summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/bus/ti99/internal/genboard.cpp
blob: 861e06552005f0ffebbb3318e882c944e35c4e12 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
// license:LGPL-2.1+
// copyright-holders:Michael Zapf
/***************************************************************************
    Geneve 9640 mapper and more components

    This file contains 2 classes:
    - mapper: main function of the Gate Array on the Geneve board. Maps logical
        memory accesses to a wider address space using map registers.
    - keyboard: an implementation of a XT-style keyboard. This should be dropped
        and replaced by a proper XT keyboard implementation.

    Onboard SRAM configuration:
    There is an adjustable SRAM configuration on board, representing the
    various enhancements by users.

    The standard memory configuration as reported by chkdsk (32 KiB):
    557056 bytes of total memory

    With 64 KiB SRAM:
    589824 bytes of total memory

    With 384 KiB SRAM:
    917504 bytes of total memory

    The original 32 KiB SRAM memory needs to be expanded to 64 KiB for
    MDOS 2.50s and higher, or the system will lock up. Therefore the emulation
    default is 64 KiB.

    The ultimate expansion is a 512 KiB SRAM circuit wired to the gate array
    to provide 48 pages of fast static RAM. This also requires to build an
    adapter for a larger socket. From the 512 KiB, only 384 KiB will be
    accessed, since the higher pages are hidden behind the EPROM pages.

    === Address map ===
    p,q = page value bit (q = AMC, AMB, AMA)
    c = address offset within 8 KiB page

    p pqqq pppc cccc cccc cccc

    0 0... .... .... .... .... on-board dram 512 KiB

    0 1... .... .... .... .... on-board future expansion 512 KiB or Memex with Genmod

    1 00.. .... .... .... .... p-box AMA=0 (256 KiB)
    1 010. .... .... .... .... p-box AMA=1 AMB=0 (128 KiB)
    1 0110 .... .... .... .... p-box AMA=1 AMB=1 AMC=0 (64 KiB)

    1 0111 00.. .... .... .... p-box address block 0xxx, 2xxx
    1 0111 010. .... .... .... p-box address block 4xxx (DSR)
    1 0111 011. .... .... .... p-box address block 6xxx
    1 0111 100. .... .... .... p-box address block 8xxx (Speech at 0x9000)
    1 0111 101. .... .... .... p-box address block axxx
    1 0111 11.. .... .... .... p-box address block cxxx, exxx

    1 100. .... .... .... .... on-board sram (128K) -\
    1 101. .... .... .... .... on-board sram (128K) --+- maximum SRAM expansion
    1 1100 .... .... .... .... on-board sram (64K) --/
    1 1101 0... .... .... .... on-board sram (32K) - additional 32 KiB required for MDOS 2.50s and higher
    1 1101 1... .... .... .... on-board sram (32K) - standard setup

    1 111. ..0. .... .... .... on-board boot1
    1 111. ..1. .... .... .... on-board boot2

    The TI console (or more precise, the Flex Cable Interface) sets the AMA/B/C
    lines to 1. Most cards actually check for AMA/B/C=1. However, this decoding
    was forgotten in third party cards which cause the card address space
    to be mirrored. The usual DSR space at 4000-5fff which would be reachable
    via page 0xba is then mirrored on a number of other pages:

    10 xxx 010x = 82, 8a, 92, 9a, a2, aa, b2, ba

    Another block to take care of is 0xbc which covers 8000-9fff since this
    area contains the speech synthesizer port at 9000/9400.

    For the standard Geneve, only prefix 10 is routed to the P-Box. The Genmod
    modification wires these address lines to pins 8 and 9 in the P-Box as AMD and
    AME. This requires all cards to be equipped with an additional selection logic
    to detect AMD=0, AME=1. Otherwise these cards, although completely decoding the
    19-bit address, would reappear at 512 KiB distances.

    Genmod's double switch box is also emulated. There are two switches:
    - Turbo mode: Activates or deactivates the wait state logic on the Geneve
      board. This switch may be changed at any time.
    - TI mode: Selects between the on-board memory, which is required
      for the GPL interpreter, and the external Memex memory. This switch
      triggers a reset when changed.


    ===================
    Mapping
    ===================

    Logical address space: 64 KiB

    Geneve mode
    -----------
    Video:    F100 (port 0, rw),
              F102 (port 1, rw),
              F104 (port 2, w),
              F106 (port 3, w)
                                  1111 0001 0000 .xx0
    Mapper:   F110 - F117         1111 0001 0001 0xxx
    Keyboard: F118                1111 0001 0001 1...
    Clock:    F130 - F13F         1111 0001 0011 xxxx
    Sound:    F120                1111 0001 0010 ...0

    TI mode
    -------
    Video:    8800 (port 0, r), 8c00 (port 0, w),
              8802 (port 1, r), 8c02 (port 0, w),
                                8c04 (port 2, w),
                                8c06 (port 3, w)

                                  1000 1w.. .... .xx0
    Mapper:   8000 - 8007         1000 0000 0000 0xxx
    Keyboard: 8008 - 800F         1000 0000 0000 1...
    Clock:    8010 - 801F         1000 0000 0001 xxxx
    Speech:   9000 / 9400         1001 0w.. .... ...0
    Grom:     9800 / 9802         1001 1w.. .... ..x0
              9c00 / 9c02

    Physical address space
    ----------------------
    Address space size = 2 MiB

    Start    End      Phys.pages
    000000 - 07FFFF   00-3F   512 KiB DRAM on-board
       06C000 - 06DFFF   36     Cartridge space first 8K
       06E000 - 06FFFF   37     Cartridge space second 8K
    080000 - 0FFFFF   40-7F   512 KiB on-board expansion (never used)
    100000 - 16FFFF   80-B7   448 KiB P-Box space (special cards, like MEMEX)
    170000 - 17FFFF   B8-BF    64 KiB P-Box space (current cards)
    180000 - 1DFFFF   C0-EF   384 KiB SRAM space on-board; stock Geneve comes with 32 KiB
    1E0000 - 1FFFFF   F0-FF   128 KiB EPROM space; 16 KiB actually used, 8 mirrors


    GenMod modification
    -------------------
    TI mode
    000000 - 07FFFF   00-3F   512 KiB DRAM on-board
       06C000 - 06DFFF   36     Cartridge space first 8K
       06E000 - 06FFFF   37     Cartridge space second 8K
    080000 - 1DFFFF   40-EF  1408 KiB P-Box space
    1E0000 - 1FFFFF   F0-FF   128 KiB EPROM space; 16 KiB actually used, 8 mirrors

    Non-TI mode
    000000 - 1DFFFF   00-EF  1920 KiB P-Box space
    1E0000 - 1FFFFF   F0-FF   128 KiB EPROM space; 16 KiB actually used, 8 mirrors

    Waitstate handling
    ------------------
    Waitstates are caused by a cleared READY line of the TMS9995 processor
    during an external memory cycle. That means that waitstates have no effect
    for operations within the on-chip memory, and only when an access to the
    external memory or other devices occurs, a delay will be noticed.

    The waitstates are generated by the custom Gate Array chip on the board
    and the PAL 16R4, both lacking proper documentation. All of the following
    numbers have been determined by experiments with the real machine.

    Waitstates are generated for:
    - memory-mapped devices (mapper, clock, keyboard): 1 WS
    - accesses to the peripheral expansion box: 1 WS
    - accesses to on-board DRAM: 1 WS
    - accesses to video: 15 WS
    - accesses to SRAM: 0 WS

    Additional waitstates are created when one of the CRU bits is set. In that
    case, all delays are extended to 2 WS (including SRAM).

    Sound waitstates are somewhat unpredictable. It seems as if they depend
    on the clock of the sound chip; the READY line is pulled down until the
    next clock pulse, which may take some value between 18 CPU cycles and
    30 CPU cycles.

    The gate array is able to create wait states for video accesses. However,
    these wait states are effective after the video access has been completed.
    Wait states are not effective when the execution is running in on-chip
    RAM. Additional wait states are requested by m_video_waitstates = true.
    Without additional wait states, the video access takes the usual 1 or 2 WS.

    Waitstate behavior (Nov 2013)
       Almost perfect. Only video read access from code in DRAM is too fast
       by one WS

    ==========================
    PFM expansion
    ==========================

    The "Programmable Flash Memory expansion" is a replacement for the boot
    EPROM.

    PFM: Original version, 128 KiB
    PFM+: Expansion of the original version, piggybacked, adds another 128KiB
    PFM512: Using an AT29C040 (not A), 512 KiB

    The PFM is visible as four banks in memory pages 0xF0 - 0xFF.

    Bank switching is done by four 9901 pins:

    0028: LSB of bank number
    003A: MSB of bank number

    Bank 0 is the boot code, while banks 1-3 can be used as flash drives

    Michael Zapf, October 2011
    February 2012: rewritten as class, restructured
    Aug 2015: PFM added

***************************************************************************/
#include "emu.h"

#define LOG_WARN     (1U<<1)
#define LOG_DETAIL   (1U<<2)
#define LOG_READ     (1U<<3)
#define LOG_WRITE    (1U<<4)
#define LOG_KEYBOARD (1U<<5)
#define LOG_CLOCK    (1U<<6)
#define LOG_LINES    (1U<<7)
#define LOG_SETTING  (1U<<8)
#define LOG_VIDEOWS  (1U<<9)
#define LOG_PFM      (1U<<10)
#define LOG_DECODE   (1U<<11)

// Minimum log should be settings and warnings
#define VERBOSE ( LOG_SETTING | LOG_WARN )

#include "genboard.h"
#include "logmacro.h"

DEFINE_DEVICE_TYPE_NS(GENEVE_KEYBOARD, bus::ti99::internal, geneve_keyboard_device, "geneve_keyboard", "Geneve XT-style keyboard")
DEFINE_DEVICE_TYPE_NS(GENEVE_MAPPER, bus::ti99::internal, geneve_mapper_device, "geneve_mapper", "Geneve Gate Array")
DEFINE_DEVICE_TYPE_NS(GENMOD_MAPPER, bus::ti99::internal, genmod_mapper_device, "genmod_mapper", "Geneve Mod Gate Array")

namespace bus { namespace ti99 { namespace internal {

geneve_mapper_device::geneve_mapper_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, type, tag, owner, clock), m_gromwaddr_LSB(false),
	m_gromraddr_LSB(false),
	m_grom_address(0),
	m_video_waitstates(false),
	m_extra_waitstates(false),
	m_ready_asserted(false),
	m_read_mode(false),
	m_debug_no_ws(false),
	m_geneve_mode(false),
	m_direct_mode(false),
	m_cartridge_size(0),
	m_cartridge_secondpage(false),
	m_cartridge6_writable(false),
	m_cartridge7_writable(false),
	m_boot_rom(0),
	m_pfm_bank(0),
	m_pfm_output_enable(false),
	m_sram_mask(0),
	m_sram_val(0),
	m_ready(*this),
	m_waitcount(0),
	m_video_waitcount(0),
	m_clock(*owner, GENEVE_CLOCK_TAG),
	m_cpu(*owner, "maincpu"),
	m_pfm512(*owner, GENEVE_PFM512_TAG),
	m_pfm512a(*owner, GENEVE_PFM512A_TAG),
	m_sound(*owner, TI_SOUNDCHIP_TAG),
	m_keyboard(*owner, GENEVE_KEYBOARD_TAG),
	m_video(*owner, TI_VDP_TAG),
	m_peribox(*owner, TI_PERIBOX_TAG),
	m_sram(*this, GENEVE_SRAM_PAR_TAG),
	m_dram(*this, GENEVE_DRAM_PAR_TAG)
{
}

geneve_mapper_device::geneve_mapper_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: geneve_mapper_device(mconfig, GENEVE_MAPPER, tag, owner, clock)
{
	m_eprom = nullptr;
	m_pbox_prefix = 0x070000;
}

genmod_mapper_device::genmod_mapper_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: geneve_mapper_device(mconfig, GENMOD_MAPPER, tag, owner, clock),
	m_gm_timode(false),
	m_turbo(false)
{
	m_eprom = nullptr;
	m_pbox_prefix = 0x170000;
}

INPUT_CHANGED_MEMBER( geneve_mapper_device::settings_changed )
{
	// Used when switching the boot ROMs during runtime, especially the PFM
	m_boot_rom = newval;
}

INPUT_CHANGED_MEMBER( genmod_mapper_device::setgm_changed )
{
	int number = (int)((uint64_t)param&0x03);
	int value = newval;

	switch (number)
	{
	case 1:
		// Turbo switch. May be changed at any time.
		LOGMASKED(LOG_SETTING, "Setting turbo flag to %d\n", value);
		m_turbo = (value!=0);
		break;
	case 2:
		// TIMode switch. Causes reset when changed.
		LOGMASKED(LOG_SETTING, "Setting timode flag to %d\n", value);
		m_gm_timode = (value!=0);
		machine().schedule_hard_reset();
		break;
	case 3:
		// Used when switching the boot ROMs during runtime, especially the PFM
		m_boot_rom = value;
		break;
	default:
		LOGMASKED(LOG_WARN, "Unknown setting %d ignored\n", number);
	}
}

/****************************************************************************
    GROM simulation. The Geneve board simulated GROM circuits within its gate
    array.
*****************************************************************************/

/*
    Simulates GROM. The real Geneve does not use GROMs but simulates them
    within the gate array. Unlike with real GROMs, no address wrapping occurs,
    and the complete 64K space is available.
*/
READ8_MEMBER( geneve_mapper_device::read_grom )
{
	uint8_t reply;
	if (offset & 0x0002)
	{
		// GROM address handling
		m_gromwaddr_LSB = false;

		if (m_gromraddr_LSB)
		{
			reply = m_grom_address & 0xff;
			m_gromraddr_LSB = false;
		}
		else
		{
			reply = (m_grom_address >> 8) & 0xff;
			m_gromraddr_LSB = true;
		}
	}
	else
	{
		// GROM data handling
		// GROMs are stored in pages 38..3f
		int physpage = 0x38;
		reply = m_dram->pointer()[(physpage<<13) + m_grom_address];
		m_grom_address = (m_grom_address + 1) & 0xffff;
		m_gromraddr_LSB = m_gromwaddr_LSB = false;
	}
	return reply;
}

/*
    Simulates GROM. The real Geneve does not use GROMs but simulates them
    within the gate array.
*/
WRITE8_MEMBER( geneve_mapper_device::write_grom )
{
	if (offset & 0x0002)
	{
		// set address
		m_gromraddr_LSB = false;
		if (m_gromwaddr_LSB)
		{
			m_grom_address = (m_grom_address & 0xff00) | data;
			m_grom_address = (m_grom_address + 1) & 0xffff;
			m_gromwaddr_LSB = false;
		}
		else
		{
			m_grom_address = (m_grom_address & 0x00ff) | ((uint16_t)data<<8);
			m_gromwaddr_LSB = true;
		}
	}
	else
	{   // write GPL data
		// The Geneve GROM simulator allows for GROM writing (verified with a real system)
		int physpage = 0x38;
		m_dram->pointer()[(physpage<<13) + m_grom_address] = data;

		m_grom_address = (m_grom_address + 1) & 0xffff;
		m_gromraddr_LSB = m_gromwaddr_LSB = false;
	}
}

void geneve_mapper_device::set_wait(int min)
{
	if (m_extra_waitstates && min < 2) min = 2;

	// if we still have video wait states, do not set this counter
	// (or it will assert READY when expiring)
	if (m_video_waitcount > min) return;

	// need one more pass so that READY will be asserted again
	m_waitcount = min + 1;
	if (m_waitcount > 1)
	{
		LOGMASKED(LOG_LINES, "Pulling down READY line for %d cycles\n", min);
		m_ready(CLEAR_LINE);
		m_ready_asserted = false;
	}
}

void geneve_mapper_device::set_video_waitcount(int min)
{
	if (m_debug_no_ws) return;
	m_video_waitcount = min;
}

void geneve_mapper_device::set_geneve_mode(bool geneve)
{
	LOGMASKED(LOG_SETTING, "Setting Geneve mode = %d\n", geneve);
	m_geneve_mode = geneve;
}

void geneve_mapper_device::set_direct_mode(bool direct)
{
	LOGMASKED(LOG_SETTING, "Setting direct mode = %d\n", direct);
	m_direct_mode = direct;
}

void geneve_mapper_device::set_cartridge_size(int size)
{
	LOGMASKED(LOG_SETTING, "Setting cartridge size to %d\n", size);
	m_cartridge_size = size;
}

void geneve_mapper_device::set_cartridge_writable(int base, bool write)
{
	LOGMASKED(LOG_SETTING, "Cartridge %04x space writable = %d\n", base, write);
	if (base==0x6000) m_cartridge6_writable = write;
	else m_cartridge7_writable = write;
}

void geneve_mapper_device::set_video_waitstates(bool wait)
{
	// Tends to be called repeatedly
	if (m_video_waitstates != wait)
	{
		LOGMASKED(LOG_SETTING, "Setting video waitstates = %d\n", wait);
	}
	m_video_waitstates = wait;
}

void geneve_mapper_device::set_extra_waitstates(bool wait)
{
	LOGMASKED(LOG_SETTING, "Setting extra waitstates = %d\n", wait);
	m_extra_waitstates = wait;
}


/************************************************************************
    Called by the address map
************************************************************************/

/*
    Read a byte via the data bus. The decoding has already been done in the
    SETOFFSET method, and we re-use the values stored there to quickly
    access the appropriate component.
*/
READ8_MEMBER( geneve_mapper_device::readm )
{
	uint8_t value = 0;

	decdata *dec;
	decdata debug;

	// For the debugger, do the decoding here with no wait states
	if (machine().side_effects_disabled())
	{
		if (m_cpu->is_onchip(offset)) return m_cpu->debug_read_onchip_memory(offset&0xff);
		dec = &debug;
		m_debug_no_ws = true;
		dec->offset = offset;
		decode_logical(true, dec);
		if (dec->function == MUNDEF)
		{
			map_address(m_read_mode, dec);
			decode_physical(dec);
			decode_mod(dec);
		}
		if (dec->function == MBOX)
		{
			m_peribox->memen_in(ASSERT_LINE);
			m_peribox->setaddress_dbin(space, dec->physaddr, true);
		}
	}
	else
	{
		// Use the values found in the setaddress phase
		dec = &m_decoded;
		m_debug_no_ws = false;
	}

	// Logical space

	switch (dec->function)
	{
	case MLVIDEO:
		if (!machine().side_effects_disabled())
		{
			value = m_video->read(space, dec->offset>>1);
			LOGMASKED(LOG_READ, "Read video %04x -> %02x\n", dec->offset, value);
			// Video wait states are created *after* the access
			// Accordingly, they have no effect when execution is in onchip RAM
			if (m_video_waitstates) set_video_waitcount(15);
		}
		break;

	case MLMAPPER:
		// mapper
		value = m_map[dec->offset & 0x0007];
		LOGMASKED(LOG_READ, "Read mapper %04x -> %02x\n", dec->offset, value);
		break;

	case MLKEY:
		// key
		if (!machine().side_effects_disabled()) value = m_keyboard->get_recent_key();
		LOGMASKED(LOG_READ, "Read keyboard -> %02x\n", value);
		break;

	case MLCLOCK:
		// clock
		// Tests on the real machine showed that the upper nibble is 0xf
		// (probably because of the location at f130-f13f?)
		// In TI mode, however, the upper nibble is 1, unless we read 801f,
		// in which case the nibble is 2. Here the location is 8010-801f.
		// Needs more investigation. We might as well ignore this,
		// as the high nibble is obviously undefined and takes some past
		// value floating around.
		value = m_clock->read(space, dec->offset & 0x000f);
		if (m_geneve_mode) value |= 0xf0;
		else value |= ((dec->offset & 0x000f)==0x000f)? 0x20 : 0x10;
		LOGMASKED(LOG_READ, "Read clock %04x -> %02x\n", dec->offset, value);
		break;

	case MLGROM:
		// grom simulation
		// ++++ ++-- ---- ---+
		// 1001 1000 0000 00x0
		if (!machine().side_effects_disabled()) value = read_grom(space, dec->offset, 0xff);
		LOGMASKED(LOG_READ, "Read GROM %04x -> %02x\n", dec->offset, value);
		break;

	case MLSOUND:
		value = 0;
		break;

	case MPDRAM:
		// DRAM. One wait state.
		value = m_dram->pointer()[dec->physaddr];
		LOGMASKED(LOG_READ, "Read DRAM %04x (%06x) -> %02x\n", dec->offset, dec->physaddr, value);
		break;

	case MPEXP:
		// On-board memory expansion for standard Geneve (never used)
		LOGMASKED(LOG_READ, "Read on-board expansion (not available) %06x -> 00\n", dec->physaddr);
		value = 0;
		break;

	case MPEPROM:
		// 1 111. ..xx xxxx xxxx xxxx on-board eprom (16K)
		// mirrored for f0, f2, f4, ...; f1, f3, f5, ...
		value = boot_rom(space, dec->physaddr, 0xff);
		break;

	case MPSRAM:
		if ((dec->physaddr & m_sram_mask)==m_sram_val)
		{
			value = m_sram->pointer()[dec->physaddr & ~m_sram_mask];
			LOGMASKED(LOG_READ, "Read SRAM %04x (%06x) -> %02x\n", dec->offset, dec->physaddr, value);
		}
		else
		{
			LOGMASKED(LOG_WARN, "Decoded as SRAM read, but no SRAM at %06x\n", dec->physaddr);
			value = 0;
		}
		// Return in any case
		break;

	case MBOX:
		// Route everything else to the P-Box
		//   0x000000-0x07ffff for the stock Geneve (AMC,AMB,AMA,A0 ...,A15)
		//   0x000000-0x1fffff for the GenMod.(AME,AMD,AMC,AMB,AMA,A0 ...,A15)

		m_peribox->readz(space, dec->physaddr, &value, 0xff);
		m_peribox->memen_in(CLEAR_LINE);
		LOGMASKED(LOG_READ, "Read P-Box %04x (%06x) -> %02x\n", dec->offset, dec->physaddr, value);
		break;

	default:
		LOGMASKED(LOG_WARN, "Unknown decoding result type: %d\n", dec->function);
		break;
	}
	return value;
}

WRITE8_MEMBER( geneve_mapper_device::writem )
{
	decdata *dec;
	decdata debug;

	// For the debugger, do the decoding here with no wait states
	if (machine().side_effects_disabled())
	{
		// TODO: add debug_write_onchip_memory
		dec = &debug;
		m_debug_no_ws = true;
		dec->offset = offset;
		decode_logical(false, dec);
		if (dec->function == MUNDEF)
		{
			map_address(m_read_mode, dec);
			decode_physical(dec);
			decode_mod(dec);
		}
		if (dec->function == MBOX)
		{
			m_peribox->memen_in(ASSERT_LINE);
			m_peribox->setaddress_dbin(space, dec->physaddr, false);
		}
	}
	else
	{
		// Use the values found in the setaddress phase
		dec = &m_decoded;
		m_debug_no_ws = false;
	}


	// Logical space

	switch (dec->function)
	{
	case MLVIDEO:
		// video
		// ++++ ++++ ++++ ---+
		// 1111 0001 0000 .cc0
		// Initialize waitstate timer

		if (!machine().side_effects_disabled())
		{
			m_video->write(space, dec->offset>>1, data);
			LOGMASKED(LOG_WRITE, "Write video %04x <- %02x\n", offset, data);
			// See above
			if (m_video_waitstates) set_video_waitcount(15);
		}
		break;

	case MLMAPPER:
		// mapper
		m_map[dec->offset & 0x0007] = data;
		LOGMASKED(LOG_WRITE, "Write mapper %04x <- %02x\n", offset, data);
		break;

	case MLCLOCK:
		// clock
		// ++++ ++++ ++++ ----
		m_clock->write(space, dec->offset & 0x000f, data);
		LOGMASKED(LOG_WRITE, "Write clock %04x <- %02x\n", offset, data);
		break;

	case MLSOUND:
		// sound
		// ++++ ++++ ++++ ---+
		m_sound->write(data);
		LOGMASKED(LOG_WRITE, "Write sound <- %02x\n", data);
		break;

	case MLGROM:
		// The GROM simulator is only available in TI Mode
		write_grom(space, dec->offset, data, 0xff);
		LOGMASKED(LOG_WRITE, "Write GROM %04x <- %02x\n", offset, data);
		break;

	// Physical space
	case MPDRAM:
		// DRAM write
		m_dram->pointer()[dec->physaddr] = data;
		LOGMASKED(LOG_WRITE, "Write DRAM %04x (%06x) <- %02x\n", offset, dec->physaddr, data);
		break;

	case MPEXP:
		// On-board memory expansion for standard Geneve
		// Actually never built, so we show it as unmapped
		LOGMASKED(LOG_WRITE, "Write on-board expansion (not available) %06x <- %02x\n", dec->physaddr, data);
		break;

	case MPEPROM:
		// 1 111. ..xx xxxx xxxx xxxx on-board eprom (16K)
		// mirrored for f0, f2, f4, ...; f1, f3, f5, ...
		// Ignore EPROM write (unless PFM)
		if (m_boot_rom != GENEVE_EPROM) write_to_pfm(space, dec->physaddr, data, 0xff);
		else
			LOGMASKED(LOG_WARN, "Write EPROM %04x (%06x) <- %02x, ignored\n", offset, dec->physaddr, data);
		break;

	case MPSRAM:
		if ((dec->physaddr & m_sram_mask)==m_sram_val)
		{
			m_sram->pointer()[dec->physaddr & ~m_sram_mask] = data;
			LOGMASKED(LOG_WRITE, "Write SRAM %04x (%06x) <- %02x\n", offset, dec->physaddr, data);
		}
		else
		{
			LOGMASKED(LOG_WARN, "Decoded as SRAM write, but no SRAM at %06x\n", dec->physaddr);
		}
		break;

	case MBOX:
		// Route everything else to the P-Box
		LOGMASKED(LOG_WRITE, "Write P-Box %04x (%06x) <- %02x\n", offset, dec->physaddr, data);
		m_peribox->write(space, dec->physaddr, data, 0xff);
		m_peribox->memen_in(CLEAR_LINE);
		break;

	default:
		LOGMASKED(LOG_WARN, "Unknown decoding result type: %d\n", dec->function);
		break;
	}
}

void geneve_mapper_device::decode_logical(bool reading, geneve_mapper_device::decdata* dec)
{
	dec->function = MUNDEF;
	dec->physaddr = m_pbox_prefix | dec->offset;
	dec->wait = 1;

	int i = 0;
	while (i < 7)
	{
		if (m_geneve_mode)
		{
			// Skip when genbase is 0
			if ((m_logmap[i].genbase != 0) && ((dec->offset & ~m_logmap[i].genmask) == m_logmap[i].genbase))
				break;
		}
		else
		{
			if (reading)
			{
				if ((dec->offset & ~m_logmap[i].timask) == m_logmap[i].tibase)
					break;
			}
			else
			{
				if ((dec->offset & ~m_logmap[i].timask) == (m_logmap[i].tibase | m_logmap[i].writeoff))
					break;
			}
		}
		i++;
	}
	if (i != 7)
	{
		LOGMASKED(LOG_DECODE, "Decoded as %s: %04x\n", m_logmap[i].description, dec->offset);
		dec->function = m_logmap[i].function;
	}
}

void geneve_mapper_device::map_address(bool reading, geneve_mapper_device::decdata* dec)
{
	int logpage = (dec->offset & 0xe000) >> 13;
	int physpage = 0;

	// Determine physical address
	if (m_direct_mode) physpage = 0xf8; // points to boot eprom
	else
	{
		// TI mode, accessing logical addresses 6000-7fff
		if (!m_geneve_mode && logpage==3)
		{
			if (reading)
			{
				physpage = (m_cartridge_size==0x4000 && m_cartridge_secondpage)? 0x37 : 0x36;
			}
			else
			{
				// Emulate the cartridge bank switch feature of Extended Basic
				// TODO: Is this the right place? Or writem()?
				if (m_cartridge_size==0x4000)
				{
					m_cartridge_secondpage = ((dec->offset & 0x0002)!=0);
					LOGMASKED(LOG_WRITE, "Set cartridge page %02x\n", m_cartridge_secondpage);
				}
				else
				{
					// writing into cartridge rom space (no bank switching)
					if ((((dec->offset & 0x1000)==0x0000) && !m_cartridge6_writable)
						|| (((dec->offset & 0x1000)==0x1000) && !m_cartridge7_writable))
					{
						LOGMASKED(LOG_WARN, "Writing to protected cartridge space %04x ignored\n", dec->offset);
					}
					else
						// TODO: Check whether secondpage is really ignored
						physpage = 0x36;
				}
			}
		}
		else
			physpage = m_map[logpage];
	}
	dec->physaddr = ((physpage << 13) | (dec->offset & 0x1fff)) & 0x1fffff;
}

void geneve_mapper_device::decode_physical(geneve_mapper_device::decdata* dec)
{
	dec->function = MUNDEF;

	int i = 0;
	while (i < 4)
	{
		if ((dec->physaddr & ~m_physmap[i].mask) == m_physmap[i].base)
			break;
		i++;
	}
	if (i != 4)
	{
		LOGMASKED(LOG_DECODE, "Decoded as %s: %06x\n", m_physmap[i].description, dec->physaddr);
		dec->function = m_physmap[i].function;
		dec->wait = m_physmap[i].wait;
	}
	else
	{
		// Route everything else to the P-Box
		dec->function = MBOX;
		dec->wait = 1;
	}
}

void genmod_mapper_device::decode_mod(geneve_mapper_device::decdata* dec)
{
	// GenMod mode
	// The TI Mode switch activates the DRAM on the board (1 WS)
	// for the first 512K (000000-07ffff)
	if (((dec->function == MPDRAM) && !m_gm_timode) || dec->function==MPSRAM || dec->function==MPEXP)
	{
		dec->function = MBOX;
	}

	if ((dec->function != MPDRAM) && m_turbo)
		dec->wait = 0;
}

/*
    Boot ROM handling, from EPROM or PFM.
*/
READ8_MEMBER( geneve_mapper_device::boot_rom )
{
	uint8_t value;
	int pfmaddress = (offset & 0x01ffff) | (m_pfm_bank<<17);

	switch (m_boot_rom)
	{
	case GENEVE_EPROM:
		value = m_eprom[offset & 0x003fff];
		LOGMASKED(LOG_READ, "Read EPROM %04x -> %02x\n", offset & 0x003fff, value);
		return value;
	case GENEVE_PFM512:
		value = m_pfm512->read(space, pfmaddress, mem_mask);
		break;
	case GENEVE_PFM512A:
		value = m_pfm512a->read(space, pfmaddress, mem_mask);
		break;
	default:
		LOGMASKED(LOG_WARN, "Illegal mode for reading boot ROM: %d\n", m_boot_rom);
		value = 0;
	}

	if (!m_pfm_output_enable) value = 0;
	LOGMASKED(LOG_PFM, "Reading from PFM at address %05x -> %02x\n", pfmaddress, value);
	return value;
}

WRITE8_MEMBER( geneve_mapper_device::write_to_pfm )
{
	// Nota bene: The PFM must be write protected on startup, or the RESET
	// of the 9995 will attempt to write the return vector into the flash EEPROM
	int address = (offset & 0x01ffff) | (m_pfm_bank<<17);
	LOGMASKED(LOG_PFM, "Writing to PFM at address %05x <- %02x\n", address, data);

	switch (m_boot_rom)
	{
	case GENEVE_PFM512:
		m_pfm512->write(space, address, data, mem_mask);
		break;
	case GENEVE_PFM512A:
		m_pfm512a->write(space, address, data, mem_mask);
		break;
	default:
		LOGMASKED(LOG_WARN, "Illegal mode for writing to PFM: %d\n", m_boot_rom);
	}
}


/*
    Accept the address passed over the address bus and decode it appropriately.
    This decoding will later be used in the READ/WRITE member functions. Also,
    we initiate wait state creation here.
*/
READ8_MEMBER( geneve_mapper_device::setoffset )
{
	LOGMASKED(LOG_DETAIL, "setoffset = %04x\n", offset);
	m_debug_no_ws = false;
	m_decoded.offset = offset;

	decode_logical(m_read_mode, &m_decoded);
	if (m_decoded.function == MUNDEF)
	{
		map_address(m_read_mode, &m_decoded);
		decode_physical(&m_decoded);
		decode_mod(&m_decoded);
	}

	set_wait(m_decoded.wait);

	if (m_decoded.function == MBOX)
	{
		m_peribox->memen_in(ASSERT_LINE);
		m_peribox->setaddress_dbin(space, m_decoded.physaddr, m_read_mode);
	}
	return 0;
}

/*
    The mapper is connected to the clock line in order to operate
    the wait state counter.
    The wait counter is decremented on each rising clock edge; when 0, the
    READY line is asserted. However, there is a second counter which is used for
    video wait states.
    The READY line must be asserted when the wait counter reaches 0, but must be
    cleared immediately again if the video counter has not reached 0.
    (See comments at the file header: The additional video wait states do not
    affect the video access itself but become effective after the access; if
    the code runs on the chip, these wait states are ignored.)
*/
WRITE_LINE_MEMBER( geneve_mapper_device::clock_in )
{
	if (state==ASSERT_LINE)
	{
		// Rising edge
		if (!m_ready_asserted)
		{
			if (m_waitcount > 0)
			{
				m_waitcount--;
				if (m_waitcount == 0)
				{
					LOGMASKED(LOG_CLOCK, "clock, READY asserted\n");
					m_ready(ASSERT_LINE);
					m_ready_asserted = true;
				}
				else
				{
					LOGMASKED(LOG_CLOCK, "clock\n");
				}
			}
			else
			{
				if (m_video_waitcount > 0)
				{
					m_video_waitcount--;
					if (m_video_waitcount == 0)
					{
						LOGMASKED(LOG_CLOCK, "clock, READY asserted after video\n");
						m_ready(ASSERT_LINE);
						m_ready_asserted = true;
					}
					else
					{
						LOGMASKED(LOG_CLOCK, "vclock, ew=%d\n", m_video_waitcount);
					}
				}
			}
		}
	}
	else
	{
		// Falling edge
		// Do we have video wait states? In that case, clear the line again
		if ((m_waitcount == 0) && (m_video_waitcount > 0) && m_ready_asserted)
		{
			LOGMASKED(LOG_CLOCK, "clock, READY cleared for video\n");
			m_ready(CLEAR_LINE);
			m_ready_asserted = false;
		}
	}
}

/*
    We need the DBIN line for the setoffset operation.
*/
WRITE_LINE_MEMBER( geneve_mapper_device::dbin_in )
{
	m_read_mode = (state==ASSERT_LINE);
	LOGMASKED(LOG_DETAIL, "dbin = %02x\n", m_read_mode? 1:0);
}

/*
    PFM expansion: Setting the bank.
*/
WRITE_LINE_MEMBER( geneve_mapper_device::pfm_select_lsb )
{
	if (state==ASSERT_LINE) m_pfm_bank |= 1;
	else m_pfm_bank &= 0xfe;
	LOGMASKED(LOG_PFM, "Setting bank (l) = %d\n", m_pfm_bank);
}

WRITE_LINE_MEMBER( geneve_mapper_device::pfm_select_msb )
{
	if (state==ASSERT_LINE) m_pfm_bank |= 2;
	else m_pfm_bank &= 0xfd;
	LOGMASKED(LOG_PFM, "Setting bank (u) = %d\n", m_pfm_bank);
}

WRITE_LINE_MEMBER( geneve_mapper_device::pfm_output_enable )
{
	// Negative logic
	m_pfm_output_enable = (state==CLEAR_LINE);
	LOGMASKED(LOG_PFM, "PFM output %s\n", m_pfm_output_enable? "enable" : "disable");
}

//====================================================================
//  Common device lifecycle
//====================================================================

void geneve_mapper_device::device_start()
{
	m_ready.resolve();

	m_geneve_mode = false;
	m_direct_mode = true;

	// State registration
	save_item(NAME(m_gromwaddr_LSB));
	save_item(NAME(m_gromraddr_LSB));
	save_item(NAME(m_grom_address));
	save_item(NAME(m_video_waitstates));
	save_item(NAME(m_extra_waitstates));
	save_item(NAME(m_ready_asserted));
	save_item(NAME(m_read_mode));
	save_item(NAME(m_debug_no_ws));
	save_item(NAME(m_geneve_mode));
	save_item(NAME(m_direct_mode));
	save_item(NAME(m_cartridge_size));
	save_item(NAME(m_cartridge_secondpage));
	save_item(NAME(m_cartridge6_writable));
	save_item(NAME(m_cartridge7_writable));
	save_pointer(NAME(m_map), 8);
	save_item(NAME(m_decoded.function));
	save_item(NAME(m_decoded.offset));
	save_item(NAME(m_decoded.physaddr));
	save_item(NAME(m_boot_rom));
	save_item(NAME(m_pfm_bank));
	save_item(NAME(m_pfm_output_enable));
	save_item(NAME(m_sram_mask));
	save_item(NAME(m_sram_val));
	save_item(NAME(m_waitcount));
	save_item(NAME(m_video_waitcount));
}

void geneve_mapper_device::common_reset()
{
	m_extra_waitstates = false;
	m_video_waitstates = true;
	m_read_mode = false;
	m_waitcount = 0;
	m_video_waitcount = 0;
	m_ready_asserted = true;

	m_geneve_mode =false;
	m_direct_mode = true;
	m_cartridge_size = 0x4000;
	m_cartridge_secondpage = false;
	m_cartridge6_writable = false;
	m_cartridge7_writable = false;
	m_grom_address = 0;
	m_pfm_bank = 0;
	m_pfm_output_enable = true;

	// Clear map
	for (auto & elem : m_map) elem = 0;

	// Check which boot EPROM we are using (or PFM)
	m_boot_rom = machine().root_device().ioport("BOOTROM")->read();
	m_eprom = machine().root_device().memregion("maincpu")->base();

	// Allow for configuring the VRAM size
	uint32_t videoram = (machine().root_device().ioport("VRAM")->read()!=0)? 0x30000 : 0x20000;
	downcast<v99x8_device &>(*m_video.target()).set_vram_size(videoram);
	LOGMASKED(LOG_SETTING, "Video RAM set to %d KiB\n", videoram / 1024);
}

void geneve_mapper_device::device_reset()
{
	common_reset();

	// SRAM is only separately handled for the standard Geneve; Genmod uses
	// the Memex instead
	switch (machine().root_device().ioport("SRAM")->read())
	{
/*  1 100. .... .... .... .... on-board sram (128K) -+
    1 101. .... .... .... .... on-board sram (128K) -+-- maximum SRAM expansion
    1 1100 .... .... .... .... on-board sram (64K) --+
    1 1101 0... .... .... .... on-board sram (32K) - additional 32 KiB required for MDOS 2.50s and higher
    1 1101 1... .... .... .... on-board sram (32K) - standard setup
*/
	case 0: // 32 KiB
		m_sram_mask =   0x1f8000;
		m_sram_val =    0x1d8000;
		break;
	case 1: // 64 KiB
		m_sram_mask =   0x1f0000;
		m_sram_val =    0x1d0000;
		break;
	case 2: // 384 KiB (actually 512 KiB, but the EPROM masks the upper 128 KiB)
		m_sram_mask =   0x180000;
		m_sram_val =    0x180000;
		break;
	}
}

void genmod_mapper_device::device_reset()
{
	common_reset();
	LOGMASKED(LOG_SETTING, "Using GenMod modification\n");
	m_turbo = ((machine().root_device().ioport("GENMODDIPS")->read() & GENEVE_GM_TURBO)!=0);
	m_gm_timode = ((machine().root_device().ioport("GENMODDIPS")->read() & GENEVE_GM_TIM)!=0);
}

/****************************************************************************
    Keyboard support

    The XT keyboard interface is described in various places on the internet,
    like (http://www-2.cs.cmu.edu/afs/cs/usr/jmcm/www/info/key2.txt).  It is a
    synchronous unidirectional serial interface: the data line is driven by the
    keyboard to send data to the CPU; the CTS/clock line has a pull up resistor
    and can be driven low by both keyboard and CPU.  To send data to the CPU,
    the keyboard pulses the clock line low 9 times, and the Geneve samples all
    8 bits of data (plus one start bit) on each falling edge of the clock.
    When the key code buffer is full, the Geneve gate array asserts the kbdint*
    line (connected to 9901 int8_t*).  The Geneve gate array will hold the
    CTS/clock line low as long as the keyboard buffer is full or CRU bit @>F78
    is 0.  Writing a 0 to >F79 will clear the Geneve keyboard buffer, and
    writing a 1 will resume normal operation: you need to write a 0 to >F78
    before clearing >F79, or the keyboard will be enabled to send data the gate
    array when >F79 is is set to 0, and any such incoming data from the
    keyboard will be cleared as soon as it is buffered by the gate array.

****************************************************************************/

static const uint8_t MF1_CODE[0xe] =
{
	/* extended keys that are equivalent to non-extended keys */
	0x1c,   /* keypad enter */
	0x1d,   /* right control */
	0x38,   /* alt gr */
	// extra codes are 0x5b for Left Windows, 0x5c for Right Windows, 0x5d
	// for Menu, 0x5e for power, 0x5f for sleep, 0x63 for wake, but I doubt
	// any Geneve program would take advantage of these. */

	// extended key that is equivalent to a non-extended key
	// with shift off
	0x35,   /* pad slash */

	// extended keys that are equivalent to non-extended keys
	// with numlock off
	0x47,   /* home */
	0x48,   /* up */
	0x49,   /* page up */
	0x4b,   /* left */
	0x4d,   /* right */
	0x4f,   /* end */
	0x50,   /* down */
	0x51,   /* page down */
	0x52,   /* insert */
	0x53    /* delete */
};

geneve_keyboard_device::geneve_keyboard_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, GENEVE_KEYBOARD, tag, owner, clock),
	m_interrupt(*this),
	m_keys(*this, "KEY%u", 0),
	m_key_reset(false), m_key_queue_length(0), m_key_queue_head(0), m_key_in_buffer(false), m_key_numlock_state(false), m_key_ctrl_state(0), m_key_alt_state(0),
	m_key_real_shift_state(0), m_key_fake_shift_state(false), m_key_fake_unshift_state(false), m_key_autorepeat_key(0), m_key_autorepeat_timer(0), m_keep_keybuf(false),
	m_keyboard_clock(false), m_timer(nullptr)
{
}

void geneve_keyboard_device::post_in_key_queue(int keycode)
{
	m_key_queue[(m_key_queue_head + m_key_queue_length) % KEYQUEUESIZE] = keycode;
	m_key_queue_length++;

	LOGMASKED(LOG_KEYBOARD, "Posting keycode %02x\n", keycode);
}

void geneve_keyboard_device::device_timer(emu_timer &timer, device_timer_id id, int param, void *ptr)
{
	poll();
}

void geneve_keyboard_device::poll()
{
	uint32_t keystate;
	uint32_t key_transitions;
	int i, j;
	int keycode;
	int pressed;
	LOGMASKED(LOG_KEYBOARD, "Poll keyboard\n");
	if (m_key_reset) return;

	/* Poll keyboard */
	for (i = 0; (i < 4) && (m_key_queue_length <= (KEYQUEUESIZE-MAXKEYMSGLENGTH)); i++)
	{
		keystate = m_keys[2*i]->read() | (m_keys[2*i + 1]->read() << 16);
		key_transitions = keystate ^ m_key_state_save[i];
		if (key_transitions)
		{
			for (j = 0; (j < 32) && (m_key_queue_length <= (KEYQUEUESIZE-MAXKEYMSGLENGTH)); j++)
			{
				if ((key_transitions >> j) & 1)
				{
					keycode = (i << 5) | j;
					pressed = ((keystate >> j) & 1);
					if (pressed)
						m_key_state_save[i] |= (1 << j);
					else
						m_key_state_save[i] &= ~ (1 << j);

					/* Update auto-repeat */
					if (pressed)
					{
						m_key_autorepeat_key = keycode;
						m_key_autorepeat_timer = KEYAUTOREPEATDELAY+1;
					}
					else /*if (keycode == m_key_autorepeat_key)*/
						m_key_autorepeat_key = 0;

					// Release Fake Shift/Unshift if another key is pressed
					// We do so if a key is released, though it is actually
					// required only if it is a modifier key
					/*if (pressed)*/
					//{
					if (m_key_fake_shift_state)
					{
						/* Fake shift release */
						post_in_key_queue(0xe0);
						post_in_key_queue(0xaa);
						m_key_fake_shift_state = false;
					}
					if (m_key_fake_unshift_state)
					{
						/* Fake shift press */
						post_in_key_queue(0xe0);
						post_in_key_queue(0x2a);
						m_key_fake_unshift_state = false;
					}
					//}

					/* update shift and numlock state */
					if ((keycode == 0x2a) || (keycode == 0x36))
						m_key_real_shift_state = m_key_real_shift_state + (pressed ? +1 : -1);
					if ((keycode == 0x1d) || (keycode == 0x61))
						m_key_ctrl_state = m_key_ctrl_state + (pressed ? +1 : -1);
					if ((keycode == 0x38) || (keycode == 0x62))
						m_key_alt_state = m_key_alt_state + (pressed ? +1 : -1);
					if ((keycode == 0x45) && pressed)
						m_key_numlock_state = !m_key_numlock_state;

					if ((keycode >= 0x60) && (keycode < 0x6e))
					{   /* simpler extended keys */
						/* these keys are emulated */

						if ((keycode >= 0x63) && pressed)
						{
							/* Handle shift state */
							if (keycode == 0x63)
							{   /* non-shifted key */
								if (m_key_real_shift_state!=0)
									/* Fake shift unpress */
									m_key_fake_unshift_state = true;
							}
							else /*if (keycode >= 0x64)*/
							{   /* non-numlock mode key */
								if (m_key_numlock_state & (m_key_real_shift_state==0))
									/* Fake shift press if numlock is active */
									m_key_fake_shift_state = true;
								else if ((!m_key_numlock_state) & (m_key_real_shift_state!=0))
									/* Fake shift unpress if shift is down */
									m_key_fake_unshift_state = true;
							}

							if (m_key_fake_shift_state)
							{
								post_in_key_queue(0xe0);
								post_in_key_queue(0x2a);
							}

							if (m_key_fake_unshift_state)
							{
								post_in_key_queue(0xe0);
								post_in_key_queue(0xaa);
							}
						}

						keycode = MF1_CODE[keycode-0x60];
						if (!pressed) keycode |= 0x80;
						post_in_key_queue(0xe0);
						post_in_key_queue(keycode);
					}
					else if (keycode == 0x6e)
					{   /* emulate Print Screen / System Request (F13) key */
						/* this is a bit complex, as Alt+PrtScr -> SysRq */
						/* Additionally, Ctrl+PrtScr involves no fake shift press */
						if (m_key_alt_state!=0)
						{
							/* SysRq */
							keycode = 0x54;
							if (!pressed) keycode |= 0x80;
							post_in_key_queue(keycode);
						}
						else
						{
							/* Handle shift state */
							if (pressed && (m_key_real_shift_state==0) && (m_key_ctrl_state==0))
							{   /* Fake shift press */
								post_in_key_queue(0xe0);
								post_in_key_queue(0x2a);
								m_key_fake_shift_state = true;
							}

							keycode = 0x37;
							if (!pressed) keycode |= 0x80;
							post_in_key_queue(0xe0);
							post_in_key_queue(keycode);
						}
					}
					else if (keycode == 0x6f)
					{   // emulate pause (F15) key
						// this is a bit complex, as Pause -> Ctrl+NumLock and
						// Ctrl+Pause -> Ctrl+ScrLock.  Furthermore, there is no
						// repeat or release.
						if (pressed)
						{
							if (m_key_ctrl_state!=0)
							{
								post_in_key_queue(0xe0);
								post_in_key_queue(0x46);
								post_in_key_queue(0xe0);
								post_in_key_queue(0xc6);
							}
							else
							{
								post_in_key_queue(0xe1);
								post_in_key_queue(0x1d);
								post_in_key_queue(0x45);
								post_in_key_queue(0xe1);
								post_in_key_queue(0x9d);
								post_in_key_queue(0xc5);
							}
						}
					}
					else
					{
						if (!pressed) keycode |= 0x80;
						post_in_key_queue(keycode);
					}
					signal_when_key_available();
				}
			}
		}
	}

	/* Handle auto-repeat */
	if ((m_key_queue_length <= (KEYQUEUESIZE-MAXKEYMSGLENGTH)) && (m_key_autorepeat_key!=0) && (--m_key_autorepeat_timer == 0))
	{
		if ((m_key_autorepeat_key >= 0x60) && (m_key_autorepeat_key < 0x6e))
		{
			post_in_key_queue(0xe0);
			post_in_key_queue(MF1_CODE[m_key_autorepeat_key-0x60]);
		}
		else if (m_key_autorepeat_key == 0x6e)
		{
			if (m_key_alt_state!=0)
				post_in_key_queue(0x54);
			else
			{
				post_in_key_queue(0xe0);
				post_in_key_queue(0x37);
			}
		}
		else if (m_key_autorepeat_key == 0x6f)
			;
		else
		{
			post_in_key_queue(m_key_autorepeat_key);
		}
		signal_when_key_available();
		m_key_autorepeat_timer = KEYAUTOREPEATRATE;
	}
}

uint8_t geneve_keyboard_device::get_recent_key()
{
	if (m_key_in_buffer) return m_key_queue[m_key_queue_head];
	else return 0;
}

void geneve_keyboard_device::signal_when_key_available()
{
	// if keyboard reset is not asserted, and key clock is enabled, and key
	// buffer clear is disabled, and key queue is not empty. */
	if ((!m_key_reset) && (m_keyboard_clock) && (m_keep_keybuf) && (m_key_queue_length != 0))
	{
		LOGMASKED(LOG_KEYBOARD, "Key available\n");
		m_interrupt(ASSERT_LINE);
		m_key_in_buffer = true;
	}
}

WRITE_LINE_MEMBER( geneve_keyboard_device::clock_control )
{
	bool rising_edge = (!m_keyboard_clock && (state==ASSERT_LINE));
	m_keyboard_clock = (state==ASSERT_LINE);
	LOGMASKED(LOG_KEYBOARD, "Keyboard clock_control state=%d\n", m_keyboard_clock);
	if (rising_edge)
		signal_when_key_available();
}

WRITE_LINE_MEMBER( geneve_keyboard_device::send_scancodes )
{
	bool rising_edge = (!m_keep_keybuf && (state==ASSERT_LINE));
	bool falling_edge = (m_keep_keybuf && (state==CLEAR_LINE));
	m_keep_keybuf = (state==ASSERT_LINE);

	if (rising_edge) signal_when_key_available();
	else
	{
		if (falling_edge)
		{
			if (m_key_queue_length != 0)
			{
				m_key_queue_head = (m_key_queue_head + 1) % KEYQUEUESIZE;
				m_key_queue_length--;
			}
			/* clear keyboard interrupt */
			m_interrupt(CLEAR_LINE);
			m_key_in_buffer = false;
		}
	}
}

WRITE_LINE_MEMBER( geneve_keyboard_device::reset_line )
{
	m_key_reset = !(state==ASSERT_LINE);

	if (m_key_reset)
	{
		/* reset -> clear keyboard key queue, but not geneve key buffer */
		m_key_queue_length = (m_key_in_buffer)? 1 : 0;
		m_key_queue_head = 0;
		memset(m_key_state_save, 0, sizeof(m_key_state_save));
		m_key_numlock_state = false;
		m_key_ctrl_state = 0;
		m_key_alt_state = 0;
		m_key_real_shift_state = 0;
		m_key_fake_shift_state = false;
		m_key_fake_unshift_state = false;
		m_key_autorepeat_key = 0;
	}
}

void geneve_keyboard_device::device_start()
{
	m_timer = timer_alloc(0);
	m_interrupt.resolve();

	// State registration
	save_item(NAME(m_key_reset));
	save_item(NAME(m_key_queue_length));
	save_item(NAME(m_key_queue_head));
	save_item(NAME(m_key_in_buffer));
	save_item(NAME(m_key_numlock_state));
	save_item(NAME(m_key_ctrl_state));
	save_item(NAME(m_key_alt_state));
	save_item(NAME(m_key_real_shift_state));
	save_item(NAME(m_key_fake_shift_state));
	save_item(NAME(m_key_fake_unshift_state));
	save_item(NAME(m_key_autorepeat_key));
	save_item(NAME(m_key_autorepeat_timer));
	save_item(NAME(m_keep_keybuf));
	save_item(NAME(m_keyboard_clock));
	save_pointer(NAME(m_key_queue),KEYQUEUESIZE);
	save_pointer(NAME(m_key_state_save),4);
}

void geneve_keyboard_device::device_reset()
{
	m_key_in_buffer = false;
	reset_line(CLEAR_LINE);
	m_key_queue_length = 0;
	m_key_reset = true;
	m_keyboard_clock = false;
	m_keep_keybuf = false;
	m_timer->adjust(attotime::from_usec(1), 0, attotime::from_hz(120));
}

INPUT_PORTS_START( genkeys )
	PORT_START("KEY0")  /* IN3 */
	PORT_BIT ( 0x0001, 0x0000, IPT_UNUSED )     /* unused scancode 0 */
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Esc") PORT_CODE(KEYCODE_ESC) /* Esc                       01  81 */
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("1 !") PORT_CODE(KEYCODE_1) /* 1                           02  82 */
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("2 @") PORT_CODE(KEYCODE_2) /* 2                           03  83 */
	PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("3 #") PORT_CODE(KEYCODE_3) /* 3                           04  84 */
	PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("4 $") PORT_CODE(KEYCODE_4) /* 4                           05  85 */
	PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("5 %") PORT_CODE(KEYCODE_5) /* 5                           06  86 */
	PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("6 ^") PORT_CODE(KEYCODE_6) /* 6                           07  87 */
	PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("7 &") PORT_CODE(KEYCODE_7) /* 7                           08  88 */
	PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("8 *") PORT_CODE(KEYCODE_8) /* 8                           09  89 */
	PORT_BIT(0x0400, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("9 (") PORT_CODE(KEYCODE_9) /* 9                           0A  8A */
	PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("0 )") PORT_CODE(KEYCODE_0) /* 0                           0B  8B */
	PORT_BIT(0x1000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("- _") PORT_CODE(KEYCODE_MINUS) /* -                           0C  8C */
	PORT_BIT(0x2000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("= +") PORT_CODE(KEYCODE_EQUALS) /* =                          0D  8D */
	PORT_BIT(0x4000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Backspace") PORT_CODE(KEYCODE_BACKSPACE) /* Backspace                 0E  8E */
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Tab") PORT_CODE(KEYCODE_TAB) /* Tab                       0F  8F */

	PORT_START("KEY1")  /* IN4 */
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Q") PORT_CODE(KEYCODE_Q) /* Q                         10  90 */
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("W") PORT_CODE(KEYCODE_W) /* W                         11  91 */
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("E") PORT_CODE(KEYCODE_E) /* E                         12  92 */
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("R") PORT_CODE(KEYCODE_R) /* R                         13  93 */
	PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("T") PORT_CODE(KEYCODE_T) /* T                         14  94 */
	PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Y") PORT_CODE(KEYCODE_Y) /* Y                         15  95 */
	PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("U") PORT_CODE(KEYCODE_U) /* U                         16  96 */
	PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("I") PORT_CODE(KEYCODE_I) /* I                         17  97 */
	PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("O") PORT_CODE(KEYCODE_O) /* O                         18  98 */
	PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("P") PORT_CODE(KEYCODE_P) /* P                         19  99 */
	PORT_BIT(0x0400, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("[ {") PORT_CODE(KEYCODE_OPENBRACE) /* [                           1A  9A */
	PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("] }") PORT_CODE(KEYCODE_CLOSEBRACE) /* ]                          1B  9B */
	PORT_BIT(0x1000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Enter") PORT_CODE(KEYCODE_ENTER) /* Enter                     1C  9C */
	PORT_BIT(0x2000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("L-Ctrl") PORT_CODE(KEYCODE_LCONTROL) /* Left Ctrl                 1D  9D */
	PORT_BIT(0x4000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("A") PORT_CODE(KEYCODE_A) /* A                         1E  9E */
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("S") PORT_CODE(KEYCODE_S) /* S                         1F  9F */

	PORT_START("KEY2")  /* IN5 */
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("D") PORT_CODE(KEYCODE_D) /* D                         20  A0 */
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F") PORT_CODE(KEYCODE_F) /* F                         21  A1 */
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("G") PORT_CODE(KEYCODE_G) /* G                         22  A2 */
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("H") PORT_CODE(KEYCODE_H) /* H                         23  A3 */
	PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("J") PORT_CODE(KEYCODE_J) /* J                         24  A4 */
	PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("K") PORT_CODE(KEYCODE_K) /* K                         25  A5 */
	PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("L") PORT_CODE(KEYCODE_L) /* L                         26  A6 */
	PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("; :") PORT_CODE(KEYCODE_COLON) /* ;                           27  A7 */
	PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("' \"") PORT_CODE(KEYCODE_QUOTE) /* '                          28  A8 */
	PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("` ~") PORT_CODE(KEYCODE_TILDE) /* `                           29  A9 */
	PORT_BIT(0x0400, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("L-Shift") PORT_CODE(KEYCODE_LSHIFT) /* Left Shift                 2A  AA */
	PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("\\ |") PORT_CODE(KEYCODE_BACKSLASH) /* \                          2B  AB */
	PORT_BIT(0x1000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Z") PORT_CODE(KEYCODE_Z) /* Z                         2C  AC */
	PORT_BIT(0x2000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("X") PORT_CODE(KEYCODE_X) /* X                         2D  AD */
	PORT_BIT(0x4000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("C") PORT_CODE(KEYCODE_C) /* C                         2E  AE */
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("V") PORT_CODE(KEYCODE_V) /* V                         2F  AF */

	PORT_START("KEY3")  /* IN6 */
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("B") PORT_CODE(KEYCODE_B) /* B                         30  B0 */
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("N") PORT_CODE(KEYCODE_N) /* N                         31  B1 */
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("M") PORT_CODE(KEYCODE_M) /* M                         32  B2 */
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME(", <") PORT_CODE(KEYCODE_COMMA) /* ,                           33  B3 */
	PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME(". >") PORT_CODE(KEYCODE_STOP) /* .                            34  B4 */
	PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("/ ?") PORT_CODE(KEYCODE_SLASH) /* /                           35  B5 */
	PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("R-Shift") PORT_CODE(KEYCODE_RSHIFT) /* Right Shift                36  B6 */
	PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP * (PrtScr)") PORT_CODE(KEYCODE_ASTERISK    ) /* Keypad *  (PrtSc)          37  B7 */
	PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Alt") PORT_CODE(KEYCODE_LALT) /* Left Alt                 38  B8 */
	PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Space") PORT_CODE(KEYCODE_SPACE) /* Space                     39  B9 */
	PORT_BIT(0x0400, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Caps") PORT_CODE(KEYCODE_CAPSLOCK) /* Caps Lock                   3A  BA */
	PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F1") PORT_CODE(KEYCODE_F1) /* F1                          3B  BB */
	PORT_BIT(0x1000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F2") PORT_CODE(KEYCODE_F2) /* F2                          3C  BC */
	PORT_BIT(0x2000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F3") PORT_CODE(KEYCODE_F3) /* F3                          3D  BD */
	PORT_BIT(0x4000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F4") PORT_CODE(KEYCODE_F4) /* F4                          3E  BE */
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F5") PORT_CODE(KEYCODE_F5) /* F5                          3F  BF */

	PORT_START("KEY4")  /* IN7 */
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F6") PORT_CODE(KEYCODE_F6) /* F6                          40  C0 */
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F7") PORT_CODE(KEYCODE_F7) /* F7                          41  C1 */
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F8") PORT_CODE(KEYCODE_F8) /* F8                          42  C2 */
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F9") PORT_CODE(KEYCODE_F9) /* F9                          43  C3 */
	PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("F10") PORT_CODE(KEYCODE_F10) /* F10                       44  C4 */
	PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("NumLock") PORT_CODE(KEYCODE_NUMLOCK) /* Num Lock                  45  C5 */
	PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("ScrLock (F14)") PORT_CODE(KEYCODE_SCRLOCK) /* Scroll Lock             46  C6 */
	PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 7 (Home)") PORT_CODE(KEYCODE_7_PAD     ) /* Keypad 7  (Home)           47  C7 */
	PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 8 (Up)") PORT_CODE(KEYCODE_8_PAD       ) /* Keypad 8  (Up arrow)       48  C8 */
	PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 9 (PgUp)") PORT_CODE(KEYCODE_9_PAD     ) /* Keypad 9  (PgUp)           49  C9 */
	PORT_BIT(0x0400, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP -") PORT_CODE(KEYCODE_MINUS_PAD) /* Keypad -                   4A  CA */
	PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 4 (Left)") PORT_CODE(KEYCODE_4_PAD     ) /* Keypad 4  (Left arrow)     4B  CB */
	PORT_BIT(0x1000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 5") PORT_CODE(KEYCODE_5_PAD) /* Keypad 5                   4C  CC */
	PORT_BIT(0x2000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 6 (Right)") PORT_CODE(KEYCODE_6_PAD        ) /* Keypad 6  (Right arrow)    4D  CD */
	PORT_BIT(0x4000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP +") PORT_CODE(KEYCODE_PLUS_PAD) /* Keypad +                    4E  CE */
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 1 (End)") PORT_CODE(KEYCODE_1_PAD      ) /* Keypad 1  (End)            4F  CF */

	PORT_START("KEY5")  /* IN8 */
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 2 (Down)") PORT_CODE(KEYCODE_2_PAD     ) /* Keypad 2  (Down arrow)     50  D0 */
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 3 (PgDn)") PORT_CODE(KEYCODE_3_PAD     ) /* Keypad 3  (PgDn)           51  D1 */
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP 0 (Ins)") PORT_CODE(KEYCODE_0_PAD      ) /* Keypad 0  (Ins)            52  D2 */
	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("KP . (Del)") PORT_CODE(KEYCODE_DEL_PAD        ) /* Keypad .  (Del)            53  D3 */
	PORT_BIT ( 0x0030, 0x0000, IPT_UNUSED )
	PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(84/102)\\") PORT_CODE(KEYCODE_BACKSLASH2) /* Backslash 2             56  D6 */
	PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)F11") PORT_CODE(KEYCODE_F11) /* F11                      57  D7 */
	PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)F12") PORT_CODE(KEYCODE_F12) /* F12                      58  D8 */
	PORT_BIT ( 0xfe00, 0x0000, IPT_UNUSED )

	PORT_START("KEY6")  /* IN9 */
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)KP Enter") PORT_CODE(KEYCODE_ENTER_PAD) /* PAD Enter                 60  e0 */
	PORT_BIT(0x0002, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)R-Control") PORT_CODE(KEYCODE_RCONTROL) /* Right Control             61  e1 */
	PORT_BIT(0x0004, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)ALTGR") PORT_CODE(KEYCODE_RALT) /* ALTGR                     64  e4 */

	PORT_BIT(0x0008, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)KP /") PORT_CODE(KEYCODE_SLASH_PAD) /* PAD Slash                 62  e2 */

	PORT_BIT(0x0010, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Home") PORT_CODE(KEYCODE_HOME) /* Home                       66  e6 */
	PORT_BIT(0x0020, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Cursor Up") PORT_CODE(KEYCODE_UP) /* Up                          67  e7 */
	PORT_BIT(0x0040, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Page Up") PORT_CODE(KEYCODE_PGUP) /* Page Up                 68  e8 */
	PORT_BIT(0x0080, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Cursor Left") PORT_CODE(KEYCODE_LEFT) /* Left                        69  e9 */
	PORT_BIT(0x0100, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Cursor Right") PORT_CODE(KEYCODE_RIGHT) /* Right                     6a  ea */
	PORT_BIT(0x0200, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)End") PORT_CODE(KEYCODE_END) /* End                      6b  eb */
	PORT_BIT(0x0400, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Cursor Down") PORT_CODE(KEYCODE_DOWN) /* Down                        6c  ec */
	PORT_BIT(0x0800, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Page Down") PORT_CODE(KEYCODE_PGDN) /* Page Down                 6d  ed */
	PORT_BIT(0x1000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Insert") PORT_CODE(KEYCODE_INSERT) /* Insert                     6e  ee */
	PORT_BIT(0x2000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Delete") PORT_CODE(KEYCODE_DEL) /* Delete                        6f  ef */

	PORT_BIT(0x4000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)PrtScr (F13)") PORT_CODE(KEYCODE_PRTSCR) /* Print Screen             63  e3 */
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("(101)Pause (F15)") PORT_CODE(KEYCODE_PAUSE) /* Pause                      65  e5 */

	PORT_START("KEY7")  /* IN10 */
	PORT_BIT ( 0xffff, 0x0000, IPT_UNUSED )
#if 0
	PORT_BIT(0x0001, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Print Screen") PORT_CODE(KEYCODE_PRTSCR) /* Print Screen alternate        77  f7 */
	PORT_BIT(0x2000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Left Win") /* Left Win                    7d  fd */
	PORT_BIT(0x4000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Right Win") /* Right Win                  7e  fe */
	PORT_BIT(0x8000, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Menu") /* Menu                        7f  ff */
#endif
INPUT_PORTS_END

ioport_constructor geneve_keyboard_device::device_input_ports() const
{
	return INPUT_PORTS_NAME( genkeys );
}

} } } // end namespace bus::ti99::internal