summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/ymfm/src/ymfm_opq.cpp
blob: 78ae1616409109fbea2f6b6cfd3874c7303bb95e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// BSD 3-Clause License
//
// Copyright (c) 2021, Aaron Giles
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
//    contributors may be used to endorse or promote products derived from
//    this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "ymfm_opq.h"
#include "ymfm_fm.ipp"

#define TEMPORARY_DEBUG_PRINTS (0)

//
// OPQ (aka YM3806/YM3533)
//
// This chip is not officially documented as far as I know. What I have
// comes from Jari Kangas' work on reverse engineering the PSR70:
//
//    https://github.com/JKN0/PSR70-reverse
//
// OPQ appears be bsaically a mixture of OPM and OPN.
//

namespace ymfm
{

//*********************************************************
//  OPQ SPECIFICS
//*********************************************************

//-------------------------------------------------
//  opq_registers - constructor
//-------------------------------------------------

opq_registers::opq_registers() :
	m_lfo_counter(0),
	m_lfo_am(0)
{
	// create the waveforms
	for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++)
		m_waveform[0][index] = abs_sin_attenuation(index) | (bitfield(index, 9) << 15);

	uint16_t zeroval = m_waveform[0][0];
	for (uint32_t index = 0; index < WAVEFORM_LENGTH; index++)
		m_waveform[1][index] = bitfield(index, 9) ? zeroval : m_waveform[0][index];
}


//-------------------------------------------------
//  reset - reset to initial state
//-------------------------------------------------

void opq_registers::reset()
{
	std::fill_n(&m_regdata[0], REGISTERS, 0);

	// enable output on both channels by default
	m_regdata[0x10] = m_regdata[0x11] = m_regdata[0x12] = m_regdata[0x13] = 0xc0;
	m_regdata[0x14] = m_regdata[0x15] = m_regdata[0x16] = m_regdata[0x17] = 0xc0;
}


//-------------------------------------------------
//  save_restore - save or restore the data
//-------------------------------------------------

void opq_registers::save_restore(ymfm_saved_state &state)
{
	state.save_restore(m_lfo_counter);
	state.save_restore(m_lfo_am);
	state.save_restore(m_regdata);
}


//-------------------------------------------------
//  operator_map - return an array of operator
//  indices for each channel; for OPM this is fixed
//-------------------------------------------------

void opq_registers::operator_map(operator_mapping &dest) const
{
	// seems like the operators are not swizzled like they are on OPM/OPN?
	static const operator_mapping s_fixed_map =
	{ {
		operator_list(  0,  8, 16, 24 ),  // Channel 0 operators
		operator_list(  1,  9, 17, 25 ),  // Channel 1 operators
		operator_list(  2, 10, 18, 26 ),  // Channel 2 operators
		operator_list(  3, 11, 19, 27 ),  // Channel 3 operators
		operator_list(  4, 12, 20, 28 ),  // Channel 4 operators
		operator_list(  5, 13, 21, 29 ),  // Channel 5 operators
		operator_list(  6, 14, 22, 30 ),  // Channel 6 operators
		operator_list(  7, 15, 23, 31 ),  // Channel 7 operators
	} };
	dest = s_fixed_map;
}


//-------------------------------------------------
//  write - handle writes to the register array
//-------------------------------------------------

bool opq_registers::write(uint16_t index, uint8_t data, uint32_t &channel, uint32_t &opmask)
{
	assert(index < REGISTERS);

	// detune/multiple share a register based on the MSB of what is written
	// remap the multiple values to 100-11F
	if ((index & 0xe0) == 0x40 && bitfield(data, 7) != 0)
		index += 0xc0;

	m_regdata[index] = data;

	// handle writes to the key on index
	if (index == 0x05)
	{
		channel = bitfield(data, 0, 3);
		opmask = bitfield(data, 3, 4);
		return true;
	}
	return false;
}


//-------------------------------------------------
//  clock_noise_and_lfo - clock the noise and LFO,
//  handling clock division, depth, and waveform
//  computations
//-------------------------------------------------

int32_t opq_registers::clock_noise_and_lfo()
{
	// OPQ LFO is not well-understood, but the enable and rate values
	// look a lot like OPN, so we'll crib from there as a starting point

	// if LFO not enabled (not present on OPN), quick exit with 0s
	if (!lfo_enable())
	{
		m_lfo_counter = 0;
		m_lfo_am = 0;
		return 0;
	}

	// this table is based on converting the frequencies in the applications
	// manual to clock dividers, based on the assumption of a 7-bit LFO value
	static uint8_t const lfo_max_count[8] = { 109, 78, 72, 68, 63, 45, 9, 6 };
	uint32_t subcount = uint8_t(m_lfo_counter++);

	// when we cross the divider count, add enough to zero it and cause an
	// increment at bit 8; the 7-bit value lives from bits 8-14
	if (subcount >= lfo_max_count[lfo_rate()])
		m_lfo_counter += 0x101 - subcount;

	// AM value is 7 bits, staring at bit 8; grab the low 6 directly
	m_lfo_am = bitfield(m_lfo_counter, 8, 6);

	// first half of the AM period (bit 6 == 0) is inverted
	if (bitfield(m_lfo_counter, 8+6) == 0)
		m_lfo_am ^= 0x3f;

	// PM value is 5 bits, starting at bit 10; grab the low 3 directly
	int32_t pm = bitfield(m_lfo_counter, 10, 3);

	// PM is reflected based on bit 3
	if (bitfield(m_lfo_counter, 10+3))
		pm ^= 7;

	// PM is negated based on bit 4
	return bitfield(m_lfo_counter, 10+4) ? -pm : pm;
}


//-------------------------------------------------
//  lfo_am_offset - return the AM offset from LFO
//  for the given channel
//-------------------------------------------------

uint32_t opq_registers::lfo_am_offset(uint32_t choffs) const
{
	// OPM maps AM quite differently from OPN

	// shift value for AM sensitivity is [*, 0, 1, 2],
	// mapping to values of [0, 23.9, 47.8, and 95.6dB]
	uint32_t am_sensitivity = ch_lfo_am_sens(choffs);
	if (am_sensitivity == 0)
		return 0;

	// QUESTION: see OPN note below for the dB range mapping; it applies
	// here as well

	// raw LFO AM value on OPM is 0-FF, which is already a factor of 2
	// larger than the OPN below, putting our staring point at 2x theirs;
	// this works out since our minimum is 2x their maximum
	return m_lfo_am << (am_sensitivity - 1);
}


//-------------------------------------------------
//  cache_operator_data - fill the operator cache
//  with prefetched data
//-------------------------------------------------

void opq_registers::cache_operator_data(uint32_t choffs, uint32_t opoffs, opdata_cache &cache)
{
	// set up the easy stuff
	cache.waveform = &m_waveform[op_waveform(opoffs)][0];

	// get frequency from the appropriate registers
	uint32_t block_freq = cache.block_freq = (opoffs & 8) ? ch_block_freq_24(choffs) : ch_block_freq_13(choffs);

	// compute the keycode: block_freq is:
	//
	//     BBBFFFFFFFFFFFF
	//     ^^^^???
	//
	// keycode is not understood, so just guessing it is like OPN:
	// the 5-bit keycode uses the top 4 bits plus a magic formula
	// for the final bit
	uint32_t keycode = bitfield(block_freq, 11, 4) << 1;

	// lowest bit is determined by a mix of next lower FNUM bits
	// according to this equation from the YM2608 manual:
	//
	//   (F11 & (F10 | F9 | F8)) | (!F11 & F10 & F9 & F8)
	//
	// for speed, we just look it up in a 16-bit constant
	keycode |= bitfield(0xfe80, bitfield(block_freq, 8, 4));

	// detune adjustment: the detune values supported by the OPQ are
	// a much larger range (6 bits vs 3 bits) compared to any other
	// known FM chip; based on experiments, it seems that the extra
	// bits provide a bigger detune range rather than finer control,
	// so until we get true measurements just assemble a net detune
	// value by summing smaller detunes
	int32_t detune = int32_t(op_detune(opoffs)) - 0x20;
	int32_t abs_detune = std::abs(detune);
	int32_t adjust = (abs_detune / 3) * detune_adjustment(3, keycode) + detune_adjustment(abs_detune % 3, keycode);
	cache.detune = (detune >= 0) ? adjust : -adjust;

	// multiple value, as an x.1 value (0 means 0.5)
	static const uint8_t s_multiple_map[16] = { 1,2,4,6,8,10,12,14,16,18,20,24,30,32,34,36 };
	cache.multiple = s_multiple_map[op_multiple(opoffs)];

	// phase step, or PHASE_STEP_DYNAMIC if PM is active; this depends on
	// block_freq, detune, and multiple, so compute it after we've done those
	if (lfo_enable() == 0 || ch_lfo_pm_sens(choffs) == 0)
		cache.phase_step = compute_phase_step(choffs, opoffs, cache, 0);
	else
		cache.phase_step = opdata_cache::PHASE_STEP_DYNAMIC;

	// total level, scaled by 8
	cache.total_level = op_total_level(opoffs) << 3;

	// 4-bit sustain level, but 15 means 31 so effectively 5 bits
	cache.eg_sustain = op_sustain_level(opoffs);
	cache.eg_sustain |= (cache.eg_sustain + 1) & 0x10;
	cache.eg_sustain <<= 5;

	// determine KSR adjustment for enevlope rates
	uint32_t ksrval = keycode >> (op_ksr(opoffs) ^ 3);
	cache.eg_rate[EG_ATTACK] = effective_rate(op_attack_rate(opoffs) * 2, ksrval);
	cache.eg_rate[EG_DECAY] = effective_rate(op_decay_rate(opoffs) * 2, ksrval);
	cache.eg_rate[EG_SUSTAIN] = effective_rate(op_sustain_rate(opoffs) * 2, ksrval);
	cache.eg_rate[EG_RELEASE] = effective_rate(op_release_rate(opoffs) * 4 + 2, ksrval);
	cache.eg_rate[EG_REVERB] = (ch_reverb(choffs) != 0) ? 5*4 : cache.eg_rate[EG_RELEASE];
	cache.eg_shift = 0;
}


//-------------------------------------------------
//  compute_phase_step - compute the phase step
//-------------------------------------------------

uint32_t opq_registers::compute_phase_step(uint32_t choffs, uint32_t opoffs, opdata_cache const &cache, int32_t lfo_raw_pm)
{
	// OPN phase calculation has only a single detune parameter
	// and uses FNUMs instead of keycodes

	// extract frequency number (low 12 bits of block_freq)
	uint32_t fnum = bitfield(cache.block_freq, 0, 12);

	// if there's a non-zero PM sensitivity, compute the adjustment
	uint32_t pm_sensitivity = ch_lfo_pm_sens(choffs);
	if (pm_sensitivity != 0)
	{
		// apply the phase adjustment based on the upper 7 bits
		// of FNUM and the PM depth parameters
		fnum += opn_lfo_pm_phase_adjustment(bitfield(cache.block_freq, 5, 7), pm_sensitivity, lfo_raw_pm);

		// keep fnum to 12 bits
		fnum &= 0xfff;
	}

	// apply block shift to compute phase step
	uint32_t block = bitfield(cache.block_freq, 12, 3);
	uint32_t phase_step = (fnum << block) >> 2;

	// apply detune based on the keycode
	phase_step += cache.detune;

	// clamp to 17 bits in case detune overflows
	// QUESTION: is this specific to the YM2612/3438?
	phase_step &= 0x1ffff;

	// apply frequency multiplier (which is cached as an x.1 value)
	return (phase_step * cache.multiple) >> 1;
}


//-------------------------------------------------
//  log_keyon - log a key-on event
//-------------------------------------------------

std::string opq_registers::log_keyon(uint32_t choffs, uint32_t opoffs)
{
	uint32_t chnum = choffs;
	uint32_t opnum = opoffs;

	char buffer[256];
	int end = 0;

	end += snprintf(&buffer[end], sizeof(buffer) - end, "%u.%02u freq=%04X dt=%+2d fb=%u alg=%X mul=%X tl=%02X ksr=%u adsr=%02X/%02X/%02X/%X sl=%X out=%c%c",
		chnum, opnum,
		(opoffs & 1) ? ch_block_freq_24(choffs) : ch_block_freq_13(choffs),
		int32_t(op_detune(opoffs)) - 0x20,
		ch_feedback(choffs),
		ch_algorithm(choffs),
		op_multiple(opoffs),
		op_total_level(opoffs),
		op_ksr(opoffs),
		op_attack_rate(opoffs),
		op_decay_rate(opoffs),
		op_sustain_rate(opoffs),
		op_release_rate(opoffs),
		op_sustain_level(opoffs),
		ch_output_0(choffs) ? 'L' : '-',
		ch_output_1(choffs) ? 'R' : '-');

	bool am = (lfo_enable() && op_lfo_am_enable(opoffs) && ch_lfo_am_sens(choffs) != 0);
	if (am)
		end += snprintf(&buffer[end], sizeof(buffer) - end, " am=%u", ch_lfo_am_sens(choffs));
	bool pm = (lfo_enable() && ch_lfo_pm_sens(choffs) != 0);
	if (pm)
		end += snprintf(&buffer[end], sizeof(buffer) - end, " pm=%u", ch_lfo_pm_sens(choffs));
	if (am || pm)
		end += snprintf(&buffer[end], sizeof(buffer) - end, " lfo=%02X", lfo_rate());
	if (ch_reverb(choffs))
		end += snprintf(&buffer[end], sizeof(buffer) - end, " reverb");

	return buffer;
}



//*********************************************************
//  YM3806
//*********************************************************

//-------------------------------------------------
//  ym3806 - constructor
//-------------------------------------------------

ym3806::ym3806(ymfm_interface &intf) :
	m_fm(intf)
{
}


//-------------------------------------------------
//  reset - reset the system
//-------------------------------------------------

void ym3806::reset()
{
	// reset the engines
	m_fm.reset();
}


//-------------------------------------------------
//  save_restore - save or restore the data
//-------------------------------------------------

void ym3806::save_restore(ymfm_saved_state &state)
{
	m_fm.save_restore(state);
}


//-------------------------------------------------
//  read_status - read the status register
//-------------------------------------------------

uint8_t ym3806::read_status()
{
	uint8_t result = m_fm.status();
	if (m_fm.intf().ymfm_is_busy())
		result |= fm_engine::STATUS_BUSY;
	return result;
}


//-------------------------------------------------
//  read - handle a read from the device
//-------------------------------------------------

uint8_t ym3806::read(uint32_t offset)
{
	uint8_t result = 0xff;
	switch (offset)
	{
		case 0: // status port
			result = read_status();
			break;

		default: // unknown
			debug::log_unexpected_read_write("Unexpected read from YM3806 offset %02X\n", offset);
			break;
	}
if (TEMPORARY_DEBUG_PRINTS && offset != 0) printf("Read %02X = %02X\n", offset, result);
	return result;
}


//-------------------------------------------------
//  write - handle a write to the register
//  interface
//-------------------------------------------------

void ym3806::write(uint32_t offset, uint8_t data)
{
if (TEMPORARY_DEBUG_PRINTS && (offset != 3 || data != 0x71)) printf("Write %02X = %02X\n", offset, data);
	// write the FM register
	m_fm.write(offset, data);
}


//-------------------------------------------------
//  generate - generate one sample of sound
//-------------------------------------------------

void ym3806::generate(output_data *output, uint32_t numsamples)
{
	for (uint32_t samp = 0; samp < numsamples; samp++, output++)
	{
		// clock the system
		m_fm.clock(fm_engine::ALL_CHANNELS);

		// update the FM content; YM3806 is full 14-bit with no intermediate clipping
		m_fm.output(output->clear(), 0, 32767, fm_engine::ALL_CHANNELS);

		// YM3608 appears to go through a YM3012 DAC, which means we want to apply
		// the FP truncation logic to the outputs
		output->roundtrip_fp();
	}
}

}