(0, 0, m_ru[m_info.macro & 0xf] == 0, BIT31(m_ru[m_info.macro & 0xf]));
				// FLAGS: 00ZN
				// TRAPS: S
				break;
			case 0x02:
				// saveur: save user registers
				for (int i = 0; i < 16 && !m_exception; i++)
					get_dcammu().store<u32>(m_ssw, m_rs[(m_info.macro >> 4) & 0xf] - 4 * (i + 1), m_ru[15 - i]);

				if (!m_exception)
					m_rs[(m_info.macro >> 4) & 0xf] -= 64;
				// TRAPS: A,P,W,S
				break;
			case 0x03:
				// restur: restore user registers
				for (int i = 0; i < 16 && !m_exception; i++)
					get_dcammu().load<u32>(m_ssw, m_rs[(m_info.macro >> 4) & 0xf] + 4 * i, [this, i](u32 v) { m_ru[i] = v; });

				if (!m_exception)
					m_rs[(m_info.macro >> 4) & 0xf] += 64;
				// TRAPS: C,U,A,P,R,S
				break;
			case 0x04:
				// reti: restore psw, ssw and pc from supervisor stack
				m_pc = reti();
				// TRAPS: S
				break;
			case 0x05:
				// wait: wait for interrupt
				m_wait = true;
				// TRAPS: S
				break;

			default:
				m_exception = EXCEPTION_ILLEGAL_OPERATION;
				break;
			}
		}
		else
			m_exception = EXCEPTION_PRIVILEGED_INSTRUCTION;
		break;

	default:
		m_exception = EXCEPTION_ILLEGAL_OPERATION;
		break;
	}
}

u32 clipper_device::reti()
{
	u32 new_psw = 0, new_ssw = 0, new_pc = 0;

	// pop the psw, ssw and pc from the supervisor stack
	if (!get_dcammu().load<u32>(m_ssw, m_rs[(m_info.macro >> 4) & 0xf] + 0, [&new_psw](u32 v) { new_psw = v; }))
		fatalerror("reti unrecoverable fault 0x%04x pop psw address 0x%08x pc 0x%08x\n", m_exception, m_rs[(m_info.macro >> 4) & 0xf] + 0, m_info.pc);

	if (!get_dcammu().load<u32>(m_ssw, m_rs[(m_info.macro >> 4) & 0xf] + 4, [&new_ssw](u32 v) { new_ssw = v; }))
		fatalerror("reti unrecoverable fault 0x%04x pop ssw address 0x%08x pc 0x%08x\n", m_exception, m_rs[(m_info.macro >> 4) & 0xf] + 4, m_info.pc);

	if (!get_dcammu().load<u32>(m_ssw, m_rs[(m_info.macro >> 4) & 0xf] + 8, [&new_pc](u32 v) { new_pc = v; }))
		fatalerror("reti unrecoverable fault 0x%04x pop pc address 0x%08x pc 0x%08x\n", m_exception, m_rs[(m_info.macro >> 4) & 0xf] + 8, m_info.pc);

	LOGMASKED(LOG_EXCEPTION, "reti r%d ssp 0x%08x pc 0x%08x ssw 0x%08x psw 0x%08x new_pc 0x%08x new_ssw 0x%08x new_psw 0x%08x\n",
		(m_info.macro >> 4) & 0xf, m_rs[(m_info.macro >> 4) & 0xf], m_info.pc, m_ssw, m_psw, new_pc, new_ssw, new_psw);

	// adjust the stack pointer
	m_rs[(m_info.macro >> 4) & 0xf] += 12;

	// restore the psw and ssw
	set_psw(new_psw);
	set_ssw(new_ssw);

	// return the restored pc
	return new_pc;
}

/*
 * Common entry point for transferring control in the event of an interrupt or
 * exception. Reading between the lines, it appears this logic was implemented
 * using the macro instruction ROM and a special macro instruction (intrap).
 */
u32 clipper_device::intrap(const u16 vector, const u32 old_pc)
{
	const u32 old_ssw = m_ssw;
	const u32 old_psw = m_psw;
	u32 new_pc = 0, new_ssw = 0;

	// clear ssw bits to enable supervisor memory access
	m_ssw &= ~(SSW_U | SSW_K | SSW_UU | SSW_KU);

	// clear exception state
	m_exception = 0;

	// fetch next pc and ssw from interrupt vector
	if (!get_dcammu().load<u32>(m_ssw, vector + 0, [&new_pc](u32 v) { new_pc = v; }))
		fatalerror("intrap unrecoverable fault 0x%04x load pc address 0x%08x pc 0x%08x\n", m_exception, vector + 0, old_pc);
	if (!get_dcammu().load<u32>(m_ssw, vector + 4, [&new_ssw](u32 v) { new_ssw = v; }))
		fatalerror("intrap unrecoverable fault 0x%04x load ssw address 0x%08x pc 0x%08x\n", m_exception, vector + 4, old_pc);

	LOGMASKED(LOG_EXCEPTION, "intrap vector 0x%04x pc 0x%08x ssp 0x%08x new_pc 0x%08x new_ssw 0x%08x\n", vector, old_pc, m_rs[15], new_pc, new_ssw);

	// derive cts and mts from vector
	u32 source = 0;
	switch (vector)
	{
		// data memory trap group
	case EXCEPTION_D_CORRECTED_MEMORY_ERROR:
	case EXCEPTION_D_UNCORRECTABLE_MEMORY_ERROR:
	case EXCEPTION_D_ALIGNMENT_FAULT:
	case EXCEPTION_D_PAGE_FAULT:
	case EXCEPTION_D_READ_PROTECT_FAULT:
	case EXCEPTION_D_WRITE_PROTECT_FAULT:

		// instruction memory trap group
	case EXCEPTION_I_CORRECTED_MEMORY_ERROR:
	case EXCEPTION_I_UNCORRECTABLE_MEMORY_ERROR:
	case EXCEPTION_I_ALIGNMENT_FAULT:
	case EXCEPTION_I_PAGE_FAULT:
	case EXCEPTION_I_EXECUTE_PROTECT_FAULT:
		source = (vector & MTS_VMASK) << (MTS_SHIFT - MTS_VSHIFT);
		break;

		// integer arithmetic trap group
	case EXCEPTION_INTEGER_DIVIDE_BY_ZERO:
		source = CTS_DIVIDE_BY_ZERO;
		break;

		// illegal operation trap group
	case EXCEPTION_ILLEGAL_OPERATION:
		source = CTS_ILLEGAL_OPERATION;
		break;
	case EXCEPTION_PRIVILEGED_INSTRUCTION:
		source = CTS_PRIVILEGED_INSTRUCTION;
		break;

		// diagnostic trap group
	case EXCEPTION_TRACE:
		source = CTS_TRACE_TRAP;
		break;
	}

	// push pc, ssw and psw onto supervisor stack
	if (!get_dcammu().store<u32>(m_ssw, m_rs[15] - 0x4, old_pc))
		fatalerror("intrap unrecoverable fault 0x%04x push pc ssp 0x%08x pc 0x%08x\n", m_exception, m_rs[15] - 0x4, old_pc);

	if (!get_dcammu().store<u32>(m_ssw, m_rs[15] - 0x8, old_ssw))
		fatalerror("intrap unrecoverable fault 0x%04x push ssw ssp 0x%08x pc 0x%08x\n", m_exception, m_rs[15] - 0x8, old_pc);

	if (!get_dcammu().store<u32>(m_ssw, m_rs[15] - 0xc, (old_psw & ~(PSW_CTS | PSW_MTS)) | source))
		fatalerror("intrap unrecoverable fault 0x%04x push psw ssp 0x%08x pc 0x%08x\n", m_exception, m_rs[15] - 0xc, old_pc);

	// decrement supervisor stack pointer
	m_rs[15] -= 12;

	// set ssw from vector and previous mode
	set_ssw((new_ssw & ~SSW_P) | (old_ssw & SSW_U) << 1);

	// clear psw
	set_psw(0);

	// return new pc from trap vector
	return new_pc;
}

u32 clipper_c400_device::intrap(const u16 vector, const u32 old_pc)
{
	const u32 old_ssw = m_ssw;
	const u32 old_psw = m_psw;
	u32 new_pc = 0, new_ssw = 0;

	// clear ssw bits to enable supervisor memory access
	m_ssw &= ~(SSW_U | SSW_K | SSW_UU | SSW_KU);

	// clear exception state
	m_exception = 0;

	// fetch ssw and pc from interrupt vector (C400 reversed wrt C100/C300)
	if (!get_dcammu().load<u32>(m_ssw, vector + 0, [&new_ssw](u32 v) { new_ssw = v; }))
		fatalerror("intrap unrecoverable fault 0x%04x load ssw address 0x%08x pc 0x%08x\n", m_exception, vector + 0, old_pc);
	if (!get_dcammu().load<u32>(m_ssw, vector + 4, [&new_pc](u32 v) { new_pc = v; }))
		fatalerror("intrap unrecoverable fault 0x%04x load pc address 0x%08x pc 0x%08x\n", m_exception, vector + 4, old_pc);

	LOGMASKED(LOG_EXCEPTION, "intrap vector 0x%04x pc 0x%08x ssp 0x%08x new_pc 0x%08x new_ssw 0x%08x\n", vector, old_pc, m_rs[15], new_pc, new_ssw);

	// derive cts and mts from vector
	u32 source = 0;
	switch (vector)
	{
		// data memory trap group
	case EXCEPTION_D_CORRECTED_MEMORY_ERROR:
	case EXCEPTION_D_UNCORRECTABLE_MEMORY_ERROR:
	case EXCEPTION_D_ALIGNMENT_FAULT:
	case EXCEPTION_D_PAGE_FAULT:
	case EXCEPTION_D_READ_PROTECT_FAULT:
	case EXCEPTION_D_WRITE_PROTECT_FAULT:

		// instruction memory trap group
	case EXCEPTION_I_CORRECTED_MEMORY_ERROR:
	case EXCEPTION_I_UNCORRECTABLE_MEMORY_ERROR:
	case EXCEPTION_I_ALIGNMENT_FAULT:
	case EXCEPTION_I_PAGE_FAULT:
	case EXCEPTION_I_EXECUTE_PROTECT_FAULT:
		source = (vector & MTS_VMASK) << (MTS_SHIFT - MTS_VSHIFT);
		break;

		// integer arithmetic trap group
	case EXCEPTION_INTEGER_DIVIDE_BY_ZERO:
		source = CTS_DIVIDE_BY_ZERO;
		break;

		// illegal operation trap group
	case EXCEPTION_ILLEGAL_OPERATION:
		source = CTS_ILLEGAL_OPERATION;
		break;
	case EXCEPTION_PRIVILEGED_INSTRUCTION:
		source = CTS_PRIVILEGED_INSTRUCTION;
		break;

		// diagnostic trap group
	case EXCEPTION_TRACE:
		source = CTS_TRACE_TRAP;
		break;
	}

	// push pc, ssw and psw onto supervisor stack
	if (!get_dcammu().store<u32>(m_ssw, m_rs[15] - 0x4, old_pc))
		fatalerror("intrap unrecoverable fault 0x%04x push pc ssp 0x%08x pc 0x%08x\n", m_exception, m_rs[15] - 0x4, old_pc);

	if (!get_dcammu().store<u32>(m_ssw, m_rs[15] - 0x8, old_ssw))
		fatalerror("intrap unrecoverable fault 0x%04x push ssw ssp 0x%08x pc 0x%08x\n", m_exception, m_rs[15] - 0x8, old_pc);

	if (!get_dcammu().store<u32>(m_ssw, m_rs[15] - 0xc, (old_psw & ~(PSW_CTS | PSW_MTS)) | source))
		fatalerror("intrap unrecoverable fault 0x%04x push psw ssp 0x%08x pc 0x%08x\n", m_exception, m_rs[15] - 0xc, old_pc);

	// TODO: push pc1
	// TODO: push pc2

	// push delayed branch pc onto supervisor stack
	if (!get_dcammu().store<u32>(m_ssw, m_rs[15] - 0x18, m_db_pc))
		fatalerror("intrap unrecoverable fault 0x%04x push db_pc address 0x%08x pc 0x%08x\n", m_exception, m_rs[15] - 0x18, old_pc);

	// decrement supervisor stack pointer
	m_rs[15] -= 24;

	// set ssw from vector and previous mode
	set_ssw((new_ssw & ~SSW_P) | (old_ssw & SSW_U) << 1);

	// clear psw
	set_psw(0);

	// return new pc from trap vector
	return new_pc;
}

bool clipper_device::evaluate_branch() const
{
	switch (m_info.r2)
	{
	case BRANCH_T:
		return true;

	case BRANCH_LT:
		return (!PSW(V) && !PSW(Z) && !PSW(N))
			|| (PSW(V) && !PSW(Z) && PSW(N));

	case BRANCH_LE:
		return (!PSW(V) && !PSW(N))
			|| (PSW(V) && !PSW(Z) && PSW(N));

	case BRANCH_EQ:
		return PSW(Z) && !PSW(N);

	case BRANCH_GT:
		return (!PSW(V) && !PSW(Z) && PSW(N))
			|| (PSW(V) && !PSW(N));

	case BRANCH_GE:
		return (PSW(V) && !PSW(N))
			|| (!PSW(V) && !PSW(Z) && PSW(N))
			|| (PSW(Z) && !PSW(N));

	case BRANCH_NE:
		return (!PSW(Z))
			|| (PSW(Z) && PSW(N));

	case BRANCH_LTU:
		return (!PSW(C) && !PSW(Z));

	case BRANCH_LEU:
		return !PSW(C);

	case BRANCH_GTU:
		return PSW(C);

	case BRANCH_GEU:
		return PSW(C) || PSW(Z);

	case BRANCH_V:
		return PSW(V);
	case BRANCH_NV:
		return !PSW(V);

	case BRANCH_N:
		return !PSW(Z) && PSW(N);
	case BRANCH_NN:
		return !PSW(N);

	case BRANCH_FN:
		return PSW(Z) && PSW(N);
	}

	return false;
}

void clipper_device::set_psw(const u32 psw)
{
	// retain read-only endianness field
	m_psw = (m_psw & PSW_BIG) | (psw & ~PSW_BIG);

	// set the softfloat rounding mode based on the psw rounding mode
	switch (PSW(FR))
	{
	case FR_0: softfloat_roundingMode = softfloat_round_near_even; break;
	case FR_1: softfloat_roundingMode = softfloat_round_max; break;
	case FR_2: softfloat_roundingMode = softfloat_round_min; break;
	case FR_3: softfloat_roundingMode = softfloat_round_minMag; break;
	}
}

void clipper_device::set_ssw(const u32 ssw)
{
	// retain read-only id field
	m_ssw = (m_ssw & SSW_ID) | (ssw & ~SSW_ID);

	// select the register file
	m_r = SSW(U) ? m_ru : m_rs;
}

void clipper_device::fp_exception()
{
	u16 exception = 0;

	/*
	 * Set the psw floating exception flags, and identify any enabled
	 * exceptions. The order here is important, but since the documentation
	 * doesn't explicitly specify, this is a guess. Simply put, exceptions
	 * are considered in sequence with an increasing order of priority.
	 */
	if (softfloat_exceptionFlags & softfloat_flag_inexact)
	{
		m_psw |= PSW_FX;
		if (PSW(EFX))
			exception = EXCEPTION_FLOATING_INEXACT;
	}
	if (softfloat_exceptionFlags & softfloat_flag_underflow)
	{
		m_psw |= PSW_FU;
		if (PSW(EFU))
			exception = EXCEPTION_FLOATING_UNDERFLOW;
	}
	if (softfloat_exceptionFlags & softfloat_flag_overflow)
	{
		m_psw |= PSW_FV;
		if (PSW(EFV))
			exception = EXCEPTION_FLOATING_OVERFLOW;
	}
	if (softfloat_exceptionFlags & softfloat_flag_infinite)
	{
		m_psw |= PSW_FD;
		if (PSW(EFD))
			exception = EXCEPTION_FLOATING_DIVIDE_BY_ZERO;
	}
	if (softfloat_exceptionFlags & softfloat_flag_invalid)
	{
		m_psw |= PSW_FI;
		if (PSW(EFI))
			exception = EXCEPTION_FLOATING_INVALID_OPERATION;
	}

	// trigger a floating point exception
	if (PSW(EFT) && exception)
		m_exception = exception;
}

void clipper_c400_device::execute_instruction()
{
	// update delay slot pointer
	switch (PSW(DSP))
	{
	case DSP_S1:
		// take delayed branch
		m_psw &= ~PSW_DSP;
		m_pc = m_db_pc;
		return;

	case DSP_SALL:
		// one delay slot still active
		m_psw &= ~PSW_DSP;
		m_psw |= DSP_S1;
		break;

	case DSP_SETUP:
		// two delay slots active
		m_psw &= ~PSW_DSP;
		m_psw |= DSP_SALL;
		break;
	}

	// if executing a delay slot instruction, test for valid type
	if (PSW(DSP))
	{
		switch (m_info.opcode)
		{
		case 0x13: // ret
		case 0x44: // call
		case 0x45:
		case 0x48: // b*
		case 0x49:
		case 0x4a: // cdb
		case 0x4b:
		case 0x4c: // cdbeq
		case 0x4d:
		case 0x4e: // cdbne
		case 0x4f:
		case 0x50: // db*
		case 0x51:
			// TODO: this should throw some kind of illegal instruction trap, not abort
			fatalerror("instruction type 0x%02x invalid in branch delay slot pc 0x%08x\n", m_info.opcode, m_info.pc);

		default:
			break;
		}
	}

	switch (m_info.opcode)
	{
	case 0x46:
	case 0x47:
		// loadd2: load double floating double
		// TODO: 128-bit load
		get_dcammu().load<u64>(m_ssw, m_info.address + 0, [this](u64 v) { set_fp(R2 + 0, float64_t{ v }, F_NONE); });
		get_dcammu().load<u64>(m_ssw, m_info.address + 8, [this](u64 v) { set_fp(R2 + 1, float64_t{ v }, F_NONE); });
		// TRAPS: C,U,A,P,R,I
		break;

	case 0x4a:
	case 0x4b:
		// cdb: compare and delayed branch?
		// emulate.h: "cdb is special because it does not support all addressing modes", 2-3 parcels
		fatalerror("cdb pc 0x%08x\n", m_info.pc);
	case 0x4c:
	case 0x4d:
		// cdbeq: compare and delayed branch if equal?
		if (m_r[R2] == 0)
		{
			m_psw |= DSP_SETUP;
			m_db_pc = m_info.address;
		}
		break;
	case 0x4e:
	case 0x4f:
		// cdbne: compare and delayed branch if not equal?
		if (m_r[R2] != 0)
		{
			m_psw |= DSP_SETUP;
			m_db_pc = m_info.address;
		}
		break;
	case 0x50:
	case 0x51:
		// db*: delayed branch on condition
		if (evaluate_branch())
		{
			m_psw |= DSP_SETUP;
			m_db_pc = m_info.address;
		}
		break;

	case 0xb0:
		// abss: absolute value single floating?
		if (f32_lt(get_fp32(R1), float32_t{ 0 }))
			set_fp(R2, f32_mul(get_fp32(R1), i32_to_f32(-1)), F_IVUX);
		else
			set_fp(R2, get_fp32(R1), F_IVUX);
		break;

	case 0xb2:
		// absd: absolute value double floating?
		if (f64_lt(get_fp64(R1), float64_t{ 0 }))
			set_fp(R2, f64_mul(get_fp64(R1), i32_to_f64(-1)), F_IVUX);
		else
			set_fp(R2, get_fp64(R1), F_IVUX);
		break;

	case 0xb4:
		// unprivileged macro instructions
		switch (m_info.subopcode)
		{
		case 0x44:
			// cnvxsw: ??
			fatalerror("cnvxsw pc 0x%08x\n", m_info.pc);
		case 0x46:
			// cnvxdw: ??
			fatalerror("cnvxdw pc 0x%08x\n", m_info.pc);

		default:
			clipper_device::execute_instruction();
			break;
		}
		break;

	case 0xb6:
		// privileged macro instructions
		if (!SSW(U))
		{
			switch (m_info.subopcode)
			{
			case 0x07:
				// loadts: unknown?
				fatalerror("loadts pc 0x%08x\n", m_info.pc);

			default:
				clipper_device::execute_instruction();
				break;
			}
		}
		else
			m_exception = EXCEPTION_PRIVILEGED_INSTRUCTION;
		break;

	case 0xbc:
		// waitd:
		if (!SSW(U))
			; // TODO: don't know what this instruction does
		else
			m_exception = EXCEPTION_PRIVILEGED_INSTRUCTION;
		break;

	case 0xc0:
		// s*: set register on condition
		m_r[R1] = evaluate_branch() ? 1 : 0;
		break;

	default:
		clipper_device::execute_instruction();
		break;
	}
}

std::unique_ptr<util::disasm_interface> clipper_device::create_disassembler()
{
	return std::make_unique<clipper_disassembler>();
}

std::string clipper_device::debug_string(u32 pointer)
{
	auto const suppressor(machine().disable_side_effects());

	std::string s("");

	while (true)
	{
		char c;

		if (!get_dcammu().load<u8>(m_ssw, pointer++, [&c](u8 v) { c = v; }))
			break;

		if (c == '\0')
			break;

		s += c;
	}

	return s;
}

std::string clipper_device::debug_string_array(u32 array_pointer)
{
	auto const suppressor(machine().disable_side_effects());

	std::string s("");

	while (true)
	{
		u32 string_pointer;

		if (!get_dcammu().load<u32>(m_ssw, array_pointer, [&string_pointer](u32 v) { string_pointer = v; }))
			break;

		if (string_pointer == 0)
			break;

		if (!s.empty())
			s += ", ";

		s += '\"' + debug_string(string_pointer) + '\"';
		array_pointer += 4;
	}

	return s;
}