summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/ymfm/src/ymfm_fm.ipp
blob: 78e3a62d9c843386ac2b87661fa12fe3073ca906 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
// BSD 3-Clause License
//
// Copyright (c) 2021, Aaron Giles
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
//    contributors may be used to endorse or promote products derived from
//    this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

namespace ymfm
{

//*********************************************************
//  GLOBAL TABLE LOOKUPS
//*********************************************************

//-------------------------------------------------
//  abs_sin_attenuation - given a sin (phase) input
//  where the range 0-2*PI is mapped onto 10 bits,
//  return the absolute value of sin(input),
//  logarithmically-adjusted and treated as an
//  attenuation value, in 4.8 fixed point format
//-------------------------------------------------

inline uint32_t abs_sin_attenuation(uint32_t input)
{
	// the values here are stored as 4.8 logarithmic values for 1/4 phase
	// this matches the internal format of the OPN chip, extracted from the die
	static uint16_t const s_sin_table[256] =
	{
		0x859,0x6c3,0x607,0x58b,0x52e,0x4e4,0x4a6,0x471,0x443,0x41a,0x3f5,0x3d3,0x3b5,0x398,0x37e,0x365,
		0x34e,0x339,0x324,0x311,0x2ff,0x2ed,0x2dc,0x2cd,0x2bd,0x2af,0x2a0,0x293,0x286,0x279,0x26d,0x261,
		0x256,0x24b,0x240,0x236,0x22c,0x222,0x218,0x20f,0x206,0x1fd,0x1f5,0x1ec,0x1e4,0x1dc,0x1d4,0x1cd,
		0x1c5,0x1be,0x1b7,0x1b0,0x1a9,0x1a2,0x19b,0x195,0x18f,0x188,0x182,0x17c,0x177,0x171,0x16b,0x166,
		0x160,0x15b,0x155,0x150,0x14b,0x146,0x141,0x13c,0x137,0x133,0x12e,0x129,0x125,0x121,0x11c,0x118,
		0x114,0x10f,0x10b,0x107,0x103,0x0ff,0x0fb,0x0f8,0x0f4,0x0f0,0x0ec,0x0e9,0x0e5,0x0e2,0x0de,0x0db,
		0x0d7,0x0d4,0x0d1,0x0cd,0x0ca,0x0c7,0x0c4,0x0c1,0x0be,0x0bb,0x0b8,0x0b5,0x0b2,0x0af,0x0ac,0x0a9,
		0x0a7,0x0a4,0x0a1,0x09f,0x09c,0x099,0x097,0x094,0x092,0x08f,0x08d,0x08a,0x088,0x086,0x083,0x081,
		0x07f,0x07d,0x07a,0x078,0x076,0x074,0x072,0x070,0x06e,0x06c,0x06a,0x068,0x066,0x064,0x062,0x060,
		0x05e,0x05c,0x05b,0x059,0x057,0x055,0x053,0x052,0x050,0x04e,0x04d,0x04b,0x04a,0x048,0x046,0x045,
		0x043,0x042,0x040,0x03f,0x03e,0x03c,0x03b,0x039,0x038,0x037,0x035,0x034,0x033,0x031,0x030,0x02f,
		0x02e,0x02d,0x02b,0x02a,0x029,0x028,0x027,0x026,0x025,0x024,0x023,0x022,0x021,0x020,0x01f,0x01e,
		0x01d,0x01c,0x01b,0x01a,0x019,0x018,0x017,0x017,0x016,0x015,0x014,0x014,0x013,0x012,0x011,0x011,
		0x010,0x00f,0x00f,0x00e,0x00d,0x00d,0x00c,0x00c,0x00b,0x00a,0x00a,0x009,0x009,0x008,0x008,0x007,
		0x007,0x007,0x006,0x006,0x005,0x005,0x005,0x004,0x004,0x004,0x003,0x003,0x003,0x002,0x002,0x002,
		0x002,0x001,0x001,0x001,0x001,0x001,0x001,0x001,0x000,0x000,0x000,0x000,0x000,0x000,0x000,0x000
	};

	// if the top bit is set, we're in the second half of the curve
	// which is a mirror image, so invert the index
	if (bitfield(input, 8))
		input = ~input;

	// return the value from the table
	return s_sin_table[input & 0xff];
}


//-------------------------------------------------
//  attenuation_to_volume - given a 5.8 fixed point
//  logarithmic attenuation value, return a 13-bit
//  linear volume
//-------------------------------------------------

inline uint32_t attenuation_to_volume(uint32_t input)
{
	// the values here are 10-bit mantissas with an implied leading bit
	// this matches the internal format of the OPN chip, extracted from the die

	// as a nod to performance, the implicit 0x400 bit is pre-incorporated, and
	// the values are left-shifted by 2 so that a simple right shift is all that
	// is needed; also the order is reversed to save a NOT on the input
#define X(a) (((a) | 0x400) << 2)
	static uint16_t const s_power_table[256] =
	{
		X(0x3fa),X(0x3f5),X(0x3ef),X(0x3ea),X(0x3e4),X(0x3df),X(0x3da),X(0x3d4),
		X(0x3cf),X(0x3c9),X(0x3c4),X(0x3bf),X(0x3b9),X(0x3b4),X(0x3ae),X(0x3a9),
		X(0x3a4),X(0x39f),X(0x399),X(0x394),X(0x38f),X(0x38a),X(0x384),X(0x37f),
		X(0x37a),X(0x375),X(0x370),X(0x36a),X(0x365),X(0x360),X(0x35b),X(0x356),
		X(0x351),X(0x34c),X(0x347),X(0x342),X(0x33d),X(0x338),X(0x333),X(0x32e),
		X(0x329),X(0x324),X(0x31f),X(0x31a),X(0x315),X(0x310),X(0x30b),X(0x306),
		X(0x302),X(0x2fd),X(0x2f8),X(0x2f3),X(0x2ee),X(0x2e9),X(0x2e5),X(0x2e0),
		X(0x2db),X(0x2d6),X(0x2d2),X(0x2cd),X(0x2c8),X(0x2c4),X(0x2bf),X(0x2ba),
		X(0x2b5),X(0x2b1),X(0x2ac),X(0x2a8),X(0x2a3),X(0x29e),X(0x29a),X(0x295),
		X(0x291),X(0x28c),X(0x288),X(0x283),X(0x27f),X(0x27a),X(0x276),X(0x271),
		X(0x26d),X(0x268),X(0x264),X(0x25f),X(0x25b),X(0x257),X(0x252),X(0x24e),
		X(0x249),X(0x245),X(0x241),X(0x23c),X(0x238),X(0x234),X(0x230),X(0x22b),
		X(0x227),X(0x223),X(0x21e),X(0x21a),X(0x216),X(0x212),X(0x20e),X(0x209),
		X(0x205),X(0x201),X(0x1fd),X(0x1f9),X(0x1f5),X(0x1f0),X(0x1ec),X(0x1e8),
		X(0x1e4),X(0x1e0),X(0x1dc),X(0x1d8),X(0x1d4),X(0x1d0),X(0x1cc),X(0x1c8),
		X(0x1c4),X(0x1c0),X(0x1bc),X(0x1b8),X(0x1b4),X(0x1b0),X(0x1ac),X(0x1a8),
		X(0x1a4),X(0x1a0),X(0x19c),X(0x199),X(0x195),X(0x191),X(0x18d),X(0x189),
		X(0x185),X(0x181),X(0x17e),X(0x17a),X(0x176),X(0x172),X(0x16f),X(0x16b),
		X(0x167),X(0x163),X(0x160),X(0x15c),X(0x158),X(0x154),X(0x151),X(0x14d),
		X(0x149),X(0x146),X(0x142),X(0x13e),X(0x13b),X(0x137),X(0x134),X(0x130),
		X(0x12c),X(0x129),X(0x125),X(0x122),X(0x11e),X(0x11b),X(0x117),X(0x114),
		X(0x110),X(0x10c),X(0x109),X(0x106),X(0x102),X(0x0ff),X(0x0fb),X(0x0f8),
		X(0x0f4),X(0x0f1),X(0x0ed),X(0x0ea),X(0x0e7),X(0x0e3),X(0x0e0),X(0x0dc),
		X(0x0d9),X(0x0d6),X(0x0d2),X(0x0cf),X(0x0cc),X(0x0c8),X(0x0c5),X(0x0c2),
		X(0x0be),X(0x0bb),X(0x0b8),X(0x0b5),X(0x0b1),X(0x0ae),X(0x0ab),X(0x0a8),
		X(0x0a4),X(0x0a1),X(0x09e),X(0x09b),X(0x098),X(0x094),X(0x091),X(0x08e),
		X(0x08b),X(0x088),X(0x085),X(0x082),X(0x07e),X(0x07b),X(0x078),X(0x075),
		X(0x072),X(0x06f),X(0x06c),X(0x069),X(0x066),X(0x063),X(0x060),X(0x05d),
		X(0x05a),X(0x057),X(0x054),X(0x051),X(0x04e),X(0x04b),X(0x048),X(0x045),
		X(0x042),X(0x03f),X(0x03c),X(0x039),X(0x036),X(0x033),X(0x030),X(0x02d),
		X(0x02a),X(0x028),X(0x025),X(0x022),X(0x01f),X(0x01c),X(0x019),X(0x016),
		X(0x014),X(0x011),X(0x00e),X(0x00b),X(0x008),X(0x006),X(0x003),X(0x000)
	};
#undef X

	// look up the fractional part, then shift by the whole
	return s_power_table[input & 0xff] >> (input >> 8);
}


//-------------------------------------------------
//  attenuation_increment - given a 6-bit ADSR
//  rate value and a 3-bit stepping index,
//  return a 4-bit increment to the attenutaion
//  for this step (or for the attack case, the
//  fractional scale factor to decrease by)
//-------------------------------------------------

inline uint32_t attenuation_increment(uint32_t rate, uint32_t index)
{
	static uint32_t const s_increment_table[64] =
	{
		0x00000000, 0x00000000, 0x10101010, 0x10101010,  // 0-3    (0x00-0x03)
		0x10101010, 0x10101010, 0x11101110, 0x11101110,  // 4-7    (0x04-0x07)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 8-11   (0x08-0x0B)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 12-15  (0x0C-0x0F)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 16-19  (0x10-0x13)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 20-23  (0x14-0x17)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 24-27  (0x18-0x1B)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 28-31  (0x1C-0x1F)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 32-35  (0x20-0x23)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 36-39  (0x24-0x27)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 40-43  (0x28-0x2B)
		0x10101010, 0x10111010, 0x11101110, 0x11111110,  // 44-47  (0x2C-0x2F)
		0x11111111, 0x21112111, 0x21212121, 0x22212221,  // 48-51  (0x30-0x33)
		0x22222222, 0x42224222, 0x42424242, 0x44424442,  // 52-55  (0x34-0x37)
		0x44444444, 0x84448444, 0x84848484, 0x88848884,  // 56-59  (0x38-0x3B)
		0x88888888, 0x88888888, 0x88888888, 0x88888888   // 60-63  (0x3C-0x3F)
	};
	return bitfield(s_increment_table[rate], 4*index, 4);
}


//-------------------------------------------------
//  detune_adjustment - given a 5-bit key code
//  value and a 3-bit detune parameter, return a
//  6-bit signed phase displacement; this table
//  has been verified against Nuked's equations,
//  but the equations are rather complicated, so
//  we'll keep the simplicity of the table
//-------------------------------------------------

inline int32_t detune_adjustment(uint32_t detune, uint32_t keycode)
{
	static uint8_t const s_detune_adjustment[32][4] =
	{
		{ 0,  0,  1,  2 },  { 0,  0,  1,  2 },  { 0,  0,  1,  2 },  { 0,  0,  1,  2 },
		{ 0,  1,  2,  2 },  { 0,  1,  2,  3 },  { 0,  1,  2,  3 },  { 0,  1,  2,  3 },
		{ 0,  1,  2,  4 },  { 0,  1,  3,  4 },  { 0,  1,  3,  4 },  { 0,  1,  3,  5 },
		{ 0,  2,  4,  5 },  { 0,  2,  4,  6 },  { 0,  2,  4,  6 },  { 0,  2,  5,  7 },
		{ 0,  2,  5,  8 },  { 0,  3,  6,  8 },  { 0,  3,  6,  9 },  { 0,  3,  7, 10 },
		{ 0,  4,  8, 11 },  { 0,  4,  8, 12 },  { 0,  4,  9, 13 },  { 0,  5, 10, 14 },
		{ 0,  5, 11, 16 },  { 0,  6, 12, 17 },  { 0,  6, 13, 19 },  { 0,  7, 14, 20 },
		{ 0,  8, 16, 22 },  { 0,  8, 16, 22 },  { 0,  8, 16, 22 },  { 0,  8, 16, 22 }
	};
	int32_t result = s_detune_adjustment[keycode][detune & 3];
	return bitfield(detune, 2) ? -result : result;
}


//-------------------------------------------------
//  opm_key_code_to_phase_step - converts an
//  OPM concatenated block (3 bits), keycode
//  (4 bits) and key fraction (6 bits) to a 0.10
//  phase step, after applying the given delta;
//  this applies to OPM and OPZ, so it lives here
//  in a central location
//-------------------------------------------------

inline uint32_t opm_key_code_to_phase_step(uint32_t block_freq, int32_t delta)
{
	// The phase step is essentially the fnum in OPN-speak. To compute this table,
	// we used the standard formula for computing the frequency of a note, and
	// then converted that frequency to fnum using the formula documented in the
	// YM2608 manual.
	//
	// However, the YM2608 manual describes everything in terms of a nominal 8MHz
	// clock, which produces an FM clock of:
	//
	//    8000000 / 24(operators) / 6(prescale) = 55555Hz FM clock
	//
	// Whereas the descriptions for the YM2151 use a nominal 3.579545MHz clock:
	//
	//    3579545 / 32(operators) / 2(prescale) = 55930Hz FM clock
	//
	// To correct for this, the YM2608 formula was adjusted to use a clock of
	// 8053920Hz, giving this equation for the fnum:
	//
	//    fnum = (double(144) * freq * (1 << 20)) / double(8053920) / 4;
	//
	// Unfortunately, the computed table differs in a few spots from the data
	// verified from an actual chip. The table below comes from David Viens'
	// analysis, used with his permission.
	static const uint32_t s_phase_step[12*64] =
	{
		41568,41600,41632,41664,41696,41728,41760,41792,41856,41888,41920,41952,42016,42048,42080,42112,
		42176,42208,42240,42272,42304,42336,42368,42400,42464,42496,42528,42560,42624,42656,42688,42720,
		42784,42816,42848,42880,42912,42944,42976,43008,43072,43104,43136,43168,43232,43264,43296,43328,
		43392,43424,43456,43488,43552,43584,43616,43648,43712,43744,43776,43808,43872,43904,43936,43968,
		44032,44064,44096,44128,44192,44224,44256,44288,44352,44384,44416,44448,44512,44544,44576,44608,
		44672,44704,44736,44768,44832,44864,44896,44928,44992,45024,45056,45088,45152,45184,45216,45248,
		45312,45344,45376,45408,45472,45504,45536,45568,45632,45664,45728,45760,45792,45824,45888,45920,
		45984,46016,46048,46080,46144,46176,46208,46240,46304,46336,46368,46400,46464,46496,46528,46560,
		46656,46688,46720,46752,46816,46848,46880,46912,46976,47008,47072,47104,47136,47168,47232,47264,
		47328,47360,47392,47424,47488,47520,47552,47584,47648,47680,47744,47776,47808,47840,47904,47936,
		48032,48064,48096,48128,48192,48224,48288,48320,48384,48416,48448,48480,48544,48576,48640,48672,
		48736,48768,48800,48832,48896,48928,48992,49024,49088,49120,49152,49184,49248,49280,49344,49376,
		49440,49472,49504,49536,49600,49632,49696,49728,49792,49824,49856,49888,49952,49984,50048,50080,
		50144,50176,50208,50240,50304,50336,50400,50432,50496,50528,50560,50592,50656,50688,50752,50784,
		50880,50912,50944,50976,51040,51072,51136,51168,51232,51264,51328,51360,51424,51456,51488,51520,
		51616,51648,51680,51712,51776,51808,51872,51904,51968,52000,52064,52096,52160,52192,52224,52256,
		52384,52416,52448,52480,52544,52576,52640,52672,52736,52768,52832,52864,52928,52960,52992,53024,
		53120,53152,53216,53248,53312,53344,53408,53440,53504,53536,53600,53632,53696,53728,53792,53824,
		53920,53952,54016,54048,54112,54144,54208,54240,54304,54336,54400,54432,54496,54528,54592,54624,
		54688,54720,54784,54816,54880,54912,54976,55008,55072,55104,55168,55200,55264,55296,55360,55392,
		55488,55520,55584,55616,55680,55712,55776,55808,55872,55936,55968,56032,56064,56128,56160,56224,
		56288,56320,56384,56416,56480,56512,56576,56608,56672,56736,56768,56832,56864,56928,56960,57024,
		57120,57152,57216,57248,57312,57376,57408,57472,57536,57568,57632,57664,57728,57792,57824,57888,
		57952,57984,58048,58080,58144,58208,58240,58304,58368,58400,58464,58496,58560,58624,58656,58720,
		58784,58816,58880,58912,58976,59040,59072,59136,59200,59232,59296,59328,59392,59456,59488,59552,
		59648,59680,59744,59776,59840,59904,59936,60000,60064,60128,60160,60224,60288,60320,60384,60416,
		60512,60544,60608,60640,60704,60768,60800,60864,60928,60992,61024,61088,61152,61184,61248,61280,
		61376,61408,61472,61536,61600,61632,61696,61760,61824,61856,61920,61984,62048,62080,62144,62208,
		62272,62304,62368,62432,62496,62528,62592,62656,62720,62752,62816,62880,62944,62976,63040,63104,
		63200,63232,63296,63360,63424,63456,63520,63584,63648,63680,63744,63808,63872,63904,63968,64032,
		64096,64128,64192,64256,64320,64352,64416,64480,64544,64608,64672,64704,64768,64832,64896,64928,
		65024,65056,65120,65184,65248,65312,65376,65408,65504,65536,65600,65664,65728,65792,65856,65888,
		65984,66016,66080,66144,66208,66272,66336,66368,66464,66496,66560,66624,66688,66752,66816,66848,
		66944,66976,67040,67104,67168,67232,67296,67328,67424,67456,67520,67584,67648,67712,67776,67808,
		67904,67936,68000,68064,68128,68192,68256,68288,68384,68448,68512,68544,68640,68672,68736,68800,
		68896,68928,68992,69056,69120,69184,69248,69280,69376,69440,69504,69536,69632,69664,69728,69792,
		69920,69952,70016,70080,70144,70208,70272,70304,70400,70464,70528,70560,70656,70688,70752,70816,
		70912,70976,71040,71104,71136,71232,71264,71360,71424,71488,71552,71616,71648,71744,71776,71872,
		71968,72032,72096,72160,72192,72288,72320,72416,72480,72544,72608,72672,72704,72800,72832,72928,
		72992,73056,73120,73184,73216,73312,73344,73440,73504,73568,73632,73696,73728,73824,73856,73952,
		74080,74144,74208,74272,74304,74400,74432,74528,74592,74656,74720,74784,74816,74912,74944,75040,
		75136,75200,75264,75328,75360,75456,75488,75584,75648,75712,75776,75840,75872,75968,76000,76096,
		76224,76288,76352,76416,76448,76544,76576,76672,76736,76800,76864,76928,77024,77120,77152,77248,
		77344,77408,77472,77536,77568,77664,77696,77792,77856,77920,77984,78048,78144,78240,78272,78368,
		78464,78528,78592,78656,78688,78784,78816,78912,78976,79040,79104,79168,79264,79360,79392,79488,
		79616,79680,79744,79808,79840,79936,79968,80064,80128,80192,80256,80320,80416,80512,80544,80640,
		80768,80832,80896,80960,80992,81088,81120,81216,81280,81344,81408,81472,81568,81664,81696,81792,
		81952,82016,82080,82144,82176,82272,82304,82400,82464,82528,82592,82656,82752,82848,82880,82976
	};

	// extract the block (octave) first
	uint32_t block = bitfield(block_freq, 10, 3);

	// the keycode (bits 6-9) is "gappy", mapping 12 values over 16 in each
	// octave; to correct for this, we multiply the 4-bit value by 3/4 (or
	// rather subtract 1/4); note that a (invalid) value of 15 will bleed into
	// the next octave -- this is confirmed
	uint32_t adjusted_code = bitfield(block_freq, 6, 4) - bitfield(block_freq, 8, 2);

	// now re-insert the 6-bit fraction
	int32_t eff_freq = (adjusted_code << 6) | bitfield(block_freq, 0, 6);

	// now that the gaps are removed, add the delta
	eff_freq += delta;

	// handle over/underflow by adjusting the block:
	if (uint32_t(eff_freq) >= 768)
	{
		// minimum delta is -512 (PM), so we can only underflow by 1 octave
		if (eff_freq < 0)
		{
			eff_freq += 768;
			if (block-- == 0)
				return s_phase_step[0] >> 7;
		}

		// maximum delta is +512+608 (PM+detune), so we can overflow by up to 2 octaves
		else
		{
			eff_freq -= 768;
			if (eff_freq >= 768)
				block++, eff_freq -= 768;
			if (block++ >= 7)
				return s_phase_step[767];
		}
	}

	// look up the phase shift for the key code, then shift by octave
	return s_phase_step[eff_freq] >> (block ^ 7);
}


//-------------------------------------------------
//  opn_lfo_pm_phase_adjustment - given the 7 most
//  significant frequency number bits, plus a 3-bit
//  PM depth value and a signed 5-bit raw PM value,
//  return a signed PM adjustment to the frequency;
//  algorithm written to match Nuked behavior
//-------------------------------------------------

inline int32_t opn_lfo_pm_phase_adjustment(uint32_t fnum_bits, uint32_t pm_sensitivity, int32_t lfo_raw_pm)
{
	// this table encodes 2 shift values to apply to the top 7 bits
	// of fnum; it is effectively a cheap multiply by a constant
	// value containing 0-2 bits
	static uint8_t const s_lfo_pm_shifts[8][8] =
	{
		{ 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77, 0x77 },
		{ 0x77, 0x77, 0x77, 0x77, 0x72, 0x72, 0x72, 0x72 },
		{ 0x77, 0x77, 0x77, 0x72, 0x72, 0x72, 0x17, 0x17 },
		{ 0x77, 0x77, 0x72, 0x72, 0x17, 0x17, 0x12, 0x12 },
		{ 0x77, 0x77, 0x72, 0x17, 0x17, 0x17, 0x12, 0x07 },
		{ 0x77, 0x77, 0x17, 0x12, 0x07, 0x07, 0x02, 0x01 },
		{ 0x77, 0x77, 0x17, 0x12, 0x07, 0x07, 0x02, 0x01 },
		{ 0x77, 0x77, 0x17, 0x12, 0x07, 0x07, 0x02, 0x01 }
	};

	// look up the relevant shifts
	int32_t abs_pm = (lfo_raw_pm < 0) ? -lfo_raw_pm : lfo_raw_pm;
	uint32_t const shifts = s_lfo_pm_shifts[pm_sensitivity][bitfield(abs_pm, 0, 3)];

	// compute the adjustment
	int32_t adjust = (fnum_bits >> bitfield(shifts, 0, 4)) + (fnum_bits >> bitfield(shifts, 4, 4));
	if (pm_sensitivity > 5)
		adjust <<= pm_sensitivity - 5;
	adjust >>= 2;

	// every 16 cycles it inverts sign
	return (lfo_raw_pm < 0) ? -adjust : adjust;
}



//*********************************************************
//  FM OPERATOR
//*********************************************************

//-------------------------------------------------
//  fm_operator - constructor
//-------------------------------------------------

template<class RegisterType>
fm_operator<RegisterType>::fm_operator(fm_engine_base<RegisterType> &owner, uint32_t opoffs) :
	m_choffs(0),
	m_opoffs(opoffs),
	m_phase(0),
	m_env_attenuation(0x3ff),
	m_env_state(EG_RELEASE),
	m_ssg_inverted(false),
	m_key_state(0),
	m_keyon_live(0),
	m_regs(owner.regs()),
	m_owner(owner)
{
}


//-------------------------------------------------
//  reset - reset the channel state
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::reset()
{
	// reset our data
	m_phase = 0;
	m_env_attenuation = 0x3ff;
	m_env_state = EG_RELEASE;
	m_ssg_inverted = 0;
	m_key_state = 0;
	m_keyon_live = 0;
}


//-------------------------------------------------
//  save_restore - save or restore the data
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::save_restore(ymfm_saved_state &state)
{
	state.save_restore(m_phase);
	state.save_restore(m_env_attenuation);
	state.save_restore(m_env_state);
	state.save_restore(m_ssg_inverted);
	state.save_restore(m_key_state);
	state.save_restore(m_keyon_live);
}


//-------------------------------------------------
//  prepare - prepare for clocking
//-------------------------------------------------

template<class RegisterType>
bool fm_operator<RegisterType>::prepare()
{
	// cache the data
	m_regs.cache_operator_data(m_choffs, m_opoffs, m_cache);

	// clock the key state
	clock_keystate(uint32_t(m_keyon_live != 0));
	m_keyon_live &= ~(1 << KEYON_CSM);

	// we're active until we're quiet after the release
	return (m_env_state != (RegisterType::EG_HAS_REVERB ? EG_REVERB : EG_RELEASE) || m_env_attenuation < EG_QUIET);
}


//-------------------------------------------------
//  clock - master clocking function
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::clock(uint32_t env_counter, int32_t lfo_raw_pm)
{
	// clock the SSG-EG state (OPN/OPNA)
	if (m_regs.op_ssg_eg_enable(m_opoffs))
		clock_ssg_eg_state();
	else
		m_ssg_inverted = false;

	// clock the envelope if on an envelope cycle; env_counter is a x.2 value
	if (bitfield(env_counter, 0, 2) == 0)
		clock_envelope(env_counter >> 2);

	// clock the phase
	clock_phase(lfo_raw_pm);
}


//-------------------------------------------------
//  compute_volume - compute the 14-bit signed
//  volume of this operator, given a phase
//  modulation and an AM LFO offset
//-------------------------------------------------

template<class RegisterType>
int32_t fm_operator<RegisterType>::compute_volume(uint32_t phase, uint32_t am_offset) const
{
	// the low 10 bits of phase represents a full 2*PI period over
	// the full sin wave

	// early out if the envelope is effectively off
	if (m_env_attenuation > EG_QUIET)
		return 0;

	// get the absolute value of the sin, as attenuation, as a 4.8 fixed point value
	uint32_t sin_attenuation = m_cache.waveform[phase & (RegisterType::WAVEFORM_LENGTH - 1)];

	// get the attenuation from the evelope generator as a 4.6 value, shifted up to 4.8
	uint32_t env_attenuation = envelope_attenuation(am_offset) << 2;

	// combine into a 5.8 value, then convert from attenuation to 13-bit linear volume
	int32_t result = attenuation_to_volume((sin_attenuation & 0x7fff) + env_attenuation);

	// negate if in the negative part of the sin wave (sign bit gives 14 bits)
	return bitfield(sin_attenuation, 15) ? -result : result;
}


//-------------------------------------------------
//  compute_noise_volume - compute the 14-bit
//  signed noise volume of this operator, given a
//  noise input value and an AM offset
//-------------------------------------------------

template<class RegisterType>
int32_t fm_operator<RegisterType>::compute_noise_volume(uint32_t am_offset) const
{
	// application manual says the logarithmic transform is not applied here, so we
	// just use the raw envelope attenuation, inverted (since 0 attenuation should be
	// maximum), and shift it up from a 10-bit value to an 11-bit value
	int32_t result = (envelope_attenuation(am_offset) ^ 0x3ff) << 1;

	// QUESTION: is AM applied still?

	// negate based on the noise state
	return bitfield(m_regs.noise_state(), 0) ? -result : result;
}


//-------------------------------------------------
//  keyonoff - signal a key on/off event
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::keyonoff(uint32_t on, keyon_type type)
{
	m_keyon_live = (m_keyon_live & ~(1 << int(type))) | (bitfield(on, 0) << int(type));
}


//-------------------------------------------------
//  start_attack - start the attack phase; called
//  when a keyon happens or when an SSG-EG cycle
//  is complete and restarts
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::start_attack(bool is_restart)
{
	// don't change anything if already in attack state
	if (m_env_state == EG_ATTACK)
		return;
	m_env_state = EG_ATTACK;

	// generally not inverted at start, except if SSG-EG is enabled and
	// one of the inverted modes is specified; leave this alone on a
	// restart, as it is managed by the clock_ssg_eg_state() code
	if (RegisterType::EG_HAS_SSG && !is_restart)
		m_ssg_inverted = m_regs.op_ssg_eg_enable(m_opoffs) & bitfield(m_regs.op_ssg_eg_mode(m_opoffs), 2);

	// reset the phase when we start an attack due to a key on
	// (but not when due to an SSG-EG restart except in certain cases
	// managed directly by the SSG-EG code)
	if (!is_restart)
		m_phase = 0;

	// if the attack rate >= 62 then immediately go to max attenuation
	if (m_cache.eg_rate[EG_ATTACK] >= 62)
		m_env_attenuation = 0;
}


//-------------------------------------------------
//  start_release - start the release phase;
//  called when a keyoff happens
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::start_release()
{
	// don't change anything if already in release state
	if (m_env_state >= EG_RELEASE)
		return;
	m_env_state = EG_RELEASE;

	// if attenuation if inverted due to SSG-EG, snap the inverted attenuation
	// as the starting point
	if (RegisterType::EG_HAS_SSG && m_ssg_inverted)
	{
		m_env_attenuation = (0x200 - m_env_attenuation) & 0x3ff;
		m_ssg_inverted = false;
	}
}


//-------------------------------------------------
//  clock_keystate - clock the keystate to match
//  the incoming keystate
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::clock_keystate(uint32_t keystate)
{
	assert(keystate == 0 || keystate == 1);

	// has the key changed?
	if ((keystate ^ m_key_state) != 0)
	{
		m_key_state = keystate;

		// if the key has turned on, start the attack
		if (keystate != 0)
		{
			// OPLL has a DP ("depress"?) state to bring the volume
			// down before starting the attack
			if (RegisterType::EG_HAS_DEPRESS && m_env_attenuation < 0x200)
				m_env_state = EG_DEPRESS;
			else
				start_attack();
		}

		// otherwise, start the release
		else
			start_release();
	}
}


//-------------------------------------------------
//  clock_ssg_eg_state - clock the SSG-EG state;
//  should only be called if SSG-EG is enabled
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::clock_ssg_eg_state()
{
	// work only happens once the attenuation crosses above 0x200
	if (!bitfield(m_env_attenuation, 9))
		return;

	// 8 SSG-EG modes:
	//    000: repeat normally
	//    001: run once, hold low
	//    010: repeat, alternating between inverted/non-inverted
	//    011: run once, hold high
	//    100: inverted repeat normally
	//    101: inverted run once, hold low
	//    110: inverted repeat, alternating between inverted/non-inverted
	//    111: inverted run once, hold high
	uint32_t mode = m_regs.op_ssg_eg_mode(m_opoffs);

	// hold modes (1/3/5/7)
	if (bitfield(mode, 0))
	{
		// set the inverted flag to the end state (0 for modes 1/7, 1 for modes 3/5)
		m_ssg_inverted = bitfield(mode, 2) ^ bitfield(mode, 1);

		// if holding, force the attenuation to the expected value once we're
		// past the attack phase
		if (m_env_state != EG_ATTACK)
			m_env_attenuation = m_ssg_inverted ? 0x200 : 0x3ff;
	}

	// continuous modes (0/2/4/6)
	else
	{
		// toggle invert in alternating mode (even in attack state)
		m_ssg_inverted ^= bitfield(mode, 1);

		// restart attack if in decay/sustain states
		if (m_env_state == EG_DECAY || m_env_state == EG_SUSTAIN)
			start_attack(true);

		// phase is reset to 0 in modes 0/4
		if (bitfield(mode, 1) == 0)
			m_phase = 0;
	}

	// in all modes, once we hit release state, attenuation is forced to maximum
	if (m_env_state == EG_RELEASE)
		m_env_attenuation = 0x3ff;
}


//-------------------------------------------------
//  clock_envelope - clock the envelope state
//  according to the given count
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::clock_envelope(uint32_t env_counter)
{
	// handle attack->decay transitions
	if (m_env_state == EG_ATTACK && m_env_attenuation == 0)
		m_env_state = EG_DECAY;

	// handle decay->sustain transitions; it is important to do this immediately
	// after the attack->decay transition above in the event that the sustain level
	// is set to 0 (in which case we will skip right to sustain without doing any
	// decay); as an example where this can be heard, check the cymbals sound
	// in channel 0 of shinobi's test mode sound #5
	if (m_env_state == EG_DECAY && m_env_attenuation >= m_cache.eg_sustain)
		m_env_state = EG_SUSTAIN;

	// fetch the appropriate 6-bit rate value from the cache
	uint32_t rate = m_cache.eg_rate[m_env_state];

	// compute the rate shift value; this is the shift needed to
	// apply to the env_counter such that it becomes a 5.11 fixed
	// point number
	uint32_t rate_shift = rate >> 2;
	env_counter <<= rate_shift;

	// see if the fractional part is 0; if not, it's not time to clock
	if (bitfield(env_counter, 0, 11) != 0)
		return;

	// determine the increment based on the non-fractional part of env_counter
	uint32_t relevant_bits = bitfield(env_counter, (rate_shift <= 11) ? 11 : rate_shift, 3);
	uint32_t increment = attenuation_increment(rate, relevant_bits);

	// attack is the only one that increases
	if (m_env_state == EG_ATTACK)
	{
		// glitch means that attack rates of 62/63 don't increment if
		// changed after the initial key on (where they are handled
		// specially); nukeykt confirms this happens on OPM, OPN, OPL/OPLL
		// at least so assuming it is true for everyone
		if (rate < 62)
			m_env_attenuation += (~m_env_attenuation * increment) >> 4;
	}

	// all other cases are similar
	else
	{
		// non-SSG-EG cases just apply the increment
		if (!m_regs.op_ssg_eg_enable(m_opoffs))
			m_env_attenuation += increment;

		// SSG-EG only applies if less than mid-point, and then at 4x
		else if (m_env_attenuation < 0x200)
			m_env_attenuation += 4 * increment;

		// clamp the final attenuation
		if (m_env_attenuation >= 0x400)
			m_env_attenuation = 0x3ff;

		// transition from depress to attack
		if (RegisterType::EG_HAS_DEPRESS && m_env_state == EG_DEPRESS && m_env_attenuation >= 0x200)
			start_attack();

		// transition from release to reverb, should switch at -18dB
		if (RegisterType::EG_HAS_REVERB && m_env_state == EG_RELEASE && m_env_attenuation >= 0xc0)
			m_env_state = EG_REVERB;
	}
}


//-------------------------------------------------
//  clock_phase - clock the 10.10 phase value; the
//  OPN version of the logic has been verified
//  against the Nuked phase generator
//-------------------------------------------------

template<class RegisterType>
void fm_operator<RegisterType>::clock_phase(int32_t lfo_raw_pm)
{
	// read from the cache, or recalculate if PM active
	uint32_t phase_step = m_cache.phase_step;
	if (phase_step == opdata_cache::PHASE_STEP_DYNAMIC)
		phase_step = m_regs.compute_phase_step(m_choffs, m_opoffs, m_cache, lfo_raw_pm);

	// finally apply the step to the current phase value
	m_phase += phase_step;
}


//-------------------------------------------------
//  envelope_attenuation - return the effective
//  attenuation of the envelope
//-------------------------------------------------

template<class RegisterType>
uint32_t fm_operator<RegisterType>::envelope_attenuation(uint32_t am_offset) const
{
	uint32_t result = m_env_attenuation >> m_cache.eg_shift;

	// invert if necessary due to SSG-EG
	if (RegisterType::EG_HAS_SSG && m_ssg_inverted)
		result = (0x200 - result) & 0x3ff;

	// add in LFO AM modulation
	if (m_regs.op_lfo_am_enable(m_opoffs))
		result += am_offset;

	// add in total level and KSL from the cache
	result += m_cache.total_level;

	// clamp to max, apply shift, and return
	return std::min<uint32_t>(result, 0x3ff);
}



//*********************************************************
//  FM CHANNEL
//*********************************************************

//-------------------------------------------------
//  fm_channel - constructor
//-------------------------------------------------

template<class RegisterType>
fm_channel<RegisterType>::fm_channel(fm_engine_base<RegisterType> &owner, uint32_t choffs) :
	m_choffs(choffs),
	m_feedback{ 0, 0 },
	m_feedback_in(0),
	m_op{ nullptr, nullptr, nullptr, nullptr },
	m_regs(owner.regs()),
	m_owner(owner)
{
}


//-------------------------------------------------
//  reset - reset the channel state
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::reset()
{
	// reset our data
	m_feedback[0] = m_feedback[1] = 0;
	m_feedback_in = 0;
}


//-------------------------------------------------
//  save_restore - save or restore the data
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::save_restore(ymfm_saved_state &state)
{
	state.save_restore(m_feedback[0]);
	state.save_restore(m_feedback[1]);
	state.save_restore(m_feedback_in);
}


//-------------------------------------------------
//  keyonoff - signal key on/off to our operators
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::keyonoff(uint32_t states, keyon_type type, uint32_t chnum)
{
	for (uint32_t opnum = 0; opnum < array_size(m_op); opnum++)
		if (m_op[opnum] != nullptr)
			m_op[opnum]->keyonoff(bitfield(states, opnum), type);

	if (debug::LOG_KEYON_EVENTS && ((debug::GLOBAL_FM_CHANNEL_MASK >> chnum) & 1) != 0)
		for (uint32_t opnum = 0; opnum < array_size(m_op); opnum++)
			if (m_op[opnum] != nullptr)
				debug::log_keyon("%c%s\n", bitfield(states, opnum) ? '+' : '-', m_regs.log_keyon(m_choffs, m_op[opnum]->opoffs()).c_str());
}


//-------------------------------------------------
//  prepare - prepare for clocking
//-------------------------------------------------

template<class RegisterType>
bool fm_channel<RegisterType>::prepare()
{
	uint32_t active_mask = 0;

	// prepare all operators and determine if they are active
	for (uint32_t opnum = 0; opnum < array_size(m_op); opnum++)
		if (m_op[opnum] != nullptr)
			if (m_op[opnum]->prepare())
				active_mask |= 1 << opnum;

	return (active_mask != 0);
}


//-------------------------------------------------
//  clock - master clock of all operators
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::clock(uint32_t env_counter, int32_t lfo_raw_pm)
{
	// clock the feedback through
	m_feedback[0] = m_feedback[1];
	m_feedback[1] = m_feedback_in;

	for (uint32_t opnum = 0; opnum < array_size(m_op); opnum++)
		if (m_op[opnum] != nullptr)
			m_op[opnum]->clock(env_counter, lfo_raw_pm);

/*
useful temporary code for envelope debugging
if (m_choffs == 0x101)
{
	for (uint32_t opnum = 0; opnum < array_size(m_op); opnum++)
	{
		auto &op = *m_op[((opnum & 1) << 1) | ((opnum >> 1) & 1)];
		printf(" %c%03X%c%c ",
			"PADSRV"[op.debug_eg_state()],
			op.debug_eg_attenuation(),
			op.debug_ssg_inverted() ? '-' : '+',
			m_regs.op_ssg_eg_enable(op.opoffs()) ? '0' + m_regs.op_ssg_eg_mode(op.opoffs()) : ' ');
	}
printf(" -- ");
}
*/
}


//-------------------------------------------------
//  output_2op - combine 4 operators according to
//  the specified algorithm, returning a sum
//  according to the rshift and clipmax parameters,
//  which vary between different implementations
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::output_2op(output_data &output, uint32_t rshift, int32_t clipmax) const
{
	// The first 2 operators should be populated
	assert(m_op[0] != nullptr);
	assert(m_op[1] != nullptr);

	// AM amount is the same across all operators; compute it once
	uint32_t am_offset = m_regs.lfo_am_offset(m_choffs);

	// operator 1 has optional self-feedback
	int32_t opmod = 0;
	uint32_t feedback = m_regs.ch_feedback(m_choffs);
	if (feedback != 0)
		opmod = (m_feedback[0] + m_feedback[1]) >> (10 - feedback);

	// compute the 14-bit volume/value of operator 1 and update the feedback
	int32_t op1value = m_feedback_in = m_op[0]->compute_volume(m_op[0]->phase() + opmod, am_offset);

	// now that the feedback has been computed, skip the rest if all volumes
	// are clear; no need to do all this work for nothing
	if (m_regs.ch_output_any(m_choffs) == 0)
		return;

	// Algorithms for two-operator case:
	//    0: O1 -> O2 -> out
	//    1: (O1 + O2) -> out
	int32_t result;
	if (bitfield(m_regs.ch_algorithm(m_choffs), 0) == 0)
	{
		// some OPL chips use the previous sample for modulation instead of
		// the current sample
		opmod = (RegisterType::MODULATOR_DELAY ? m_feedback[1] : op1value) >> 1;
		result = m_op[1]->compute_volume(m_op[1]->phase() + opmod, am_offset) >> rshift;
	}
	else
	{
		result = (RegisterType::MODULATOR_DELAY ? m_feedback[1] : op1value) >> rshift;
		result += m_op[1]->compute_volume(m_op[1]->phase(), am_offset) >> rshift;
		int32_t clipmin = -clipmax - 1;
		result = clamp(result, clipmin, clipmax);
	}

	// add to the output
	add_to_output(m_choffs, output, result);
}


//-------------------------------------------------
//  output_4op - combine 4 operators according to
//  the specified algorithm, returning a sum
//  according to the rshift and clipmax parameters,
//  which vary between different implementations
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::output_4op(output_data &output, uint32_t rshift, int32_t clipmax) const
{
	// all 4 operators should be populated
	assert(m_op[0] != nullptr);
	assert(m_op[1] != nullptr);
	assert(m_op[2] != nullptr);
	assert(m_op[3] != nullptr);

	// AM amount is the same across all operators; compute it once
	uint32_t am_offset = m_regs.lfo_am_offset(m_choffs);

	// operator 1 has optional self-feedback
	int32_t opmod = 0;
	uint32_t feedback = m_regs.ch_feedback(m_choffs);
	if (feedback != 0)
		opmod = (m_feedback[0] + m_feedback[1]) >> (10 - feedback);

	// compute the 14-bit volume/value of operator 1 and update the feedback
	int32_t op1value = m_feedback_in = m_op[0]->compute_volume(m_op[0]->phase() + opmod, am_offset);

	// now that the feedback has been computed, skip the rest if all volumes
	// are clear; no need to do all this work for nothing
	if (m_regs.ch_output_any(m_choffs) == 0)
		return;

	// OPM/OPN offer 8 different connection algorithms for 4 operators,
	// and OPL3 offers 4 more, which we designate here as 8-11.
	//
	// The operators are computed in order, with the inputs pulled from
	// an array of values (opout) that is populated as we go:
	//    0 = 0
	//    1 = O1
	//    2 = O2
	//    3 = O3
	//    4 = (O4)
	//    5 = O1+O2
	//    6 = O1+O3
	//    7 = O2+O3
	//
	// The s_algorithm_ops table describes the inputs and outputs of each
	// algorithm as follows:
	//
	//      ---------x use opout[x] as operator 2 input
	//      ------xxx- use opout[x] as operator 3 input
	//      ---xxx---- use opout[x] as operator 4 input
	//      --x------- include opout[1] in final sum
	//      -x-------- include opout[2] in final sum
	//      x--------- include opout[3] in final sum
	#define ALGORITHM(op2in, op3in, op4in, op1out, op2out, op3out) \
		((op2in) | ((op3in) << 1) | ((op4in) << 4) | ((op1out) << 7) | ((op2out) << 8) | ((op3out) << 9))
	static uint16_t const s_algorithm_ops[8+4] =
	{
		ALGORITHM(1,2,3, 0,0,0),    //  0: O1 -> O2 -> O3 -> O4 -> out (O4)
		ALGORITHM(0,5,3, 0,0,0),    //  1: (O1 + O2) -> O3 -> O4 -> out (O4)
		ALGORITHM(0,2,6, 0,0,0),    //  2: (O1 + (O2 -> O3)) -> O4 -> out (O4)
		ALGORITHM(1,0,7, 0,0,0),    //  3: ((O1 -> O2) + O3) -> O4 -> out (O4)
		ALGORITHM(1,0,3, 0,1,0),    //  4: ((O1 -> O2) + (O3 -> O4)) -> out (O2+O4)
		ALGORITHM(1,1,1, 0,1,1),    //  5: ((O1 -> O2) + (O1 -> O3) + (O1 -> O4)) -> out (O2+O3+O4)
		ALGORITHM(1,0,0, 0,1,1),    //  6: ((O1 -> O2) + O3 + O4) -> out (O2+O3+O4)
		ALGORITHM(0,0,0, 1,1,1),    //  7: (O1 + O2 + O3 + O4) -> out (O1+O2+O3+O4)
		ALGORITHM(1,2,3, 0,0,0),    //  8: O1 -> O2 -> O3 -> O4 -> out (O4)         [same as 0]
		ALGORITHM(0,2,3, 1,0,0),    //  9: (O1 + (O2 -> O3 -> O4)) -> out (O1+O4)   [unique]
		ALGORITHM(1,0,3, 0,1,0),    // 10: ((O1 -> O2) + (O3 -> O4)) -> out (O2+O4) [same as 4]
		ALGORITHM(0,2,0, 1,0,1)     // 11: (O1 + (O2 -> O3) + O4) -> out (O1+O3+O4) [unique]
	};
	uint32_t algorithm_ops = s_algorithm_ops[m_regs.ch_algorithm(m_choffs)];

	// populate the opout table
	int16_t opout[8];
	opout[0] = 0;
	opout[1] = op1value;

	// compute the 14-bit volume/value of operator 2
	opmod = opout[bitfield(algorithm_ops, 0, 1)] >> 1;
	opout[2] = m_op[1]->compute_volume(m_op[1]->phase() + opmod, am_offset);
	opout[5] = opout[1] + opout[2];

	// compute the 14-bit volume/value of operator 3
	opmod = opout[bitfield(algorithm_ops, 1, 3)] >> 1;
	opout[3] = m_op[2]->compute_volume(m_op[2]->phase() + opmod, am_offset);
	opout[6] = opout[1] + opout[3];
	opout[7] = opout[2] + opout[3];

	// compute the 14-bit volume/value of operator 4; this could be a noise
	// value on the OPM; all algorithms consume OP4 output at a minimum
	int32_t result;
	if (m_regs.noise_enable() && m_choffs == 7)
		result = m_op[3]->compute_noise_volume(am_offset);
	else
	{
		opmod = opout[bitfield(algorithm_ops, 4, 3)] >> 1;
		result = m_op[3]->compute_volume(m_op[3]->phase() + opmod, am_offset);
	}
	result >>= rshift;

	// optionally add OP1, OP2, OP3
	int32_t clipmin = -clipmax - 1;
	if (bitfield(algorithm_ops, 7) != 0)
		result = clamp(result + (opout[1] >> rshift), clipmin, clipmax);
	if (bitfield(algorithm_ops, 8) != 0)
		result = clamp(result + (opout[2] >> rshift), clipmin, clipmax);
	if (bitfield(algorithm_ops, 9) != 0)
		result = clamp(result + (opout[3] >> rshift), clipmin, clipmax);

	// add to the output
	add_to_output(m_choffs, output, result);
}


//-------------------------------------------------
//  output_rhythm_ch6 - special case output
//  computation for OPL channel 6 in rhythm mode,
//  which outputs a Bass Drum instrument
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::output_rhythm_ch6(output_data &output, uint32_t rshift, int32_t clipmax) const
{
	// AM amount is the same across all operators; compute it once
	uint32_t am_offset = m_regs.lfo_am_offset(m_choffs);

	// Bass Drum: this uses operators 12 and 15 (i.e., channel 6)
	// in an almost-normal way, except that if the algorithm is 1,
	// the first operator is ignored instead of added in

	// operator 1 has optional self-feedback
	int32_t opmod = 0;
	uint32_t feedback = m_regs.ch_feedback(m_choffs);
	if (feedback != 0)
		opmod = (m_feedback[0] + m_feedback[1]) >> (10 - feedback);

	// compute the 14-bit volume/value of operator 1 and update the feedback
	int32_t opout1 = m_feedback_in = m_op[0]->compute_volume(m_op[0]->phase() + opmod, am_offset);

	// compute the 14-bit volume/value of operator 2, which is the result
	opmod = bitfield(m_regs.ch_algorithm(m_choffs), 0) ? 0 : (opout1 >> 1);
	int32_t result = m_op[1]->compute_volume(m_op[1]->phase() + opmod, am_offset) >> rshift;

	// add to the output
	add_to_output(m_choffs, output, result * 2);
}


//-------------------------------------------------
//  output_rhythm_ch7 - special case output
//  computation for OPL channel 7 in rhythm mode,
//  which outputs High Hat and Snare Drum
//  instruments
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::output_rhythm_ch7(uint32_t phase_select, output_data &output, uint32_t rshift, int32_t clipmax) const
{
	// AM amount is the same across all operators; compute it once
	uint32_t am_offset = m_regs.lfo_am_offset(m_choffs);
	uint32_t noise_state = bitfield(m_regs.noise_state(), 0);

	// High Hat: this uses the envelope from operator 13 (channel 7),
	// and a combination of noise and the operator 13/17 phase select
	// to compute the phase
	uint32_t phase = (phase_select << 9) | (0xd0 >> (2 * (noise_state ^ phase_select)));
	int32_t result = m_op[0]->compute_volume(phase, am_offset) >> rshift;

	// Snare Drum: this uses the envelope from operator 16 (channel 7),
	// and a combination of noise and operator 13 phase to pick a phase
	uint32_t op13phase = m_op[0]->phase();
	phase = (0x100 << bitfield(op13phase, 8)) ^ (noise_state << 8);
	result += m_op[1]->compute_volume(phase, am_offset) >> rshift;
	result = clamp(result, -clipmax - 1, clipmax);

	// add to the output
	add_to_output(m_choffs, output, result * 2);
}


//-------------------------------------------------
//  output_rhythm_ch8 - special case output
//  computation for OPL channel 8 in rhythm mode,
//  which outputs Tom Tom and Top Cymbal instruments
//-------------------------------------------------

template<class RegisterType>
void fm_channel<RegisterType>::output_rhythm_ch8(uint32_t phase_select, output_data &output, uint32_t rshift, int32_t clipmax) const
{
	// AM amount is the same across all operators; compute it once
	uint32_t am_offset = m_regs.lfo_am_offset(m_choffs);

	// Tom Tom: this is just a single operator processed normally
	int32_t result = m_op[0]->compute_volume(m_op[0]->phase(), am_offset) >> rshift;

	// Top Cymbal: this uses the envelope from operator 17 (channel 8),
	// and the operator 13/17 phase select to compute the phase
	uint32_t phase = 0x100 | (phase_select << 9);
	result += m_op[1]->compute_volume(phase, am_offset) >> rshift;
	result = clamp(result, -clipmax - 1, clipmax);

	// add to the output
	add_to_output(m_choffs, output, result * 2);
}



//*********************************************************
//  FM ENGINE BASE
//*********************************************************

//-------------------------------------------------
//  fm_engine_base - constructor
//-------------------------------------------------

template<class RegisterType>
fm_engine_base<RegisterType>::fm_engine_base(ymfm_interface &intf) :
	m_intf(intf),
	m_env_counter(0),
	m_status(0),
	m_clock_prescale(RegisterType::DEFAULT_PRESCALE),
	m_irq_mask(STATUS_TIMERA | STATUS_TIMERB),
	m_irq_state(0),
	m_timer_running{0,0},
	m_total_clocks(0),
	m_active_channels(ALL_CHANNELS),
	m_modified_channels(ALL_CHANNELS),
	m_prepare_count(0)
{
	// inform the interface of their engine
	m_intf.m_engine = this;

	// create the channels
	for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
		m_channel[chnum] = std::make_unique<fm_channel<RegisterType>>(*this, RegisterType::channel_offset(chnum));

	// create the operators
	for (uint32_t opnum = 0; opnum < OPERATORS; opnum++)
		m_operator[opnum] = std::make_unique<fm_operator<RegisterType>>(*this, RegisterType::operator_offset(opnum));

#if (YMFM_DEBUG_LOG_WAVFILES)
	for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
		m_wavfile[chnum].set_index(chnum);
#endif

	// do the initial operator assignment
	assign_operators();
}


//-------------------------------------------------
//  reset - reset the overall state
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::reset()
{
	// reset all status bits
	set_reset_status(0, 0xff);

	// register type-specific initialization
	m_regs.reset();

	// explicitly write to the mode register since it has side-effects
	// QUESTION: old cores initialize this to 0x30 -- who is right?
	write(RegisterType::REG_MODE, 0);

	// reset the channels
	for (auto &chan : m_channel)
		chan->reset();

	// reset the operators
	for (auto &op : m_operator)
		op->reset();
}


//-------------------------------------------------
//  save_restore - save or restore the data
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::save_restore(ymfm_saved_state &state)
{
	// save our data
	state.save_restore(m_env_counter);
	state.save_restore(m_status);
	state.save_restore(m_clock_prescale);
	state.save_restore(m_irq_mask);
	state.save_restore(m_irq_state);
	state.save_restore(m_timer_running[0]);
	state.save_restore(m_timer_running[1]);
	state.save_restore(m_total_clocks);

	// save the register/family data
	m_regs.save_restore(state);

	// save channel data
	for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
		m_channel[chnum]->save_restore(state);

	// save operator data
	for (uint32_t opnum = 0; opnum < OPERATORS; opnum++)
		m_operator[opnum]->save_restore(state);

	// invalidate any caches
	invalidate_caches();
}


//-------------------------------------------------
//  clock - iterate over all channels, clocking
//  them forward one step
//-------------------------------------------------

template<class RegisterType>
uint32_t fm_engine_base<RegisterType>::clock(uint32_t chanmask)
{
	// update the clock counter
	m_total_clocks++;

	// if something was modified, prepare
	// also prepare every 4k samples to catch ending notes
	if (m_modified_channels != 0 || m_prepare_count++ >= 4096)
	{
		// reassign operators to channels if dynamic
		if (RegisterType::DYNAMIC_OPS)
			assign_operators();

		// call each channel to prepare
		m_active_channels = 0;
		for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
			if (bitfield(chanmask, chnum))
				if (m_channel[chnum]->prepare())
					m_active_channels |= 1 << chnum;

		// reset the modified channels and prepare count
		m_modified_channels = m_prepare_count = 0;
	}

	// if the envelope clock divider is 1, just increment by 4;
	// otherwise, increment by 1 and manually wrap when we reach the divide count
	if (RegisterType::EG_CLOCK_DIVIDER == 1)
		m_env_counter += 4;
	else if (bitfield(++m_env_counter, 0, 2) == RegisterType::EG_CLOCK_DIVIDER)
		m_env_counter += 4 - RegisterType::EG_CLOCK_DIVIDER;

	// clock the noise generator
	int32_t lfo_raw_pm = m_regs.clock_noise_and_lfo();

	// now update the state of all the channels and operators
	for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
		if (bitfield(chanmask, chnum))
			m_channel[chnum]->clock(m_env_counter, lfo_raw_pm);

	// return the envelope counter as it is used to clock ADPCM-A
	return m_env_counter;
}


//-------------------------------------------------
//  output - compute a sum over the relevant
//  channels
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::output(output_data &output, uint32_t rshift, int32_t clipmax, uint32_t chanmask) const
{
	// mask out some channels for debug purposes
	chanmask &= debug::GLOBAL_FM_CHANNEL_MASK;

	// mask out inactive channels
	if (!YMFM_DEBUG_LOG_WAVFILES)
		chanmask &= m_active_channels;

	// handle the rhythm case, where some of the operators are dedicated
	// to percussion (this is an OPL-specific feature)
	if (m_regs.rhythm_enable())
	{
		// we don't support the OPM noise channel here; ensure it is off
		assert(m_regs.noise_enable() == 0);

		// precompute the operator 13+17 phase selection value
		uint32_t op13phase = m_operator[13]->phase();
		uint32_t op17phase = m_operator[17]->phase();
		uint32_t phase_select = (bitfield(op13phase, 2) ^ bitfield(op13phase, 7)) | bitfield(op13phase, 3) | (bitfield(op17phase, 5) ^ bitfield(op17phase, 3));

		// sum over all the desired channels
		for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
			if (bitfield(chanmask, chnum))
			{
#if (YMFM_DEBUG_LOG_WAVFILES)
				auto reference = output;
#endif
				if (chnum == 6)
					m_channel[chnum]->output_rhythm_ch6(output, rshift, clipmax);
				else if (chnum == 7)
					m_channel[chnum]->output_rhythm_ch7(phase_select, output, rshift, clipmax);
				else if (chnum == 8)
					m_channel[chnum]->output_rhythm_ch8(phase_select, output, rshift, clipmax);
				else if (m_channel[chnum]->is4op())
					m_channel[chnum]->output_4op(output, rshift, clipmax);
				else
					m_channel[chnum]->output_2op(output, rshift, clipmax);
#if (YMFM_DEBUG_LOG_WAVFILES)
				m_wavfile[chnum].add(output, reference);
#endif
			}
	}
	else
	{
		// sum over all the desired channels
		for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
			if (bitfield(chanmask, chnum))
			{
#if (YMFM_DEBUG_LOG_WAVFILES)
				auto reference = output;
#endif
				if (m_channel[chnum]->is4op())
					m_channel[chnum]->output_4op(output, rshift, clipmax);
				else
					m_channel[chnum]->output_2op(output, rshift, clipmax);
#if (YMFM_DEBUG_LOG_WAVFILES)
				m_wavfile[chnum].add(output, reference);
#endif
			}
	}
}


//-------------------------------------------------
//  write - handle writes to the OPN registers
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::write(uint16_t regnum, uint8_t data)
{
	debug::log_fm_write("%03X = %02X\n", regnum, data);

	// special case: writes to the mode register can impact IRQs;
	// schedule these writes to ensure ordering with timers
	if (regnum == RegisterType::REG_MODE)
	{
		m_intf.ymfm_sync_mode_write(data);
		return;
	}

	// for now just mark all channels as modified
	m_modified_channels = ALL_CHANNELS;

	// most writes are passive, consumed only when needed
	uint32_t keyon_channel;
	uint32_t keyon_opmask;
	if (m_regs.write(regnum, data, keyon_channel, keyon_opmask))
	{
		// handle writes to the keyon register(s)
		if (keyon_channel < CHANNELS)
		{
			// normal channel on/off
			m_channel[keyon_channel]->keyonoff(keyon_opmask, KEYON_NORMAL, keyon_channel);
		}
		else if (CHANNELS >= 9 && keyon_channel == RegisterType::RHYTHM_CHANNEL)
		{
			// special case for the OPL rhythm channels
			m_channel[6]->keyonoff(bitfield(keyon_opmask, 4) ? 3 : 0, KEYON_RHYTHM, 6);
			m_channel[7]->keyonoff(bitfield(keyon_opmask, 0) | (bitfield(keyon_opmask, 3) << 1), KEYON_RHYTHM, 7);
			m_channel[8]->keyonoff(bitfield(keyon_opmask, 2) | (bitfield(keyon_opmask, 1) << 1), KEYON_RHYTHM, 8);
		}
	}
}


//-------------------------------------------------
//  status - return the current state of the
//  status flags
//-------------------------------------------------

template<class RegisterType>
uint8_t fm_engine_base<RegisterType>::status() const
{
	return m_status & ~STATUS_BUSY & ~m_regs.status_mask();
}


//-------------------------------------------------
//  assign_operators - get the current mapping of
//  operators to channels and assign them all
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::assign_operators()
{
	typename RegisterType::operator_mapping map;
	m_regs.operator_map(map);

	for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
		for (uint32_t index = 0; index < 4; index++)
		{
			uint32_t opnum = bitfield(map.chan[chnum], 8 * index, 8);
			m_channel[chnum]->assign(index, (opnum == 0xff) ? nullptr : m_operator[opnum].get());
		}
}


//-------------------------------------------------
//  update_timer - update the state of the given
//  timer
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::update_timer(uint32_t tnum, uint32_t enable, int32_t delta_clocks)
{
	// if the timer is live, but not currently enabled, set the timer
	if (enable && !m_timer_running[tnum])
	{
		// period comes from the registers, and is different for each
		uint32_t period = (tnum == 0) ? (1024 - m_regs.timer_a_value()) : 16 * (256 - m_regs.timer_b_value());

		// caller can also specify a delta to account for other effects
		period += delta_clocks;

		// reset it
		m_intf.ymfm_set_timer(tnum, period * OPERATORS * m_clock_prescale);
		m_timer_running[tnum] = 1;
	}

	// if the timer is not live, ensure it is not enabled
	else if (!enable)
	{
		m_intf.ymfm_set_timer(tnum, -1);
		m_timer_running[tnum] = 0;
	}
}


//-------------------------------------------------
//  engine_timer_expired - timer has expired - signal
//  status and possibly IRQs
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::engine_timer_expired(uint32_t tnum)
{
	// update status
	if (tnum == 0 && m_regs.enable_timer_a())
		set_reset_status(STATUS_TIMERA, 0);
	else if (tnum == 1 && m_regs.enable_timer_b())
		set_reset_status(STATUS_TIMERB, 0);

	// if timer A fired in CSM mode, trigger CSM on all relevant channels
	if (tnum == 0 && m_regs.csm())
		for (uint32_t chnum = 0; chnum < CHANNELS; chnum++)
			if (bitfield(RegisterType::CSM_TRIGGER_MASK, chnum))
			{
				m_channel[chnum]->keyonoff(1, KEYON_CSM, chnum);
				m_modified_channels |= 1 << chnum;
			}

	// reset
	m_timer_running[tnum] = false;
	update_timer(tnum, 1, 0);
}


//-------------------------------------------------
//  check_interrupts - check the interrupt sources
//  for interrupts
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::engine_check_interrupts()
{
	// update the state
	uint8_t old_state = m_irq_state;
	m_irq_state = ((m_status & m_irq_mask & ~m_regs.status_mask()) != 0);

	// set the IRQ status bit
	if (m_irq_state)
		m_status |= STATUS_IRQ;
	else
		m_status &= ~STATUS_IRQ;

	// if changed, signal the new state
	if (old_state != m_irq_state)
		m_intf.ymfm_update_irq(m_irq_state ? true : false);
}


//-------------------------------------------------
//  engine_mode_write - handle a mode register write
//  via timer callback
//-------------------------------------------------

template<class RegisterType>
void fm_engine_base<RegisterType>::engine_mode_write(uint8_t data)
{
	// mark all channels as modified
	m_modified_channels = ALL_CHANNELS;

	// actually write the mode register now
	uint32_t dummy1, dummy2;
	m_regs.write(RegisterType::REG_MODE, data, dummy1, dummy2);

	// reset IRQ status -- when written, all other bits are ignored
	// QUESTION: should this maybe just reset the IRQ bit and not all the bits?
	//   That is, check_interrupts would only set, this would only clear?
	if (m_regs.irq_reset())
		set_reset_status(0, 0x78);
	else
	{
		// reset timer status
		uint8_t reset_mask = 0;
		if (m_regs.reset_timer_b())
			reset_mask |= RegisterType::STATUS_TIMERB;
		if (m_regs.reset_timer_a())
			reset_mask |= RegisterType::STATUS_TIMERA;
		set_reset_status(0, reset_mask);

		// load timers; note that timer B gets a small negative adjustment because
		// the *16 multiplier is free-running, so the first tick of the clock
		// is a bit shorter
		update_timer(1, m_regs.load_timer_b(), -(m_total_clocks & 15));
		update_timer(0, m_regs.load_timer_a(), 0);
	}
}

}