1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/*============================================================================
This source file is an extension to the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2b, written for Bochs (x86 achitecture simulator)
floating point emulation.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) the source code for the derivative work includes prominent notice that
the work is derivative, and (2) the source code includes prominent notice with
these four paragraphs for those parts of this code that are retained.
=============================================================================*/
/*============================================================================
* Written for Bochs (x86 achitecture simulator) by
* Stanislav Shwartsman [sshwarts at sourceforge net]
* Adapted for 3rdparty/softfloat in MAME by Calvin Buckley (05/2021)
* ==========================================================================*/
#define FLOAT128
#include "mamesf.h"
#include "softfloat.h"
//#include "softfloat-specialize"
#include "fpu_constant.h"
/* XXX: These are common w/ fsincos/fyl2x; should be moved to common header? */
#define packFloat_128(zHi, zLo) {(zHi), (zLo)}
#define packFloat2x128m(zHi, zLo) {(zHi), (zLo)}
#define PACK_FLOAT_128(hi,lo) packFloat2x128m(LIT64(hi),LIT64(lo))
#define EXP_BIAS 0x3FFF
/*----------------------------------------------------------------------------
| Returns the fraction bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE bits64 extractFloatx80Frac( floatx80 a )
{
return a.low;
}
/*----------------------------------------------------------------------------
| Returns the exponent bits of the extended double-precision floating-point
| value `a'.
*----------------------------------------------------------------------------*/
INLINE int32 extractFloatx80Exp( floatx80 a )
{
return a.high & 0x7FFF;
}
/*----------------------------------------------------------------------------
| Returns the sign bit of the extended double-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/
INLINE flag extractFloatx80Sign( floatx80 a )
{
return a.high>>15;
}
/*----------------------------------------------------------------------------
| Normalizes the subnormal extended double-precision floating-point value
| represented by the denormalized significand `aSig'. The normalized exponent
| and significand are stored at the locations pointed to by `zExpPtr' and
| `zSigPtr', respectively.
*----------------------------------------------------------------------------*/
INLINE void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, uint64_t *zSigPtr)
{
int shiftCount = countLeadingZeros64(aSig);
*zSigPtr = aSig<<shiftCount;
*zExpPtr = 1 - shiftCount;
}
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
INLINE int floatx80_is_nan(floatx80 a)
{
return ((a.high & 0x7FFF) == 0x7FFF) && (int64_t) (a.low<<1);
}
/*----------------------------------------------------------------------------
| Takes two extended double-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
INLINE floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
/*----------------------------------------------------------------------------
| Returns the exponent bits of the quadruple-precision floating-point value
| `a'.
*----------------------------------------------------------------------------*/
INLINE int32 extractFloat128Exp( float128 a )
{
return ( a.high>>48 ) & 0x7FFF;
}
/* end copied */
#define FPATAN_ARR_SIZE 11
static const float128 float128_one =
packFloat_128(0x3fff000000000000U, 0x0000000000000000U);
static const float128 float128_sqrt3 =
packFloat_128(0x3fffbb67ae8584caU, 0xa73b25742d7078b8U);
static const floatx80 floatx80_one = packFloatx80(0, 0x3fff, 0x8000000000000000U);
static const floatx80 floatx80_pi =
packFloatx80(0, 0x4000, 0xc90fdaa22168c235U);
static const float128 float128_pi2 =
packFloat_128(0x3fff921fb54442d1U, 0x8469898CC5170416U);
static const float128 float128_pi4 =
packFloat_128(0x3ffe921fb54442d1U, 0x8469898CC5170416U);
static const float128 float128_pi6 =
packFloat_128(0x3ffe0c152382d736U, 0x58465BB32E0F580FU);
static float128 atan_arr[FPATAN_ARR_SIZE] =
{
PACK_FLOAT_128(0x3fff000000000000, 0x0000000000000000), /* 1 */
PACK_FLOAT_128(0xbffd555555555555, 0x5555555555555555), /* 3 */
PACK_FLOAT_128(0x3ffc999999999999, 0x999999999999999a), /* 5 */
PACK_FLOAT_128(0xbffc249249249249, 0x2492492492492492), /* 7 */
PACK_FLOAT_128(0x3ffbc71c71c71c71, 0xc71c71c71c71c71c), /* 9 */
PACK_FLOAT_128(0xbffb745d1745d174, 0x5d1745d1745d1746), /* 11 */
PACK_FLOAT_128(0x3ffb3b13b13b13b1, 0x3b13b13b13b13b14), /* 13 */
PACK_FLOAT_128(0xbffb111111111111, 0x1111111111111111), /* 15 */
PACK_FLOAT_128(0x3ffae1e1e1e1e1e1, 0xe1e1e1e1e1e1e1e2), /* 17 */
PACK_FLOAT_128(0xbffaaf286bca1af2, 0x86bca1af286bca1b), /* 19 */
PACK_FLOAT_128(0x3ffa861861861861, 0x8618618618618618) /* 21 */
};
extern float128 OddPoly(float128 x, float128 *arr, unsigned n);
/* |x| < 1/4 */
static float128 poly_atan(float128 x1)
{
/*
// 3 5 7 9 11 13 15 17
// x x x x x x x x
// atan(x) ~ x - --- + --- - --- + --- - ---- + ---- - ---- + ----
// 3 5 7 9 11 13 15 17
//
// 2 4 6 8 10 12 14 16
// x x x x x x x x
// = x * [ 1 - --- + --- - --- + --- - ---- + ---- - ---- + ---- ]
// 3 5 7 9 11 13 15 17
//
// 5 5
// -- 4k -- 4k+2
// p(x) = > C * x q(x) = > C * x
// -- 2k -- 2k+1
// k=0 k=0
//
// 2
// atan(x) ~ x * [ p(x) + x * q(x) ]
//
*/
return OddPoly(x1, atan_arr, FPATAN_ARR_SIZE);
}
// =================================================
// FPATAN Compute y * log (x)
// 2
// =================================================
//
// Uses the following identities:
//
// 1. ----------------------------------------------------------
//
// atan(-x) = -atan(x)
//
// 2. ----------------------------------------------------------
//
// x + y
// atan(x) + atan(y) = atan -------, xy < 1
// 1-xy
//
// x + y
// atan(x) + atan(y) = atan ------- + PI, x > 0, xy > 1
// 1-xy
//
// x + y
// atan(x) + atan(y) = atan ------- - PI, x < 0, xy > 1
// 1-xy
//
// 3. ----------------------------------------------------------
//
// atan(x) = atan(INF) + atan(- 1/x)
//
// x-1
// atan(x) = PI/4 + atan( ----- )
// x+1
//
// x * sqrt(3) - 1
// atan(x) = PI/6 + atan( ----------------- )
// x + sqrt(3)
//
// 4. ----------------------------------------------------------
// 3 5 7 9 2n+1
// x x x x n x
// atan(x) = x - --- + --- - --- + --- - ... + (-1) ------ + ...
// 3 5 7 9 2n+1
//
floatx80 floatx80_fpatan(floatx80 a, floatx80 b)
{
uint64_t aSig = extractFloatx80Frac(a);
int32_t aExp = extractFloatx80Exp(a);
int aSign = extractFloatx80Sign(a);
uint64_t bSig = extractFloatx80Frac(b);
int32_t bExp = extractFloatx80Exp(b);
int bSign = extractFloatx80Sign(b);
int zSign = aSign ^ bSign;
if (bExp == 0x7FFF)
{
if ((uint64_t) (bSig<<1))
return propagateFloatx80NaN(a, b);
if (aExp == 0x7FFF) {
if ((uint64_t) (aSig<<1))
return propagateFloatx80NaN(a, b);
if (aSign) { /* return 3PI/4 */
return roundAndPackFloatx80(80, bSign,
FLOATX80_3PI4_EXP, FLOAT_3PI4_HI, FLOAT_3PI4_LO);
}
else { /* return PI/4 */
return roundAndPackFloatx80(80, bSign,
FLOATX80_PI4_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
}
}
if (aSig && (aExp == 0))
float_raise(float_flag_denormal);
/* return PI/2 */
return roundAndPackFloatx80(80, bSign, FLOATX80_PI2_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
}
if (aExp == 0x7FFF)
{
if ((uint64_t) (aSig<<1))
return propagateFloatx80NaN(a, b);
if (bSig && (bExp == 0))
float_raise(float_flag_denormal);
return_PI_or_ZERO:
if (aSign) { /* return PI */
return roundAndPackFloatx80(80, bSign, FLOATX80_PI_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
} else { /* return 0 */
return packFloatx80(bSign, 0, 0);
}
}
if (bExp == 0)
{
if (bSig == 0) {
if (aSig && (aExp == 0)) float_raise(float_flag_denormal);
goto return_PI_or_ZERO;
}
float_raise(float_flag_denormal);
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
}
if (aExp == 0)
{
if (aSig == 0) /* return PI/2 */
return roundAndPackFloatx80(80, bSign, FLOATX80_PI2_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
float_raise(float_flag_denormal);
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
}
float_raise(float_flag_inexact);
/* |a| = |b| ==> return PI/4 */
if (aSig == bSig && aExp == bExp)
return roundAndPackFloatx80(80, bSign, FLOATX80_PI4_EXP, FLOAT_PI_HI, FLOAT_PI_LO);
/* ******************************** */
/* using float128 for approximation */
/* ******************************** */
float128 a128 = normalizeRoundAndPackFloat128(0, aExp-0x10, aSig, 0);
float128 b128 = normalizeRoundAndPackFloat128(0, bExp-0x10, bSig, 0);
float128 x;
int swap = 0, add_pi6 = 0, add_pi4 = 0;
if (aExp > bExp || (aExp == bExp && aSig > bSig))
{
x = float128_div(b128, a128);
}
else {
x = float128_div(a128, b128);
swap = 1;
}
int32_t xExp = extractFloat128Exp(x);
if (xExp <= EXP_BIAS-40)
goto approximation_completed;
if (x.high >= 0x3ffe800000000000U) // 3/4 < x < 1
{
/*
arctan(x) = arctan((x-1)/(x+1)) + pi/4
*/
float128 t1 = float128_sub(x, float128_one);
float128 t2 = float128_add(x, float128_one);
x = float128_div(t1, t2);
add_pi4 = 1;
}
else
{
/* argument correction */
if (xExp >= 0x3FFD) // 1/4 < x < 3/4
{
/*
arctan(x) = arctan((x*sqrt(3)-1)/(x+sqrt(3))) + pi/6
*/
float128 t1 = float128_mul(x, float128_sqrt3);
float128 t2 = float128_add(x, float128_sqrt3);
x = float128_sub(t1, float128_one);
x = float128_div(x, t2);
add_pi6 = 1;
}
}
x = poly_atan(x);
if (add_pi6) x = float128_add(x, float128_pi6);
if (add_pi4) x = float128_add(x, float128_pi4);
approximation_completed:
if (swap) x = float128_sub(float128_pi2, x);
floatx80 result = float128_to_floatx80(x);
if (zSign) result = floatx80_chs(result);
int rSign = extractFloatx80Sign(result);
if (!bSign && rSign)
return floatx80_add(result, floatx80_pi);
if (bSign && !rSign)
return floatx80_sub(result, floatx80_pi);
return result;
}
// The former function maps to x87 FPATAN, but we can simulate 68881 FATAN with
// it by simply hardcoding one here.
floatx80 floatx80_fatan(floatx80 a)
{
return floatx80_fpatan(a, floatx80_one);
}
|