summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/bus/snes/sa1.cpp
blob: 487f176fd8691dd4989cecc7bf5f8df6844e8e39 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
// license:BSD-3-Clause
// copyright-holders:Fabio Priuli, R. Belmont
/***********************************************************************************************************

 SA-1 add-on chip emulation (for SNES/SFC)

 Note:
 - SA-1 register description below is based on no$cash docs.
 - about bankswitch handling: no matter what is ROM size, at loading the ROM is mirrored up to 8MB and a
   rom_bank_map[0x100] array is built as a lookup table for 256x32KB banks filling the 8MB accessible ROM
   area; this allows to handle any 0-7 value written to CXB/DXB/EXB/FXB SA-1 registers without any masking!
 - about BWRAM "bitmap mode": in 2bits mode
     600000h.Bit0-1 mirrors to 400000h.Bit0-1
     600001h.Bit0-1 mirrors to 400000h.Bit2-3
     600002h.Bit0-1 mirrors to 400000h.Bit4-5
     600003h.Bit0-1 mirrors to 400000h.Bit6-7
     ...
   in 4bits mode
     600000h.Bit0-3 mirrors to 400000h.Bit0-3
     600001h.Bit0-3 mirrors to 400000h.Bit4-7
     600002h.Bit0-3 mirrors to 400001h.Bit0-3
     600003h.Bit0-3 mirrors to 400001h.Bit4-7
     ...
   to handle the separate modes, bitmap accesses go to offset + 0x100000

 TODO:
 - test case for BWRAM & IRAM write protect (bsnes does not seem to ever protect either, so it's not implemented
   for the moment)
 - almost everything CPU related!

 Compatibility:
    asahishi: plays OK
    daisenx2: plays OK
    derbyjo2: hangs going into game
    dbzhypd, dbzhypdj: plays OK
    habumeij: boots, goes into game, on-screen timer counts down after SA-1 is enabled but controls aren't responsive
    haruaug3a, pebble, haruaug3: uses SA-1 DMA
    itoibass: boots, some missing gfx
    jikkparo: plays OK
    jl96drem: plays OK
    jumpind: boots and runs, uses SA-1 normal DMA only but has corrupt gfx
    kakinoki: S-CPU crashes after pressing start
    kirby3j, kirby3: uses SA-1 DMA
    kirbysdb, kirbyss, kirbyfun, kirbysd, kirbysda: plays OK
    marvelou: plays OK, uses SA-1 normal DMA only but has corrupt gfx
    miniyonk: plays OK
    panicbw: plays OK
    pgaeuro, pgaeurou, pga96, pga96u, pga, pgaj: plays OK
    przeo, przeou: plays OK
    prokishi: plays OK
    rinkaiho: plays OK
    saikouso: plays OK
    sdf1gpp, sdf1gp: corrupt menu gfx, hangs going into game (I think)
    sdgungnx: plays OK
    shinshog: plays OK
    shogisai: plays OK
    shogisa2: plays OK
    smrpgj, smrpg: needs SA-1 character conversion for level up Bonus Chance (possible to get past now)
    srobotg: some corrupt in-game GFX, may be SNES rendering errors
    sshogi3: plays OK
    taikyoid: plays OK
    takemiya: plays OK
 [Note: for Igo & Shougi games, "plays OK" means you can get ingame and the CPU replies to your moves... subtle bugs
 might indeed exist...]

 ***********************************************************************************************************/

#include "emu.h"
#include "sa1.h"

#define SA1_IRQ_SCPU    (0x80)
#define SA1_IRQ_TIMER   (0x40)
#define SA1_IRQ_DMA     (0x20)
#define SA1_NMI_SCPU    (0x10)

#define SCPU_IRQ_SA1    (0x80)
#define SCPU_IRQV_ALT   (0x40)
#define SCPU_IRQ_CHARCONV (0x20)
#define SCPU_NMIV_ALT   (0x10)

//-------------------------------------------------
//  constructor
//-------------------------------------------------

DEFINE_DEVICE_TYPE(SNS_LOROM_SA1, sns_sa1_device, "sns_rom_sa1", "SNES Cart + SA-1")


sns_sa1_device::sns_sa1_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock)
	: device_t(mconfig, SNS_LOROM_SA1, tag, owner, clock)
	, device_sns_cart_interface(mconfig, *this)
	, m_sa1(*this, "sa1cpu")
	, m_sa1_ctrl(0), m_scpu_sie(0), m_sa1_reset(0), m_sa1_nmi(0), m_sa1_irq(0), m_scpu_ctrl(0), m_sa1_sie(0)
	, m_irq_vector(0), m_nmi_vector(0)
	, m_hcount(0), m_vcount(0)
	, m_bank_c_hi(0), m_bank_c_rom(0), m_bank_d_hi(0), m_bank_d_rom(0), m_bank_e_hi(0), m_bank_e_rom(0), m_bank_f_hi(0), m_bank_f_rom(0)
	, m_bwram_snes(0), m_bwram_sa1(0), m_bwram_sa1_source(0), m_bwram_sa1_format(0), m_bwram_write_snes(0), m_bwram_write_sa1(0), m_bwpa_sa1(0)
	, m_iram_write_snes(0), m_iram_write_sa1(0)
	, m_dma_ctrl(0), m_dma_ccparam(0), m_src_addr(0), m_dst_addr(0), m_dma_cnt(0)
	, m_math_ctlr(0), m_math_overflow(0), m_math_a(0), m_math_b(0), m_math_res(0)
	, m_vda(0), m_vbit(0), m_vlen(0), m_drm(0), m_scpu_flags(0), m_sa1_flags(0), m_hcr(0), m_vcr(0)
{
}


void sns_sa1_device::device_start()
{
	m_scpu_ctrl = 0;
	m_nmi_vector = 0;
	m_bank_c_hi = 0;
	m_bank_c_rom = 0;
}

void sns_sa1_device::device_reset()
{
	memset(m_internal_ram, 0, sizeof(m_internal_ram));

	m_sa1_ctrl = 0x20;
	m_scpu_ctrl = 0;
	m_irq_vector = 0;
	m_nmi_vector = 0;
	m_hcount = 0;
	m_vcount = 0;
	m_bank_c_hi = 0;
	m_bank_c_rom = 0;
	m_bank_d_hi = 0;
	m_bank_d_rom = 1;
	m_bank_e_hi = 0;
	m_bank_e_rom = 2;
	m_bank_f_hi = 0;
	m_bank_f_rom = 3;
	m_bwram_snes = 0;
	m_bwram_sa1 = 0;
	m_bwram_sa1_source = 0;
	m_bwram_sa1_format = 0;
	m_bwram_write_snes = 1;
	m_bwram_write_sa1 = 1;
	m_bwpa_sa1 = 0x0f;
	m_iram_write_snes = 1;
	m_iram_write_sa1 = 1;
	m_src_addr = 0;
	m_dst_addr = 0;
	memset(m_brf_reg, 0, sizeof(m_brf_reg));
	m_math_ctlr = 0;
	m_math_overflow = 0;
	m_math_a = 0;
	m_math_b = 0;
	m_math_res = 0;
	m_vda = 0;
	m_vbit = 0;
	m_vlen = 0;
	m_drm = 0;
	m_hcr = 0;
	m_vcr = 0;
	m_scpu_sie = m_sa1_sie = 0;
	m_scpu_flags = m_sa1_flags = 0;
	m_dma_ctrl = 0;
	m_dma_ccparam = 0;
	m_dma_cnt = 0;

	// sa-1 CPU starts out not running?
	m_sa1->set_input_line(INPUT_LINE_HALT, ASSERT_LINE);
}


/*-------------------------------------------------
 mapper specific handlers
 -------------------------------------------------*/

void sns_sa1_device::recalc_irqs()
{
	if (m_scpu_flags & m_scpu_sie & (SCPU_IRQ_SA1|SCPU_IRQ_CHARCONV))
	{
		write_irq(ASSERT_LINE);
	}
	else
	{
		write_irq(CLEAR_LINE);
	}

	if (m_sa1_flags & m_sa1_sie & (SA1_IRQ_SCPU|SA1_IRQ_TIMER|SA1_IRQ_DMA))
	{
		m_sa1->set_input_line(G65816_LINE_IRQ, ASSERT_LINE);
	}
	else
	{
		m_sa1->set_input_line(G65816_LINE_IRQ, CLEAR_LINE);
	}

	if (m_sa1_flags & m_sa1_sie & SA1_NMI_SCPU)
	{
		m_sa1->set_input_line(G65816_LINE_NMI, ASSERT_LINE);
	}
	else
	{
		m_sa1->set_input_line(G65816_LINE_NMI, CLEAR_LINE);
	}
}


/*-------------------------------------------------
  RAM / SRAM / Registers
 -------------------------------------------------*/


// handle this separately to avoid accessing recursively the regs?

uint8_t sns_sa1_device::var_length_read(uint32_t offset)
{
	// handle 0xffea/0xffeb/0xffee/0xffef
	if ((offset & 0xffffe0) == 0x00ffe0)
	{
		if (offset == 0xffea && BIT(m_scpu_ctrl, 4)) return (m_nmi_vector >> 0) & 0xff;
		if (offset == 0xffeb && BIT(m_scpu_ctrl, 4)) return (m_nmi_vector >> 8) & 0xff;
		if (offset == 0xffee && BIT(m_scpu_ctrl, 6)) return (m_irq_vector >> 0) & 0xff;
		if (offset == 0xffef && BIT(m_scpu_ctrl, 6)) return (m_irq_vector >> 8) & 0xff;
	}

	if ((offset & 0xc08000) == 0x008000)  //$00-3f:8000-ffff
		return read_l(offset & 0x7fffff);

	if ((offset & 0xc08000) == 0x808000)  //$80-bf:8000-ffff
		return read_h(offset & 0x7fffff);

	if ((offset & 0xc00000) == 0xc00000)  //$c0-ff:0000-ffff
		return read_h(offset & 0x7fffff);

	if ((offset & 0x40e000) == 0x006000)  //$00-3f|80-bf:6000-7fff
		return read_bwram((m_bwram_snes * 0x2000) + (offset & 0x1fff));

	if ((offset & 0xf00000) == 0x400000)  //$40-4f:0000-ffff
		return read_bwram(offset & 0xfffff);

	if ((offset & 0x40f800) == 0x000000)  //$00-3f|80-bf:0000-07ff
		return read_iram(offset);

	if ((offset & 0x40f800) == 0x003000)  //$00-3f|80-bf:3000-37ff
		return read_iram(offset);

	return 0;
}

void sns_sa1_device::dma_transfer()
{
//  printf("DMA src %08x (%d), dst %08x (%d) cnt %d\n", m_src_addr, m_dma_ctrl & 3, m_dst_addr, m_dma_ctrl & 4, m_dma_cnt);

	while (m_dma_cnt--)
	{
		uint8_t data = 0; // open bus?
		uint32_t dma_src = m_src_addr++;
		uint32_t dma_dst = m_dst_addr++;

		// source and destination cannot be the same
		// source = { 0=ROM, 1=BWRAM, 2=IRAM }
		// destination = { 0=IRAM, 1=BWRAM }
		if ((m_dma_ctrl & 0x03) == 1 && (m_dma_ctrl & 0x04) == 0x04) continue;
		if ((m_dma_ctrl & 0x03) == 2 && (m_dma_ctrl & 0x04) == 0x00) continue;

		switch (m_dma_ctrl & 0x03)
		{
			case 0: // ROM
				if ((dma_src & 0x408000) == 0x008000 && (dma_src & 0x800000) == 0x000000)
				{
					data = read_l(dma_src & 0x7fffff);
				}
				if ((dma_src & 0x408000) == 0x008000 && (dma_src & 0x800000) == 0x800000)
				{
					data = read_h(dma_src & 0x7fffff);
				}
				if ((dma_src & 0xc00000) == 0xc00000)
				{
					data = read_h(dma_src & 0x7fffff);
				}
				break;

			case 1: // BWRAM
				if ((dma_src & 0x40e000) == 0x006000)
				{
					data = read_bwram((m_bwram_sa1 * 0x2000) + (dma_src & 0x1fff));
				}
				if ((dma_src & 0xf00000) == 0x400000)
				{
					data = read_bwram(dma_src & 0xfffff);
				}
				break;

			case 2: // IRAM
				data = read_iram(dma_src);
				break;
		}

		switch (m_dma_ctrl & 0x04)
		{
			case 0x00:  // IRAM
				write_iram(dma_dst, data);
				break;

			case 0x04:  // BWRAM
				if ((dma_dst & 0x40e000) == 0x006000)
				{
					write_bwram((m_bwram_sa1 * 0x2000) + (dma_dst & 0x1fff), data);
				}
				if ((dma_dst & 0xf00000) == 0x400000)
				{
					write_bwram(dma_dst & 0xfffff, data);
				}
				break;
		}
	}

	m_sa1_flags |= SA1_IRQ_DMA;
	recalc_irqs();
}

void sns_sa1_device::dma_cctype1_transfer()
{
	m_scpu_flags |= SCPU_IRQ_CHARCONV;
	recalc_irqs();
}

void sns_sa1_device::dma_cctype2_transfer()
{
}

uint8_t sns_sa1_device::read_regs(uint32_t offset)
{
	uint8_t value = 0xff;
	offset &= 0x1ff;    // $2200 + offset gives the reg value to compare with docs

	switch (offset)
	{
		case 0x100:
			// S-CPU Flag Read
			value = (m_scpu_ctrl & 0x0f) | m_scpu_flags;
			break;
		case 0x101:
			// SA-1 Flag Read
			value = (m_sa1_ctrl & 0x0f) | m_sa1_flags;
			break;
		case 0x102:
			// H-Count Read Low
			//latch counters
			m_hcr = m_hcount >> 2;
			m_vcr = m_vcount;
			//then return h-count
			value = (m_hcr >> 0) & 0xff;
			break;
		case 0x103:
			// H-Count Read High
			value = (m_hcr >> 8) & 0xff;
			break;
		case 0x104:
			// V-Count Read Low
			value = (m_vcr >> 0) & 0xff;
			break;
		case 0x105:
			// V-Count Read High
			value = (m_vcr >> 8) & 0xff;
			break;
		case 0x106:
			// Math Result bits0-7
			value = (uint64_t)(m_math_res >> 0) & 0xff;
			break;
		case 0x107:
			// Math Result bits8-15
			value = (uint64_t)(m_math_res >> 8) & 0xff;
			break;
		case 0x108:
			// Math Result bits16-23
			value = (uint64_t)(m_math_res >> 16) & 0xff;
			break;
		case 0x109:
			// Math Result bits24-31
			value = (uint64_t)(m_math_res >> 24) & 0xff;
			break;
		case 0x10a:
			// Math Result bits32-39
			value = (uint64_t)(m_math_res >> 32) & 0xff;
			break;
		case 0x10b:
			// Math Overflow (above 40bit result)
			value = m_math_overflow;
			break;
		case 0x10c:
			// Var-Length Read Port Low
			{
				uint32_t data = (var_length_read(m_vda + 0) <<  0) | (var_length_read(m_vda + 1) <<  8)
															| (var_length_read(m_vda + 2) << 16);
				data >>= m_vbit;
				value = (data >> 0) & 0xff;
			}
			break;
		case 0x10d:
			// Var-Length Read Port High
			{
				uint32_t data = (var_length_read(m_vda + 0) <<  0) | (var_length_read(m_vda + 1) <<  8)
															| (var_length_read(m_vda + 2) << 16);
				data >>= m_vbit;

				if (m_drm == 1)
				{
					//auto-increment mode
					m_vbit += m_vlen;
					m_vda += (m_vbit >> 3);
					m_vbit &= 7;
				}

				value = (data >> 8) & 0xff;
			}
			break;
		case 0x10e:
			// SNES  VC    Version Code Register (R)
			break;
		default:
			logerror("SA-1 Read access to an unmapped reg (%x)", offset);
			break;
	}
	return value;
}

void sns_sa1_device::write_regs(uint32_t offset, uint8_t data)
{
	offset &= 0x1ff;    // $2200 + offset gives the reg value to compare with docs

	switch (offset)
	{
		case 0x000:
			// SA-1 control flags
//          printf("%02x to SA-1 control\n", data);
			if ((BIT(data, 5)) && !(BIT(m_sa1_ctrl, 5)))
			{
//              printf("Engaging SA-1 reset\n");
				m_sa1->set_input_line(INPUT_LINE_HALT, ASSERT_LINE);
			}
			else if (!(BIT(data, 5)) && (BIT(m_sa1_ctrl, 5)))
			{
//              printf("Releasing SA-1 reset\n");
				m_sa1->set_input_line(INPUT_LINE_HALT, CLEAR_LINE);
				m_sa1->set_input_line(INPUT_LINE_RESET, ASSERT_LINE);
				m_sa1->set_input_line(INPUT_LINE_RESET, CLEAR_LINE);
			}

			m_sa1_ctrl = data;

			// message to S-CPU
			m_scpu_ctrl &= 0xf0;
			m_scpu_ctrl |= (data & 0x0f);

			if (BIT(m_sa1_ctrl, 7))
			{
				m_sa1_flags |= SA1_IRQ_SCPU;
			}
			if (BIT(m_sa1_ctrl, 4))
			{
				m_sa1_flags |= SA1_NMI_SCPU;
			}
			recalc_irqs();
			break;
		case 0x001:
			// SNES  SIE   00h   SNES CPU Int Enable (W)
			m_scpu_sie = data;
//          printf("S-CPU IE = %02x\n", data);
			recalc_irqs();
			break;
		case 0x002:
			// SNES  SIC   00h   SNES CPU Int Clear  (W)
			if (BIT(data, 7))   // ack IRQ from SA-1
			{
				m_scpu_flags &= ~SCPU_IRQ_SA1;
			}
			if (BIT(data, 5))   // ack character conversion IRQ
			{
				m_scpu_flags &= ~SCPU_IRQ_CHARCONV;
			}
			recalc_irqs();
			break;
		case 0x003:
			// SNES  CRV   -     SA-1 CPU Reset Vector Lsb (W)
			m_sa1_reset &= 0xff00;
			m_sa1_reset |= data;
			break;
		case 0x004:
			// SNES  CRV   -     SA-1 CPU Reset Vector Msb (W)
			m_sa1_reset &= 0x00ff;
			m_sa1_reset |= (data<<8);
			break;
		case 0x005:
			// SNES  CNV   -     SA-1 CPU NMI Vector Lsb (W)
			m_sa1_nmi &= 0xff00;
			m_sa1_nmi |= data;
			break;
		case 0x006:
			// SNES  CNV   -     SA-1 CPU NMI Vector Msb (W)
			m_sa1_nmi &= 0x00ff;
			m_sa1_nmi |= (data<<8);
			break;
		case 0x007:
			// SNES  CIV   -     SA-1 CPU IRQ Vector Lsb (W)
			m_sa1_irq &= 0xff00;
			m_sa1_irq |= data;
			break;
		case 0x008:
			// SNES  CIV   -     SA-1 CPU IRQ Vector Msb (W)
			m_sa1_irq &= 0x00ff;
			m_sa1_irq |= (data<<8);
			break;
		case 0x009:
			// S-CPU control flags
			m_scpu_ctrl = data;
			if (m_scpu_ctrl & 0x80)
			{
				m_scpu_flags |= SCPU_IRQ_SA1;
//              printf("SA-1 cause S-CPU IRQ\n");
			}

			// message to SA-1
			m_sa1_ctrl &= 0xf0;
			m_sa1_ctrl |= (data & 0x0f);

			// clear IRQ/NMI override flags in flags word
			m_scpu_flags &= ~(SCPU_IRQV_ALT|SCPU_NMIV_ALT);

			// and set them
			m_scpu_flags |= (data & (SCPU_IRQV_ALT|SCPU_NMIV_ALT));

			recalc_irqs();
			break;
		case 0x00a:
			// SA-1  CIE   00h   SA-1 CPU Int Enable (W)
			m_sa1_sie = data;
//          printf("SA-1 IE = %02x\n", data);
			recalc_irqs();
			break;
		case 0x00b:
			// SA-1  CIC   00h   SA-1 CPU Int Clear  (W)
			if (BIT(data, 7))
			{
				m_sa1_flags &= ~SA1_IRQ_SCPU;
			}
			if (BIT(data, 6))
			{
				m_sa1_flags &= ~SA1_IRQ_TIMER;
			}
			if (BIT(data, 5))
			{
				m_sa1_flags &= ~SA1_IRQ_DMA;
			}
			if (BIT(data, 4))
			{
				m_sa1_flags &= ~SA1_NMI_SCPU;
			}
			recalc_irqs();
			break;
		case 0x00c:
			// NMI Vector Low
			m_nmi_vector = (m_nmi_vector & 0xff00) | (data << 0);
			break;
		case 0x00d:
			// NMI Vector High
			m_nmi_vector = (m_nmi_vector & 0x00ff) | (data << 8);
			break;
		case 0x00e:
			// IRQ Vector Low
			m_irq_vector = (m_irq_vector & 0xff00) | (data << 0);
			break;
		case 0x00f:
			// IRQ Vector High
			m_irq_vector = (m_irq_vector & 0x00ff) | (data << 8);
			break;
		case 0x010:
			// SA-1  TMC   00h   H/V Timer Control (W)
			break;
		case 0x011:
			// SA-1  CTR   -     SA-1 CPU Timer Restart (W)
			break;
		case 0x012:
			// H-Count Low
			m_hcount = (m_hcount & 0xff00) | (data << 0);
			break;
		case 0x013:
			// H-Count High
			m_hcount = (m_hcount & 0x00ff) | (data << 8);
			break;
		case 0x014:
			// V-Count Low
			m_vcount = (m_vcount & 0xff00) | (data << 0);
			break;
		case 0x015:
			// V-Count High
			m_vcount = (m_vcount & 0x00ff) | (data << 8);
			break;
		case 0x020:
			// ROM 1MB bank for [c0-cf]
			m_bank_c_hi = BIT(data, 7);
			m_bank_c_rom = data & 0x07;
			break;
		case 0x021:
			// ROM 1MB bank for [d0-df]
			m_bank_d_hi = BIT(data, 7);
			m_bank_d_rom = data & 0x07;
			break;
		case 0x022:
			// ROM 1MB bank for [e0-ef]
			m_bank_e_hi = BIT(data, 7);
			m_bank_e_rom = data & 0x07;
			break;
		case 0x023:
			// ROM 1MB bank for [f0-ff]
			m_bank_f_hi = BIT(data, 7);
			m_bank_f_rom = data & 0x07;
			break;
		case 0x024:
			// BWRAM bank from SNES side
			m_bwram_snes = data & 0x1f; // max 32x8K banks
			break;
		case 0x025:
			// BWRAM bank & type from SA-1 side
			m_bwram_sa1_source = BIT(data, 7);  // 0 = normal, 1 = bitmap?
			m_bwram_sa1 = data & 0x7f;  // up to 128x8K banks here?
			break;
		case 0x026:
			// enable writing to BWRAM from SNES
			m_bwram_write_snes = BIT(data, 7);
			break;
		case 0x027:
			// enable writing to BWRAM from SA-1
			m_bwram_write_sa1 = BIT(data, 7);
			break;
		case 0x028:
			// write protected area at bottom of BWRAM
			m_bwpa_sa1 = 0x100 * (data & 0x0f);
			break;
		case 0x029:
			// enable writing to IRAM from SNES (1 bit for each 0x100 chunk)
			m_iram_write_snes = data;
			break;
		case 0x02a:
			// enable writing to IRAM from SA-1 (1 bit for each 0x100 chunk)
			m_iram_write_sa1 = data;
			break;
		case 0x030:
			// SA-1  DCNT  00h   DMA Control (W)
//          printf("%02x to SA-1 DMA control\n", data);
			m_dma_ctrl = data;
			break;
		case 0x031:
			// Both  CDMA  00h   Character Conversion DMA Parameters (W)
			m_dma_ccparam = data;
			break;
		case 0x032:
			// DMA Source Device Start Address Low
			m_src_addr = (m_src_addr & 0xffff00) | (data << 0);
			break;
		case 0x033:
			// DMA Source Device Start Address Mid
			m_src_addr = (m_src_addr & 0xff00ff) | (data << 8);
			break;
		case 0x034:
			// DMA Source Device Start Address High
			m_src_addr = (m_src_addr & 0x00ffff) | (data << 16);
			break;
		case 0x035:
			// DMA Dest Device Start Address Low
			m_dst_addr = (m_dst_addr & 0xffff00) | (data << 0);
			break;
		case 0x036:
			// DMA Dest Device Start Address Mid
			m_dst_addr = (m_dst_addr & 0xff00ff) | (data << 8);
			if (m_dma_ctrl & 0x80)
			{
				if (!(m_dma_ctrl & 0x20) && !(m_dma_ctrl & 0x04)) // Normal DMA to IRAM
				{
					dma_transfer();
//                  printf("SA-1: normal DMA to IRAM\n");
				}

				if (m_dma_ctrl & 0x20 && m_dma_ctrl & 0x10) // CC DMA Type 1
				{
//                  printf("SA-1: CC DMA type 1\n");
					dma_cctype1_transfer();
				}
			}
			break;
		case 0x037:
			// DMA Dest Device Start Address High
			m_dst_addr = (m_dst_addr & 0xffff00) | (data << 16);
			if (m_dma_ctrl & 0x80)
			{
				if (!(m_dma_ctrl & 0x20) && m_dma_ctrl & 0x04)  // Normal DMA to BWRAM
				{
//                  printf("SA-1: normal DMA to BWRAM\n");
					dma_transfer();
				}
			}
			break;
		case 0x038:
			// SA-1  DTC   -     DMA Terminal Counter Lsb (W)
			m_dma_cnt &= 0xff00;
			m_dma_cnt |= data;
			break;
		case 0x039:
			// SA-1  DTC   -     DMA Terminal Counter Msb (W)
			m_dma_cnt &= 0x00ff;
			m_dma_cnt |= (data<<8);
			break;
		case 0x03f:
			// Format for BWRAM when mapped to bitmap
			m_bwram_sa1_format = BIT(data, 7);  // 0 = 4bit, 1 = 2bit
			break;
		case 0x040:
		case 0x041:
		case 0x042:
		case 0x043:
		case 0x044:
		case 0x045:
		case 0x046:
		case 0x047:
		case 0x048:
		case 0x049:
		case 0x04a:
		case 0x04b:
		case 0x04c:
		case 0x04d:
		case 0x04e:
		case 0x04f:
			// Bit Map Register File (2240h..224Fh)
			m_brf_reg[offset & 0x0f] = data;
			if ((offset & 0x07) == 7 && m_dma_ctrl & 0x80)
			{
				if (m_dma_ctrl & 0x20 && !(m_dma_ctrl & 0x10))  // CC DMA Type 2
				{
//                  printf("SA-1: CC DMA type 2\n");
					dma_cctype2_transfer();
				}
			}
			break;
		case 0x050:
			// Math control
			m_math_ctlr = data & 0x03;
			if (data & 0x02)
				m_math_res = 0;
			break;
		case 0x051:
			// Math A Low
			m_math_a = (m_math_a & 0xff00) | data;
			break;
		case 0x052:
			// Math A High
			m_math_a = (data << 8) | (m_math_a & 0x00ff);
			break;
		case 0x053:
			// Math B Low
			m_math_b = (m_math_b & 0xff00) | data;
			break;
		case 0x054:
			// Math B High
			m_math_b = (data << 8) | (m_math_b & 0x00ff);
			// After Math B has been written, we do math
			switch (m_math_ctlr)
			{
				case 0: //signed multiplication
					m_math_res = (int16_t)m_math_a * (int16_t)m_math_b;
					m_math_b = 0;
					break;
				case 1: //unsigned division
					if (m_math_b == 0)
						m_math_res = 0;
					else
					{
						int16_t  quotient  = (int16_t)m_math_a / (uint16_t)m_math_b;
						uint16_t remainder = (int16_t)m_math_a % (uint16_t)m_math_b;
						m_math_res = (uint64_t)((remainder << 16) | quotient);
					}
					break;
				case 2: //sigma (accumulative multiplication)
				case 3:
					uint64_t acum = (int16_t)m_math_a * (int16_t)m_math_b;
					uint64_t mask = 0xffffffffffU;
					m_math_res += acum;
					m_math_overflow = (m_math_res > mask) ? 0x80 : 0;
					m_math_res &= mask;
					m_math_b = 0;
					break;
			}
			break;
		case 0x058:
			// Var-Length Bit Processing
			m_drm = BIT(data, 7);   // Data Read Mode
			m_vlen = (data & 0x0f);
			if (m_vlen == 0)
				m_vlen = 16;

			if (m_drm == 0)
			{
				//fixed mode
				m_vbit += m_vlen;
				m_vda += (m_vbit >> 3);
				m_vbit &= 7;
			}
			break;
		case 0x059:
			// Var-Length Read Start Address Low
			m_vda = (m_vda & 0xffff00) | (data << 0);
			break;
		case 0x05a:
			// Var-Length Read Start Address Mid
			m_vda = (m_vda & 0xff00ff) | (data << 8);
			break;
		case 0x05b:
			// Var-Length Read Start Address High
			m_vda = (m_vda & 0x00ffff) | (data << 16);
			m_vbit = 0;
			break;
		default:
			logerror("SA-1 Write access to an unmapped reg (%x) with data %x", offset, data);
			break;
	}
}

uint8_t sns_sa1_device::read_iram(uint32_t offset)
{
	return m_internal_ram[offset & 0x7ff];
}

void sns_sa1_device::write_iram(uint32_t offset, uint8_t data)
{
	m_internal_ram[offset & 0x7ff] = data;
}

uint8_t sns_sa1_device::read_bwram(uint32_t offset)
{
	int shift;
	uint8_t mask;

	if (m_nvram.empty())
		return 0xff;    // this should probably never happen, or are there SA-1 games with no BWRAM?

	if (offset < 0x100000)
		return m_nvram[offset & (m_nvram.size() - 1)];

	// Bitmap BWRAM
	offset -= 0x100000;

	if (m_bwram_sa1_format)
	{
		// 2bits mode
		offset /= 4;
		shift = ((offset % 4) * 2);
		mask = 0x03;
	}
	else
	{
		// 4bits mode
		offset /= 2;
		shift = ((offset % 2) * 4);
		mask = 0x0f;
	}

	// only return the correct bits
	return (m_nvram[offset & (m_nvram.size() - 1)] >> shift) & mask;
}

void sns_sa1_device::write_bwram(uint32_t offset, uint8_t data)
{
	uint8_t mask;

	if (m_nvram.empty())
		return; // this should probably never happen, or are there SA-1 games with no BWRAM?

	if (offset < 0x100000)
	{
		m_nvram[offset & (m_nvram.size() - 1)] = data;
		return;
	}

	// Bitmap BWRAM
	offset -= 0x100000;

	if (m_bwram_sa1_format)
	{
		// 2bits mode
		offset /= 4;
		data = (data & 0x03) << ((offset % 4) * 2);
		mask = 0x03 << ((offset % 4) * 2);
	}
	else
	{
		// 4bits mode
		offset /= 2;
		data = (data & 0x0f) << ((offset % 2) * 4);
		mask = 0x0f << ((offset % 2) * 4);
	}

	// only change the correct bits, keeping the rest untouched
	m_nvram[offset & (m_nvram.size() - 1)] = (m_nvram[offset & (m_nvram.size() - 1)] & ~mask) | data;
}



/*-------------------------------------------------
  Accesses from SNES CPU
 -------------------------------------------------*/


uint8_t sns_sa1_device::read_l(offs_t offset)
{
	int bank;

	if (offset == 0xffea && BIT(m_scpu_ctrl, 4)) return (m_nmi_vector >> 0) & 0xff;
	if (offset == 0xffeb && BIT(m_scpu_ctrl, 4)) return (m_nmi_vector >> 8) & 0xff;
	if (offset == 0xffee && BIT(m_scpu_ctrl, 6)) return (m_irq_vector >> 0) & 0xff;
	if (offset == 0xffef && BIT(m_scpu_ctrl, 6)) return (m_irq_vector >> 8) & 0xff;

	// ROM is mapped to [00-3f][8000-ffff] only here
	if (offset < 0x200000)
	{
		if (!m_bank_c_hi)   // when HiROM mapping is disabled, we always access first 1MB here
			bank = (offset / 0x10000) + 0x00;
		else    // when HiROM mapping is enabled, we mirror [c0-cf][0000-ffff] bank
			bank = (offset / 0x10000) + (m_bank_c_rom * 0x20);

		bank &= 0xff;
		return m_rom[rom_bank_map[bank] * 0x8000 + (offset & 0x7fff)];
	}
	else if (offset < 0x400000)
	{
		offset -= 0x200000;
		if (!m_bank_d_hi)   // when HiROM mapping is disabled, we always access second 1MB here
			bank = (offset / 0x10000) + 0x20;
		else    // when HiROM mapping is enabled, we mirror [d0-df][0000-ffff] bank
			bank = (offset / 0x10000) + (m_bank_d_rom * 0x20);

		bank &= 0xff;
		return m_rom[rom_bank_map[bank] * 0x8000 + (offset & 0x7fff)];
	}
	else
		return 0; // this should not happen (the driver should only call read_l in the above case)
}

uint8_t sns_sa1_device::read_h(offs_t offset)
{
	int bank;

	// ROM is mapped to [80-bf][8000-ffff] & [c0-ff][0000-ffff]
	if (offset < 0x200000)
	{
		if (!m_bank_e_hi)   // when HiROM mapping is disabled, we always access third 1MB here
			bank = (offset / 0x10000) + 0x40;
		else    // when HiROM mapping is enabled, we mirror [e0-ef][0000-ffff] bank
			bank = (offset / 0x10000) + (m_bank_e_rom * 0x20);

		bank &= 0xff;
		return m_rom[rom_bank_map[bank] * 0x8000 + (offset & 0x7fff)];
	}
	else if (offset < 0x400000)
	{
		offset -= 0x200000;
		if (!m_bank_f_hi)   // when HiROM mapping is disabled, we always access fourth 1MB here
			bank = (offset / 0x10000) + 0x60;
		else    // when HiROM mapping is enabled, we mirror [f0-ff][0000-ffff] bank
			bank = (offset / 0x10000) + (m_bank_f_rom * 0x20);

		bank &= 0xff;
		return m_rom[rom_bank_map[bank] * 0x8000 + (offset & 0x7fff)];
	}
	else if (offset < 0x500000)
		return m_rom[rom_bank_map[(m_bank_c_rom * 0x20) + ((offset - 0x400000) / 0x8000)] * 0x8000 + (offset & 0x7fff)];
	else if (offset < 0x600000)
		return m_rom[rom_bank_map[(m_bank_d_rom * 0x20) + ((offset - 0x500000) / 0x8000)] * 0x8000 + (offset & 0x7fff)];
	else if (offset < 0x700000)
		return m_rom[rom_bank_map[(m_bank_e_rom * 0x20) + ((offset - 0x600000) / 0x8000)] * 0x8000 + (offset & 0x7fff)];
	else
		return m_rom[rom_bank_map[(m_bank_f_rom * 0x20) + ((offset - 0x700000) / 0x8000)] * 0x8000 + (offset & 0x7fff)];
}

void sns_sa1_device::write_l(offs_t offset, uint8_t data)
{
}

void sns_sa1_device::write_h(offs_t offset, uint8_t data)
{
}

uint8_t sns_sa1_device::chip_read(offs_t offset)
{
	uint16_t address = offset & 0xffff;

	if (offset < 0x400000 && address >= 0x2200 && address < 0x2400)
		return read_regs(address & 0x1ff);   // SA-1 Regs

	if (offset < 0x400000 && address >= 0x3000 && address < 0x3800)
		return read_iram(address & 0x7ff);  // Internal SA-1 RAM (2K)

	if (offset < 0x400000 && address >= 0x6000 && address < 0x8000)
		return read_bwram((m_bwram_snes * 0x2000) + (offset & 0x1fff)); // SA-1 BWRAM

	if (offset >= 0x400000 && offset < 0x500000)
		return read_bwram(offset & 0xfffff);  // SA-1 BWRAM again (but not called for the [c0-cf] range, because it's not mirrored)

	return 0xff;
}


void sns_sa1_device::chip_write(offs_t offset, uint8_t data)
{
	uint16_t address = offset & 0xffff;

	if (offset < 0x400000 && address >= 0x2200 && address < 0x2400)
		write_regs(address & 0x1ff, data);  // SA-1 Regs

	if (offset < 0x400000 && address >= 0x3000 && address < 0x3800)
		write_iram(address & 0x7ff, data);  // Internal SA-1 RAM (2K)

	if (offset < 0x400000 && address >= 0x6000 && address < 0x8000)
		write_bwram((m_bwram_snes * 0x2000) + (offset & 0x1fff), data); // SA-1 BWRAM

	if (offset >= 0x400000 && offset < 0x500000)
		write_bwram(offset & 0xfffff, data);  // SA-1 BWRAM again (but not called for the [c0-cf] range, because it's not mirrored)
}


/*-------------------------------------------------
  Accesses from SA-1 CPU
 -------------------------------------------------*/

// These handlers basically match the SNES CPU ones, but there is no access to internal
// I/O regs or WRAM, and there are a few additional accesses to IRAM (in [00-3f][0000-07ff])
// and to BWRAM (in [60-6f][0000-ffff], so-called bitmap mode)

uint8_t sns_sa1_device::sa1_hi_r(offs_t offset)
{
	uint16_t address = offset & 0xffff;

	if (offset < 0x400000)
	{
		if (address < 0x6000)
		{
			if (address < 0x0800)
				return read_iram(offset);   // Internal SA-1 RAM (2K)
			else if (address >= 0x2200 && address < 0x2400)
				return read_regs(offset & 0x1ff);    // SA-1 Regs
			else if (address >= 0x3000 && address < 0x3800)
				return read_iram(offset);   // Internal SA-1 RAM (2K)
		}
		else if (address < 0x8000)
			return read_bwram((m_bwram_sa1 * 0x2000) + (offset & 0x1fff) + (m_bwram_sa1_source * 0x100000));        // SA-1 BWRAM
		else
			return read_h(offset);   // ROM

		return 0xff;    // maybe open bus? same as the main system one or diff? (currently not accessible from carts anyway...)
	}
	else
		return read_h(offset);   // ROM
}

uint8_t sns_sa1_device::sa1_lo_r(offs_t offset)
{
	uint16_t address = offset & 0xffff;

	if (offset < 0x400000)
	{
		if (address < 0x6000)
		{
			if (address < 0x0800)
				return read_iram(offset);   // Internal SA-1 RAM (2K)
			else if (address >= 0x2200 && address < 0x2400)
				return read_regs(offset & 0x1ff);    // SA-1 Regs
			else if (address >= 0x3000 && address < 0x3800)
				return read_iram(offset);   // Internal SA-1 RAM (2K)
		}
		else if (address < 0x8000)
			return read_bwram((m_bwram_sa1 * 0x2000) + (offset & 0x1fff) + (m_bwram_sa1_source * 0x100000));        // SA-1 BWRAM
		else if (offset == 0xffee)
		{
			return m_sa1_irq & 0xff;
		}
		else if (offset == 0xffef)
		{
			return m_sa1_irq>>8;
		}
		else if (offset == 0xffea)
		{
			return m_sa1_nmi & 0xff;
		}
		else if (offset == 0xffeb)
		{
			return m_sa1_nmi>>8;
		}
		else if (offset == 0xfffc)
		{
			return m_sa1_reset & 0xff;
		}
		else if (offset == 0xfffd)
		{
			return m_sa1_reset>>8;
		}
		else
			return read_l(offset);   // ROM

		return 0xff;    // maybe open bus? same as the main system one or diff? (currently not accessible from carts anyway...)
	}
	else if (offset < 0x500000)
		return read_bwram(offset & 0xfffff);      // SA-1 BWRAM (not mirrored above!)
	else if (offset >= 0x600000 && offset < 0x700000)
		return read_bwram((offset & 0xfffff) + 0x100000);       // SA-1 BWRAM Bitmap mode
	else
		return 0xff;    // nothing should be mapped here, so maybe open bus?
}

void sns_sa1_device::sa1_hi_w(offs_t offset, uint8_t data)
{
	uint16_t address = offset & 0xffff;
	if (offset < 0x400000)
	{
		if (address < 0x6000)
		{
			if (address < 0x0800)
				write_iram(offset, data);   // Internal SA-1 RAM (2K)
			else if (address >= 0x2200 && address < 0x2400)
				write_regs(offset & 0x1ff, data);   // SA-1 Regs
			else if (address >= 0x3000 && address < 0x3800)
				write_iram(offset, data);   // Internal SA-1 RAM (2K)
		}
		else if (address < 0x8000)
			write_bwram((m_bwram_sa1 * 0x2000) + (offset & 0x1fff) + (m_bwram_sa1_source * 0x100000), data);        // SA-1 BWRAM
	}
}

void sns_sa1_device::sa1_lo_w(offs_t offset, uint8_t data)
{
	if (offset >= 0x400000 && offset < 0x500000)
		write_bwram(offset & 0xfffff, data);        // SA-1 BWRAM (not mirrored above!)
	else if (offset >= 0x600000 && offset < 0x700000)
		write_bwram((offset & 0xfffff) + 0x100000, data);       // SA-1 BWRAM Bitmap mode
	else
		sa1_hi_w(offset, data);
}

void sns_sa1_device::sa1_map(address_map &map)
{
	map(0x000000, 0x7dffff).rw(FUNC(sns_sa1_device::sa1_lo_r), FUNC(sns_sa1_device::sa1_lo_w));
	map(0x7e0000, 0x7fffff).noprw();
	map(0x800000, 0xffffff).rw(FUNC(sns_sa1_device::sa1_hi_r), FUNC(sns_sa1_device::sa1_hi_w));
}


void sns_sa1_device::device_add_mconfig(machine_config &config)
{
	G65816(config, m_sa1, 10000000);
	m_sa1->set_addrmap(AS_PROGRAM, &sns_sa1_device::sa1_map);
}