summaryrefslogtreecommitdiffstatshomepage
path: root/src/devices/bus/hexbus/hx5102.cpp
blob: 69bfaf3dfaf0976efdbcc6bac66582f498d8d833 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
// license:BSD-3-Clause
// copyright-holders:Michael Zapf
/****************************************************************************

    Hexbus floppy disk drive
    HX5102

    Memory map
    0000 - 1FFF: ROM1 (8 KiB, circuit u25, EPROM 2564)
    2000 - 3FFF: ROM2 (8 KiB, circuit u29, EPROM 2564)
    4000 - DFFF: Mirrors of ROM1/ROM2
    E000 - EFFF: SRAM (4 KiB)
    F000 - F0F9: On-Chip RAM (TMS9995)
    F7E0 - F7EF: Memory-mapped access to NEC uPD765 / Intel 8272A
    F7F0 - F7FF: Memory-mapped access to IBC
    F800 - FFF9: Unmapped
    FFFA - FFFF: On-Chip RAM (TMS9995)

    NEC uPD765 / Intel 8272A
    F7E0 R    Main status register (MSR)
    F7E4 R    Data register (FIFO read)
    F7E8 W    Command register (FIFO write)

    Supporting circuitry
    F7E2 R    DMA read
    F7E6 -    -
    F7EA W    DMA write
    F7EC W    Ready lock
    F7EE -    -

    Intelligent Bus Controller (Hexbus)
    F7F0 R   Received data
    F7F2 R   Status register
    F7F4 -
    F7F6 -
    F7F8 W   Transmit data
    F7FA W   Control register
    F7FC -
    F7FE -

    Ports (CRU bit): read
    17E0 (0): Controller INT line
    17E2 (1): Motor spinning (monoflop 1)
    17E4 (2): Timeout for disk operations (monoflop 2)
    17E6 (3): -
    17E8 (4): Drive 0 cylinder count (0=40, 1=77)
    17EA (5): Drive 1 cylinder count
    17EC (6): Drive 2 cylinder count
    17EE (7): Drive 3 cylinder count

    Ports (CRU bit): write
    17E0 (0): Precompensation
    17E2 (1): Motor trigger
    17E4 (2): -
    17E6 (3): Step dir (1=inwards)
    17E8 (4): When 1, assert DACK* (set to 0)
    17EA (5): Step pulse (up)
    17EC (6): Timeout flipflop trigger
    17EE (7): RESET* the controller (goes to RESET input, inverted)
    17F0 (8): Drive select drive 0 (DSK1)
    17F2 (9): Drive select drive 1 (DSK2)
    17F4 (10): Drive select drive 2 (DSK3)
    17F6 (11): Drive select drive 3 (DSK4)
    17F8 (12): Separate Motor line for internal drive (not used)
    17FA (13): Not connected; turned on before sector I/O, format track, reset drives; turned off once when reporting status
    17FC (14): Arm READY circuit
    17FE (15): Not connected; possibly in test mode only

    Michael Zapf
    March 2018

*****************************************************************************/

#include "emu.h"
#include "hx5102.h"
#include "formats/ti99_dsk.h"

#define LOG_HEXBUS         (1U<<1)   // Hexbus operation
#define LOG_RESET          (1U<<2)   // Reset
#define LOG_WARN           (1U<<3)   // Warnings
#define LOG_READY          (1U<<4)   // READY
#define LOG_SIGNALS        (1U<<5)   // IRQ/DRQ
#define LOG_CRU            (1U<<6)   // CRU
#define LOG_RAM            (1U<<7)   // RAM
#define LOG_DMA            (1U<<8)   // DMA
#define LOG_MOTOR          (1U<<9)   // Motor activity
#define LOG_STATUS         (1U<<10)  // Main status register
#define LOG_FIFO           (1U<<11)  // Data register

// Minimum log should be config and warnings
#define VERBOSE ( LOG_GENERAL | LOG_WARN )

#include "logmacro.h"

#define TMS9995_TAG   "drivecpu"
#define DSR_TAG       "dsr"
#define FDC_TAG       "i8272a"
#define IBC_TAG       "ibc_1052911"
#define MTRD_TAG      "u24_motor_mf"
#define MTSPD_TAG     "u24_motor_speed_mf"
#define READYFF_TAG   "u21_ready_ff"
#define RAM1_TAG      "u12_ram"
#define RAM2_TAG      "u19_ram"
#define ROM1_TAG      "u25_rom"
#define ROM2_TAG      "u29_rom"

#define MOTOR_TIMER 1
#define UNDEF -1

DEFINE_DEVICE_TYPE_NS(HX5102, bus::hexbus, hx5102_device, "ti_hx5102", "TI Hexbus Floppy Drive")

namespace bus::hexbus {

void hx5102_device::memmap(address_map &map)
{
	map(0x0000, 0xffff).rw(FUNC(hx5102_device::read), FUNC(hx5102_device::write));
}

/*
    CRU access to CRU addresses 1700 - 17FE)
*/
void hx5102_device::crumap(address_map &map)
{
	map(0x17e0, 0x17ff).r(FUNC(hx5102_device::cruread));
	map(0x17e0, 0x17ef).w(m_crulatch[0], FUNC(ls259_device::write_d0));
	map(0x17f0, 0x17ff).w(m_crulatch[1], FUNC(ls259_device::write_d0));
}

hx5102_device::hx5102_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock):
	hexbus_chained_device(mconfig, HX5102, tag, owner, clock),
	m_flopcpu(*this, TMS9995_TAG),
	m_ready_old(CLEAR_LINE),
	m_motor_on(false),
	m_mspeed_on(false),
	m_pending_int(false),
	m_dcs(false),
	m_dack(false),
	m_dacken(false),
	m_wait(false),
	m_current_floppy(nullptr),
	m_floppy_select(0),
	m_floppy_select_last(UNDEF),
	m_hexbus_ctrl(*this, IBC_TAG),
	m_floppy_ctrl(*this, FDC_TAG),
	m_crulatch(*this, "crulatch%u", 0U),
	m_motormf(*this, MTRD_TAG),
	m_speedmf(*this, MTSPD_TAG),
	m_readyff(*this, READYFF_TAG),
	m_ram1(*this, RAM1_TAG),
	m_ram2(*this, RAM2_TAG)
{
}

void hx5102_device::external_operation(offs_t offset, uint8_t data)
{
	static char const *const extop[8] = { "inv1", "inv2", "IDLE", "RSET", "inv3", "CKON", "CKOF", "LREX" };
	if (offset != IDLE_OP) LOGMASKED(LOG_WARN, "External operation %s not implemented on HX5102 board\n", extop[offset]);
}


/*
    Read operation. We cannot use the convenient address maps because the
    READY circuit requires a flag created from the address lines (m_dcs) which
    must be reset on accesses outside of the i8272a memory mapping area.

    V1 = A0 & A1 (A0=MSB)                      11.. .... .... ....
    V2 = A4* & A5 & A6 & A7 & A8 & A9 & A10    .... 0111 111. ....

    PAL equations
    ROM1 = MEM & V1* & A2* & WE* = 0000..1FFF, 4000..5FFF, 8000..9FFF
    ROM2 = MEM & V1* & A2 & WE*  = 2000..3FFF, 6000..7FFF, A000..BFFF
    RAM = MEM & V1 & A2 & A3*    = E000..EFFF
    DCS = MEM & V1 & A2 & A3 & A15* & V2 & A11* & A14*              = F7E0,F7E4,F7E8,F7EC
    HCS = MEM & V1 & A2 & A3 & A15* & V2 & A11 & A13*               = F7F0,F7F2,F7F8,F7FA
    DACK = MEM & V1 & A2 & A3 & A15* & V2 & A11* & A13* & A14       = F7E2,F7EA
    AZ = MEM & V1 & A2 & A3 & A15* & V2 & A11* & A12* & A13* & A14* = F7E0
    CRU = MEM* & V1* & A2* & A3 & V2                                = 17E0..17FE
    RD = MEM & V1 & A2 & A3 & A15* & V2 & A12* & DBIN               = F7E0,F7E2,F7E4,F7E6,F7F0,F7F2,F7F4,F7F6
        | MEM & V1 & A2 & A3* & DBIN                               = E000-EFFF
    WR = MEM & V1 & A2 & A3 & A15* & V2 & A12 & A13* & WE           = F7E8,F7EA,F7F8,F7FA
        | MEM & V1 & A2 & A3* & WE                                 = E000-EFFF

*/

/*
    Reading from the address space of the drive.
*/
uint8_t hx5102_device::read(offs_t offset)
{
	bool ramen1 = ((offset & 0xf800)==0xe000);
	bool ramen2 = ((offset & 0xf800)==0xe800);
	bool romen1 = ((offset & 0xc000)!=0xc000) && ((offset & 0x2000)==0);
	bool romen2 = ((offset & 0xc000)!=0xc000) && ((offset & 0x2000)!=0);
	bool hcs = ((offset & 0xfff5)==0xf7f0);

	m_dcs = ((offset & 0xfff3)==0xf7e0);
	m_dack = ((offset & 0xfff7)==0xf7e2);

	// RAM 1
	uint8_t val;
	if (ramen1)
	{
		val = m_ram1->pointer()[offset & 0x07ff];
		LOGMASKED(LOG_RAM, "RAM %04x -> %02x\n", (offset & 0x07ff)|0xe000, val);
		return val;
	}

	// RAM 2
	if (ramen2)
	{
		val = m_ram2->pointer()[offset & 0x07ff];
		LOGMASKED(LOG_RAM, "RAM %04x -> %02x\n", (offset & 0x07ff)|0xe800, val);
		return val;
	}

	// ROM 1
	if (romen1)
		return m_rom1[offset & 0x1fff];

	// ROM 2
	if (romen2)
		return m_rom2[offset & 0x1fff];

	// Floppy drive controller
	if (m_dcs)
		return fdc_read(offset&0x000f);

	// Hexbus controller
	if (hcs)
		return ibc_read(offset&0x000f);

	// DMA
	if (m_dack)
	{
		// Pick DMA byte from the controller; this automatically signals DACK*
		// Thus the drive CPU is the target for the DMA transfer
		uint8_t val = m_floppy_ctrl->dma_r();
		LOGMASKED(LOG_DMA, "i8272a.dma -> %02x '%c'\n", val, (val>33 && val<127)? val : '.');
		return val;
	}

	if ((offset & 1)==0) LOGMASKED(LOG_WARN, "Unmapped read access: %04x\n", offset);
	return 0;
}

/*
    Writing into the address space of the drive.
*/
void hx5102_device::write(offs_t offset, uint8_t data)
{
	bool ramen1 = ((offset & 0xf800)==0xe000);
	bool ramen2 = ((offset & 0xf800)==0xe800);
	bool hcs = ((offset & 0xfff5)==0xf7f0);
	m_dcs = ((offset & 0xfff3)==0xf7e0);
	m_dack = ((offset & 0xfff7)==0xf7e2);

	// RAM 1
	if (ramen1)
	{
		LOGMASKED(LOG_RAM, "RAM %04x <- %02x\n", (offset & 0x07ff)|0xe000, data);
		m_ram1->pointer()[offset & 0x07ff] = data;
		return;
	}

	// RAM 2
	if (ramen2)
	{
		LOGMASKED(LOG_RAM, "RAM %04x <- %02x\n", (offset & 0x07ff)|0xe800, data);
		m_ram2->pointer()[offset & 0x07ff] = data;
		return;
	}

	// Floppy drive controller
	if (m_dcs)
	{
		fdc_write(offset&0x000f, data);
		return;
	}

	// Hexbus controller
	if (hcs)
	{
		ibc_write(offset&0x000f, data);
		return;
	}

	// DMA
	if (m_dack)
	{
		m_floppy_ctrl->dma_w(data);
		LOGMASKED(LOG_DMA, "i8272a.dma <- %02x '%c'\n", data, (data>33 && data<127)? data : '.');
		return;
	}

	if ((offset & 1)==0) LOGMASKED(LOG_WARN, "Unmapped write access: %04x\n", offset);
}


/*
    Clock line from the CPU. Used to control wait state generation.
*/
WRITE_LINE_MEMBER( hx5102_device::clock_out )
{
	m_readyff->clock_w(state);
}

/*
    Input from the Hexbus
*/
void hx5102_device::hexbus_value_changed(uint8_t data)
{
	m_hexbus_ctrl->from_hexbus(data);
}

/*
    Propagate READY signals to the CPU. This is used to hold the CPU
    during DMA accesses.
*/
WRITE_LINE_MEMBER( hx5102_device::board_ready )
{
	if (m_ready_old != state)
	{
		LOGMASKED(LOG_READY, "READY = %d\n", state);
	}

	m_ready_old = (line_state)state;
	m_flopcpu->ready_line(state);
}

/*
    Trigger RESET.
*/
WRITE_LINE_MEMBER( hx5102_device::board_reset )
{
	LOGMASKED(LOG_RESET, "Incoming RESET line = %d\n", state);

	if (machine().phase() != machine_phase::INIT)
	{
		// Setting ready to true so that automatic wait states are disabled
		m_flopcpu->ready_line(ASSERT_LINE);
		m_flopcpu->reset_line(ASSERT_LINE);
	}
}

/*
    Effect from the motor monoflop.
*/
WRITE_LINE_MEMBER( hx5102_device::motor_w )
{
	m_motor_on = (state==ASSERT_LINE);
	LOGMASKED(LOG_MOTOR, "Motor %s\n", m_motor_on? "start" : "stop");

	if (m_floppy[0] != nullptr) m_floppy[0]->mon_w(m_motor_on? 0 : 1);
	if (m_floppy[1] != nullptr) m_floppy[1]->mon_w(m_motor_on? 0 : 1);
	update_readyff_input();
}

/*
    Effect from the speed monoflop. This is essentially a watchdog to
    check whether the lock on the CPU must be released due to an error.
*/
WRITE_LINE_MEMBER( hx5102_device::mspeed_w )
{
	m_mspeed_on = (state==ASSERT_LINE);
	LOGMASKED(LOG_READY, "Speedcheck %s\n", m_mspeed_on? "on" : "off");
	update_readyff_input();
}

/*
    Read access to the floppy controller
*/
uint8_t hx5102_device::fdc_read(offs_t offset)
{
	uint8_t val = 0;
	switch (offset)
	{
	case 0:
		// Main status register
		val = m_floppy_ctrl->msr_r();
		LOGMASKED(LOG_STATUS, "i8272A.msr -> %02x\n", val);
		break;
	case 4:
		// FIFO read
		val = m_floppy_ctrl->fifo_r();
		LOGMASKED(LOG_FIFO, "i8272A.fifo -> %02x\n", val);
		break;
	}
	return val;
}

/*
    Write access to the floppy controller
*/
void hx5102_device::fdc_write(offs_t offset, uint8_t data)
{
	m_dcs = ((offset & 0x0003)==0);

	switch (offset)
	{
	case 0x08:
		// Command register (FIFO write)
		LOGMASKED(LOG_STATUS, "i8272A.fifo <- %02x\n", data);
		m_floppy_ctrl->fifo_w(data);
		break;
	case 0x0c:
		// DMA lock
		LOGMASKED(LOG_READY, "Lock READY\n", data);
		update_readyff_input();
		break;
	}
}

void hx5102_device::update_readyff_input()
{
	LOGMASKED(LOG_READY, "MON=%d, MSP=%d, WAIT=%d, INT*=%d, DRQ*=%d, DCS=%d\n", m_motor_on, m_mspeed_on, m_wait, !m_pending_int, !m_pending_drq, m_dcs);
	m_readyff->d_w(m_motor_on && m_mspeed_on && m_wait && !m_pending_int && !m_pending_drq && m_dcs);
}

/*
    Access to the Hexbus controller
*/
uint8_t hx5102_device::ibc_read(offs_t offset)
{
	if ((offset & 1)==0)
		return m_hexbus_ctrl->read((offset>>1)&1);
	else
		return 0;
}

void hx5102_device::ibc_write(offs_t offset, uint8_t data)
{
	if ((offset & 1)==0)
		m_hexbus_ctrl->write((offset>>1)&1, data);
}

void hx5102_device::hexbus_out(uint8_t data)
{
	LOGMASKED(LOG_HEXBUS, "Write to hexbus: BAV*=%d, HSK*=%d, data=%x\n", bav_line(data)==ASSERT_LINE? 0:1, hsk_line(data)==ASSERT_LINE? 0:1, data_lines(data));

	// Get the other levels and set our own states
	uint8_t newlevel = hexbus_get_levels() & data;
	m_hexbus_ctrl->update_lines((newlevel & 0x04)==0, (newlevel & 0x10)==0);

	// Now set the bus. This may entail further changes, incoming via hexbus_value_changed.
	hexbus_write(data);
}

/*
    Latch the HSK* to low.
*/
WRITE_LINE_MEMBER(hx5102_device::hsklatch_out)
{
	LOGMASKED(LOG_HEXBUS, "Latching HSK*\n");
	m_myvalue &= ~HEXBUS_LINE_HSK;
}

/*
    CRU read access.

      7     6     5     4     3     2     1     0
    +-----+-----+-----+-----+-----+-----+-----+-----+
    | TD3 | TD2 | TD1 | TD0 |  0  | TIM | MON | INT |
    +-----+-----+-----+-----+-----+-----+-----+-----+

    TDx = Tracks for drive x; 1 = 40, 0 = 77
    TIM = Timeout
    MON = Motor on
    INT = Interrupt from i8272A
*/
uint8_t hx5102_device::cruread(offs_t offset)
{
	uint8_t crubits = 0;
	// LOGMASKED(LOG_CRU, "Reading CRU addresses %04x-%04x\n", 0x17e0 + (offset<<4), 0x17ee + (offset<<4));
	if (m_pending_int) crubits |= 0x01;
	if (m_motor_on) crubits |= 0x02;
	if (m_mspeed_on) crubits |= 0x04;

	crubits |= ((ioport("HXDIP")->read())<<4);

	return BIT(crubits, offset);
}

/*
    CRU write access.
*/
WRITE_LINE_MEMBER(hx5102_device::nocomp_w)
{
	// unused right now
	LOGMASKED(LOG_CRU, "Set precompensation = %d\n", state);
}

WRITE_LINE_MEMBER(hx5102_device::diren_w)
{
	LOGMASKED(LOG_CRU, "Set step direction = %d\n", state);
	if (m_current_floppy != nullptr)
		m_current_floppy->dir_w((state==0)? 1 : 0);
}

WRITE_LINE_MEMBER(hx5102_device::dacken_w)
{
	if (state==1)
		LOGMASKED(LOG_CRU, "Assert DACK*\n");
	m_dacken = (state != 0);
}

WRITE_LINE_MEMBER(hx5102_device::stepen_w)
{
	if (state==1)
		LOGMASKED(LOG_CRU, "Step pulse\n");
	if (m_current_floppy != nullptr)
		m_current_floppy->stp_w((state==0)? 1 : 0);
}

WRITE_LINE_MEMBER(hx5102_device::ds1_w)
{
	LOGMASKED(LOG_CRU, "Set drive select 0 to %d\n", state);
	if (state == 1)
		m_floppy_select |= 1;
	else
		m_floppy_select &= ~1;
	update_drive_select();
}

WRITE_LINE_MEMBER(hx5102_device::ds2_w)
{
	LOGMASKED(LOG_CRU, "Set drive select 1 to %d\n", state);
	if (state == 1)
		m_floppy_select |= 2;
	else
		m_floppy_select &= ~2;
	update_drive_select();
}

WRITE_LINE_MEMBER(hx5102_device::ds3_w)
{
	// External drive; not implemented
	LOGMASKED(LOG_CRU, "Set drive select 2 to %d\n", state);
}

WRITE_LINE_MEMBER(hx5102_device::ds4_w)
{
	// External drive; not implemented
	LOGMASKED(LOG_CRU, "Set drive select 3 to %d\n", state);
}

WRITE_LINE_MEMBER(hx5102_device::aux_motor_w)
{
	// External drive; not implemented
	LOGMASKED(LOG_CRU, "Set auxiliary motor line to %d\n", state);
}

WRITE_LINE_MEMBER(hx5102_device::wait_w)
{
	m_wait = (state!=0);
	LOGMASKED(LOG_CRU, "READY circuit %s\n", m_wait? "active" : "inactive" );
	update_readyff_input();
}

void hx5102_device::update_drive_select()
{
	if (m_floppy_select != m_floppy_select_last)
	{
		if (m_floppy_select == 1)
			m_current_floppy = m_floppy[0];
		else
		{
			if (m_floppy_select == 2)
				m_current_floppy = m_floppy[1];
			else
				m_current_floppy = nullptr;
		}

		m_floppy_ctrl->set_floppy(m_current_floppy);
		m_floppy_select_last = m_floppy_select;
	}
}

/*
    Device lifecycle.
*/
void hx5102_device::device_start()
{
	m_floppy[0] = m_floppy[1] = nullptr;

	if (subdevice("d0")!=nullptr) m_floppy[0] = static_cast<floppy_image_device*>(subdevice("d0")->subdevices().first());
	if (subdevice("d1")!=nullptr) m_floppy[1] = static_cast<floppy_image_device*>(subdevice("d1")->subdevices().first());

	m_rom1 = (uint8_t*)memregion(DSR_TAG)->base();
	m_rom2 = (uint8_t*)memregion(DSR_TAG)->base() + 0x2000;
}

/*
    Device lifecycle.
*/
void hx5102_device::device_reset()
{
	board_reset(ASSERT_LINE);
	board_ready(ASSERT_LINE);
}

/*
    Callbacks from the i8272A chip
    Interrupt
*/
WRITE_LINE_MEMBER( hx5102_device::fdc_irq_w )
{
	line_state irq = state? ASSERT_LINE : CLEAR_LINE;
	LOGMASKED(LOG_SIGNALS, "INTRQ callback = %d\n", irq);
	m_pending_int = state;
	update_readyff_input();
}

/*
    Callbacks from the i8272A chip
    DMA request
*/
WRITE_LINE_MEMBER( hx5102_device::fdc_drq_w )
{
	line_state drq = state? ASSERT_LINE : CLEAR_LINE;
	LOGMASKED(LOG_SIGNALS, "DRQ callback = %d\n", drq);
	m_pending_drq = state;
	update_readyff_input();
}

/*
    Define the floppy formats.
*/
void hx5102_device::floppy_formats(format_registration &fr)
{
	fr.add_mfm_containers();
	fr.add(FLOPPY_TI99_SDF_FORMAT);
	fr.add(FLOPPY_TI99_TDF_FORMAT);
}

/*
    Only one fixed floppy drive in the device.
    External connectors are available, though.
*/
static void hx5102_drive(device_slot_interface &device)
{
	device.option_add("525dd", FLOPPY_525_DD);
}

INPUT_PORTS_START( hx5102 )
	PORT_START( "HXDIP" )
	PORT_DIPNAME( 0x01, 0x01, "Drive 1 cylinders" )
		PORT_DIPSETTING( 0x01, "40")
		PORT_DIPSETTING( 0x00, "77")
	PORT_DIPNAME( 0x02, 0x02, "Drive 2 cylinders" )
		PORT_DIPSETTING( 0x02, "40")
		PORT_DIPSETTING( 0x00, "77")
	PORT_DIPNAME( 0x04, 0x04, "Drive 3 cylinders" )
		PORT_DIPSETTING( 0x04, "40")
		PORT_DIPSETTING( 0x00, "77")
	PORT_DIPNAME( 0x08, 0x08, "Drive 4 cylinders" )
		PORT_DIPSETTING( 0x08, "40")
		PORT_DIPSETTING( 0x00, "77")
INPUT_PORTS_END

/*
    HX5102 configuration
*/
void hx5102_device::device_add_mconfig(machine_config& config)
{
	// Hexbus controller
	IBC(config, m_hexbus_ctrl, 0);
	m_hexbus_ctrl->hexbus_cb().set(FUNC(hx5102_device::hexbus_out));
	m_hexbus_ctrl->hsklatch_cb().set(FUNC(hx5102_device::hsklatch_out));

	// Outgoing socket for downstream devices
	HEXBUS(config, "hexbus", 0, hexbus_options, nullptr);

	// TMS9995 CPU @ 12.0 MHz
	TMS9995(config, m_flopcpu, 12_MHz_XTAL);
	m_flopcpu->set_addrmap(AS_PROGRAM, &hx5102_device::memmap);
	m_flopcpu->set_addrmap(AS_IO, &hx5102_device::crumap);
	m_flopcpu->extop_cb().set(FUNC(hx5102_device::external_operation));
	m_flopcpu->clkout_cb().set(FUNC(hx5102_device::clock_out));

	// Disk controller i8272A
	// Not connected: Select lines (DS0, DS1), Head load (HDL), VCO
	// Tied to 1: READY
	// Tied to 0: TC
	I8272A(config, m_floppy_ctrl, 8_MHz_XTAL / 2, false);
	m_floppy_ctrl->intrq_wr_callback().set(FUNC(hx5102_device::fdc_irq_w));
	m_floppy_ctrl->drq_wr_callback().set(FUNC(hx5102_device::fdc_drq_w));

	FLOPPY_CONNECTOR(config, "d0", hx5102_drive, "525dd", hx5102_device::floppy_formats).enable_sound(true);
	FLOPPY_CONNECTOR(config, "d1", hx5102_drive, nullptr, hx5102_device::floppy_formats).enable_sound(true);

	// Addressable latches
	LS259(config, m_crulatch[0]); // U18
	m_crulatch[0]->q_out_cb<0>().set(FUNC(hx5102_device::nocomp_w));
	m_crulatch[0]->q_out_cb<1>().set(m_motormf, FUNC(ttl74123_device::b_w));
	m_crulatch[0]->q_out_cb<3>().set(FUNC(hx5102_device::diren_w));
	m_crulatch[0]->q_out_cb<4>().set(FUNC(hx5102_device::dacken_w));
	m_crulatch[0]->q_out_cb<5>().set(FUNC(hx5102_device::stepen_w));
	m_crulatch[0]->q_out_cb<6>().set(m_speedmf, FUNC(ttl74123_device::b_w));
	m_crulatch[0]->q_out_cb<7>().set(m_floppy_ctrl, FUNC(i8272a_device::reset_w)).invert();

	LS259(config, m_crulatch[1]); // U10
	m_crulatch[1]->q_out_cb<0>().set(FUNC(hx5102_device::ds1_w));
	m_crulatch[1]->q_out_cb<1>().set(FUNC(hx5102_device::ds2_w));
	m_crulatch[1]->q_out_cb<2>().set(FUNC(hx5102_device::ds3_w));
	m_crulatch[1]->q_out_cb<3>().set(FUNC(hx5102_device::ds4_w));
	m_crulatch[1]->q_out_cb<4>().set(FUNC(hx5102_device::aux_motor_w));
	m_crulatch[1]->q_out_cb<6>().set(FUNC(hx5102_device::wait_w));

	// Monoflops
	TTL74123(config, m_motormf, RES_K(200), CAP_U(47));
	m_motormf->set_connection_type(TTL74123_GROUNDED);
	m_motormf->set_a_pin_value(0);
	m_motormf->set_b_pin_value(1);
	m_motormf->set_clear_pin_value(1);
	m_motormf->out_cb().set(FUNC(hx5102_device::motor_w));

	TTL74123(config, m_speedmf, RES_K(200), CAP_U(10));
	m_speedmf->set_connection_type(TTL74123_GROUNDED);
	m_speedmf->set_a_pin_value(0);
	m_speedmf->set_b_pin_value(1);
	m_speedmf->set_clear_pin_value(1);
	m_speedmf->out_cb().set(FUNC(hx5102_device::mspeed_w));

	// READY flipflop
	TTL7474(config, m_readyff, 0);
	m_readyff->comp_output_cb().set(FUNC(hx5102_device::board_ready));

	// RAM
	RAM(config, RAM1_TAG).set_default_size("2048").set_default_value(0);
	RAM(config, RAM2_TAG).set_default_size("2048").set_default_value(0);
}

ROM_START( hx5102 )
	ROM_REGION( 0x4000, DSR_TAG, 0 )
	ROM_LOAD( "hx5102_rom1.u25", 0x0000, 0x2000, CRC(40621a77) SHA1(1532f6f23e0104326c21909cb0ec46936242a12a) )
	ROM_LOAD( "hx5102_rom2.u29", 0x2000, 0x2000, CRC(57c2603b) SHA1(2f1d01378943436f0abd5b20710f6c8c175fde13) )
ROM_END

const tiny_rom_entry *hx5102_device::device_rom_region() const
{
	return ROM_NAME( hx5102 );
}

ioport_constructor hx5102_device::device_input_ports() const
{
	return INPUT_PORTS_NAME( hx5102 );
}

}  // end namespace bus::hexbus