summaryrefslogtreecommitdiffstatshomepage
path: root/3rdparty/bx/tests/simd_test.cpp
blob: ca46fd00bc3874a00a6bbaba058dc89e58dc66f1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/*
 * Copyright 2010-2017 Branimir Karadzic. All rights reserved.
 * License: https://github.com/bkaradzic/bx#license-bsd-2-clause
 */

#include "test.h"
#include <bx/simd_t.h>
#include <bx/fpumath.h>
#include <bx/string.h>

#if 0
#	define SIMD_DBG DBG
#else
#	define SIMD_DBG unused
#endif // 0

using namespace bx;

inline void unused(...) {}

union simd_cast
{
	bx::simd256_t simd256;
	bx::simd128_t simd128;
	float    f[8];
	uint32_t ui[8];
	int32_t  i[8];
	char     c[32];
};

void simd_check_bool(const char* _str, bool _a, bool _0)
{
	SIMD_DBG("%s %d == %d"
		, _str
		, _a
		, _0
		);

	REQUIRE(_a == _0);
}

void simd_check_int32(
	  const char* _str
	, bx::simd128_t _a
	, int32_t _0
	, int32_t _1
	, int32_t _2
	, int32_t _3
	)
{
	simd_cast c; c.simd128 = _a;
	SIMD_DBG("%s (%d, %d, %d, %d) == (%d, %d, %d, %d)"
		, _str
		, c.i[0], c.i[1], c.i[2], c.i[3]
		, _0, _1, _2, _3
		);

	REQUIRE(c.i[0] == _0);
	REQUIRE(c.i[1] == _1);
	REQUIRE(c.i[2] == _2);
	REQUIRE(c.i[3] == _3);
}

void simd_check_int32(
	  const char* _str
	, bx::simd256_t _a
	, int32_t _0
	, int32_t _1
	, int32_t _2
	, int32_t _3
	, int32_t _4
	, int32_t _5
	, int32_t _6
	, int32_t _7
	)
{
	simd_cast c; c.simd256 = _a;
	SIMD_DBG("%s (%d, %d, %d, %d, %d, %d, %d, %d) == (%d, %d, %d, %d, %d, %d, %d, %d)"
		, _str
		, c.i[0], c.i[1], c.i[2], c.i[3], c.i[4], c.i[5], c.i[6], c.i[7]
		, _0, _1, _2, _3, _4, _5, _6, _7
		);

	REQUIRE(c.i[0] == _0);
	REQUIRE(c.i[1] == _1);
	REQUIRE(c.i[2] == _2);
	REQUIRE(c.i[3] == _3);
	REQUIRE(c.i[4] == _4);
	REQUIRE(c.i[5] == _5);
	REQUIRE(c.i[6] == _6);
	REQUIRE(c.i[7] == _7);
}

void simd_check_uint32(
	  const char* _str
	, bx::simd128_t _a
	, uint32_t _0
	, uint32_t _1
	, uint32_t _2
	, uint32_t _3
	)
{
	simd_cast c; c.simd128 = _a;

	SIMD_DBG("%s (0x%08x, 0x%08x, 0x%08x, 0x%08x) == (0x%08x, 0x%08x, 0x%08x, 0x%08x)"
		, _str
		, c.ui[0], c.ui[1], c.ui[2], c.ui[3]
		, _0, _1, _2, _3
		);

	REQUIRE(c.ui[0] == _0);
	REQUIRE(c.ui[1] == _1);
	REQUIRE(c.ui[2] == _2);
	REQUIRE(c.ui[3] == _3);
}

void simd_check_uint32(
	  const char* _str
	, bx::simd256_t _a
	, uint32_t _0
	, uint32_t _1
	, uint32_t _2
	, uint32_t _3
	, uint32_t _4
	, uint32_t _5
	, uint32_t _6
	, uint32_t _7
	)
{
	simd_cast c; c.simd256 = _a;

	SIMD_DBG("%s (0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x) == (0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x)"
		, _str
		, c.ui[0], c.ui[1], c.ui[2], c.ui[3], c.ui[4], c.ui[5], c.ui[6], c.ui[7]
		, _0, _1, _2, _3, _4, _5, _6, _7
		);

	REQUIRE(c.ui[0] == _0);
	REQUIRE(c.ui[1] == _1);
	REQUIRE(c.ui[2] == _2);
	REQUIRE(c.ui[3] == _3);
	REQUIRE(c.ui[4] == _4);
	REQUIRE(c.ui[5] == _5);
	REQUIRE(c.ui[6] == _6);
	REQUIRE(c.ui[7] == _7);
}

void simd_check_float(
	  const char* _str
	, bx::simd128_t _a
	, float _0
	, float _1
	, float _2
	, float _3
	)
{
	simd_cast c; c.simd128 = _a;

	SIMD_DBG("%s (%f, %f, %f, %f) == (%f, %f, %f, %f)"
		, _str
		, c.f[0], c.f[1], c.f[2], c.f[3]
		, _0, _1, _2, _3
		);

	CHECK(bx::fequal(c.f[0], _0, 0.0001f) );
	CHECK(bx::fequal(c.f[1], _1, 0.0001f) );
	CHECK(bx::fequal(c.f[2], _2, 0.0001f) );
	CHECK(bx::fequal(c.f[3], _3, 0.0001f) );
}

void simd_check_float(
	  const char* _str
	, bx::simd256_t _a
	, float _0
	, float _1
	, float _2
	, float _3
	, float _4
	, float _5
	, float _6
	, float _7
	)
{
	simd_cast c; c.simd256 = _a;

	SIMD_DBG("%s (%f, %f, %f, %f, %f, %f, %f, %f) == (%f, %f, %f, %f, %f, %f, %f, %f)"
		, _str
		, c.f[0], c.f[1], c.f[2], c.f[3], c.f[4], c.f[5], c.f[6], c.f[7]
		, _0, _1, _2, _3, _4, _5, _6, _7
		);

	CHECK(bx::fequal(c.f[0], _0, 0.0001f) );
	CHECK(bx::fequal(c.f[1], _1, 0.0001f) );
	CHECK(bx::fequal(c.f[2], _2, 0.0001f) );
	CHECK(bx::fequal(c.f[3], _3, 0.0001f) );
	CHECK(bx::fequal(c.f[4], _4, 0.0001f) );
	CHECK(bx::fequal(c.f[5], _5, 0.0001f) );
	CHECK(bx::fequal(c.f[6], _6, 0.0001f) );
	CHECK(bx::fequal(c.f[7], _7, 0.0001f) );
}

void simd_check_string(const char* _str, bx::simd128_t _a)
{
	simd_cast c; c.simd128 = _a;
	const char test[5] = { c.c[0], c.c[4], c.c[8], c.c[12], '\0' };

	SIMD_DBG("%s %s", _str, test);

	CHECK(0 == bx::strncmp(_str, test) );
}

TEST_CASE("simd_swizzle", "")
{
	const simd128_t xyzw = simd_ild(0x78787878, 0x79797979, 0x7a7a7a7a, 0x77777777);

#define ELEMx 0
#define ELEMy 1
#define ELEMz 2
#define ELEMw 3
#define BX_SIMD128_IMPLEMENT_SWIZZLE(_x, _y, _z, _w) \
			simd_check_string("" #_x #_y #_z #_w "", simd_swiz_##_x##_y##_z##_w(xyzw) ); \

#include <bx/inline/simd128_swizzle.inl>

#undef BX_SIMD128_IMPLEMENT_SWIZZLE
#undef ELEMw
#undef ELEMz
#undef ELEMy
#undef ELEMx
}

TEST_CASE("simd_shuffle", "")
{
	const simd128_t xyzw = simd_ild(0x78787878, 0x79797979, 0x7a7a7a7a, 0x77777777);
	const simd128_t ABCD = simd_ild(0x41414141, 0x42424242, 0x43434343, 0x44444444);
	simd_check_string("xyAB", simd_shuf_xyAB(xyzw, ABCD) );
	simd_check_string("ABxy", simd_shuf_ABxy(xyzw, ABCD) );
	simd_check_string("zwCD", simd_shuf_zwCD(xyzw, ABCD) );
	simd_check_string("CDzw", simd_shuf_CDzw(xyzw, ABCD) );
	simd_check_string("xAyB", simd_shuf_xAyB(xyzw, ABCD) );
	simd_check_string("zCwD", simd_shuf_zCwD(xyzw, ABCD) );
	simd_check_string("xAzC", simd_shuf_xAzC(xyzw, ABCD) );
	simd_check_string("yBwD", simd_shuf_yBwD(xyzw, ABCD) );
	simd_check_string("CzDw", simd_shuf_CzDw(xyzw, ABCD) );
}

TEST_CASE("simd_compare", "")
{
	simd_check_uint32("cmpeq"
		, simd_cmpeq(simd_ld(1.0f, 2.0f, 3.0f, 4.0f), simd_ld(0.0f, 2.0f, 0.0f, 3.0f) )
		, 0, 0xffffffff, 0, 0
		);

	simd_check_uint32("cmplt"
		, simd_cmplt(simd_ld(1.0f, 2.0f, 3.0f, 4.0f), simd_ld(0.0f, 2.0f, 0.0f, 3.0f) )
		, 0, 0, 0, 0
		);

	simd_check_uint32("cmple"
		, simd_cmple(simd_ld(1.0f, 2.0f, 3.0f, 4.0f), simd_ld(0.0f, 2.0f, 0.0f, 3.0f) )
		, 0, 0xffffffff, 0, 0
		);

	simd_check_uint32("cmpgt"
		, simd_cmpgt(simd_ld(1.0f, 2.0f, 3.0f, 4.0f), simd_ld(0.0f, 2.0f, 0.0f, 3.0f) )
		, 0xffffffff, 0, 0xffffffff, 0xffffffff
		);

	simd_check_uint32("cmpge"
		, simd_cmpge(simd_ld(1.0f, 2.0f, 3.0f, 4.0f), simd_ld(0.0f, 2.0f, 0.0f, 3.0f) )
		, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff
		);

	simd_check_uint32("icmpeq"
		, simd_icmpeq(simd_ild(0, 1, 2, 3), simd_ild(0, uint32_t(-2), 1, 3) )
		, 0xffffffff, 0, 0, 0xffffffff
		);

	simd_check_uint32("icmplt"
		, simd_icmplt(simd_ild(0, 1, 2, 3), simd_ild(0, uint32_t(-2), 1, 3) )
		, 0, 0, 0, 0
		);

	simd_check_uint32("icmpgt"
		, simd_icmpgt(simd_ild(0, 1, 2, 3), simd_ild(0, uint32_t(-2), 1, 3) )
		, 0, 0xffffffff, 0xffffffff, 0
		);
}

TEST_CASE("simd_test", "")
{
	simd_check_bool("test_any_xyzw"
		, simd_test_any_xyzw(simd_ild(0xffffffff, 0, 0, 0) )
		, true
		);

	simd_check_bool("test_all_xyzw"
		, simd_test_all_xyzw(simd_ild(0xffffffff, 0, 0xffffffff, 0) )
		, false
		);

	simd_check_bool("test_all_xyzw"
		, simd_test_all_xyzw(simd_ild(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff) )
		, true
		);

	simd_check_bool("test_all_xw"
		, simd_test_all_xw(simd_ild(0xffffffff, 0, 0, 0xffffffff) )
		, true
		);

	simd_check_bool("test_all_xzw"
		, simd_test_all_xzw(simd_ild(0xffffffff, 0, 0, 0xffffffff) )
		, false
		);
}

TEST_CASE("simd_load", "")
{
	simd_check_float("ld"
		, simd_ld(0.0f, 1.0f, 2.0f, 3.0f)
		, 0.0f, 1.0f, 2.0f, 3.0f
		);

	simd_check_float("ld"
		, simd_ld<simd256_t>(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f)
		, 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f
		);

	simd_check_int32("ild"
		, simd_ild(uint32_t(-1), 0, 1, 2)
		, uint32_t(-1), 0, 1, 2
		);

	simd_check_int32("ild"
		, simd_ild<simd256_t>(uint32_t(-1), 0, 1, 2, 3, 4, 5, 6)
		, uint32_t(-1), 0, 1, 2, 3, 4, 5, 6
		);

	simd_check_int32("ild"
		, simd_ild(uint32_t(-1), uint32_t(-2), uint32_t(-3), uint32_t(-4) )
		, uint32_t(-1), uint32_t(-2), uint32_t(-3), uint32_t(-4)
		);

	simd_check_uint32("zero", simd_zero()
		, 0, 0, 0, 0
		);

	simd_check_uint32("isplat", simd_isplat<simd128_t>(0x80000001)
		, 0x80000001, 0x80000001, 0x80000001, 0x80000001
		);

	simd_check_float("splat", simd_splat<simd128_t>(1.0f)
		, 1.0f, 1.0f, 1.0f, 1.0f
		);

	simd_check_uint32("isplat", simd_isplat<simd256_t>(0x80000001)
		, 0x80000001, 0x80000001, 0x80000001, 0x80000001, 0x80000001, 0x80000001, 0x80000001, 0x80000001
		);

	simd_check_float("splat", simd_splat<simd256_t>(1.0f)
		, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
		);
}

TEST_CASE("simd_arithmetic", "")
{
	simd_check_float("madd"
		, simd_madd(simd_ld(0.0f, 1.0f, 2.0f, 3.0f), simd_ld(4.0f, 5.0f, 6.0f, 7.0f), simd_ld(8.0f, 9.0f, 10.0f, 11.0f) )
		, 8.0f, 14.0f, 22.0f, 32.0f
		);

	simd_check_float("cross3"
		, simd_cross3(simd_ld(1.0f, 0.0f, 0.0f, 0.0f), simd_ld(0.0f, 1.0f, 0.0f, 0.0f) )
		, 0.0f, 0.0f, 1.0f, 0.0f
		);
}

TEST_CASE("simd_sqrt", "")
{
	simd_check_float("simd_sqrt"
		, simd_sqrt(simd_ld(1.0f, 16.0f, 65536.0f, 123456.0f) )
		, 1.0f, 4.0f, 256.0f, 351.363060096f
		);

	simd_check_float("simd_sqrt_nr_ni"
		, simd_sqrt_nr_ni(simd_ld(1.0f, 16.0f, 65536.0f, 123456.0f) )
		, 1.0f, 4.0f, 256.0f, 351.363060096f
		);

	simd_check_float("simd_sqrt_nr1_ni"
		, simd_sqrt_nr1_ni(simd_ld(1.0f, 16.0f, 65536.0f, 123456.0f) )
		, 1.0f, 4.0f, 256.0f, 351.363060096f
		);
}

TEST_CASE("simd", "")
{
	const simd128_t isplat = simd_isplat(0x80000001);
	simd_check_uint32("sll"
		, simd_sll(isplat, 1)
		, 0x00000002, 0x00000002, 0x00000002, 0x00000002
		);

	simd_check_uint32("srl"
		, simd_srl(isplat, 1)
		, 0x40000000, 0x40000000, 0x40000000, 0x40000000
		);

	simd_check_uint32("sra"
		, simd_sra(isplat, 1)
		, 0xc0000000, 0xc0000000, 0xc0000000, 0xc0000000
		);

	simd_check_uint32("and"
		, simd_and(simd_isplat(0x55555555), simd_isplat(0xaaaaaaaa) )
		, 0, 0, 0, 0
		);

	simd_check_uint32("or "
		, simd_or(simd_isplat(0x55555555), simd_isplat(0xaaaaaaaa) )
		, uint32_t(-1), uint32_t(-1), uint32_t(-1), uint32_t(-1)
		);

	simd_check_uint32("xor"
		, simd_or(simd_isplat(0x55555555), simd_isplat(0xaaaaaaaa) )
		, uint32_t(-1), uint32_t(-1), uint32_t(-1), uint32_t(-1)
		);

	simd_check_int32("imin"
		, simd_imin(simd_ild(0, 1, 2, 3), simd_ild(uint32_t(-1), 2, uint32_t(-2), 1) )
		, uint32_t(-1), 1, uint32_t(-2), 1
		);

	simd_check_float("min"
		, simd_min(simd_ld(0.0f, 1.0f, 2.0f, 3.0f), simd_ld(-1.0f, 2.0f, -2.0f, 1.0f) )
		, -1.0f, 1.0f, -2.0f, 1.0f
		);

	simd_check_int32("imax"
		, simd_imax(simd_ild(0, 1, 2, 3), simd_ild(uint32_t(-1), 2, uint32_t(-2), 1) )
		, 0, 2, 2, 3
		);

	simd_check_float("max"
		, simd_max(simd_ld(0.0f, 1.0f, 2.0f, 3.0f), simd_ld(-1.0f, 2.0f, -2.0f, 1.0f) )
		, 0.0f, 2.0f, 2.0f, 3.0f
		);
}
"w"> | ((c2 & 0xC0) >> 4) | ((c3 & 0xC0) >> 2); b3[174] = 0; j = 0; for (i = 0; i <= 174; i++) { w1 = b1[i] & 0x3F; w2 = b2[i] & 0x3F; w3 = b3[i] & 0x3F; w4 = ((b1[i] & 0xC0) >> 2); w4 |= ((b2[i] & 0xC0) >> 4); w4 |= ((b3[i] & 0xC0) >> 6); nib_ptr[j++] = w4; nib_ptr[j++] = w1; nib_ptr[j++] = w2; if (i != 174) nib_ptr[j++] = w3; } csum[0] = c1 & 0x3F; csum[1] = c2 & 0x3F; csum[2] = c3 & 0x3F; csum[3] = c4 & 0x3F; } /* does the reverse process of sony_nibblize35 */ static void sony_denibblize35(uint8_t *out, const uint8_t *nib_ptr, uint8_t *checksum) { int i, j; uint32_t c1,c2,c3,c4; uint8_t val; uint8_t w1,w2,w3=0,w4; uint8_t b1[175],b2[175],b3[175]; j = 0; for (i=0; i<=174; i++) { w4 = nib_ptr[j++]; w1 = nib_ptr[j++]; w2 = nib_ptr[j++]; if (i != 174) w3 = nib_ptr[j++]; b1[i] = (w1 & 0x3F) | ((w4 << 2) & 0xC0); b2[i] = (w2 & 0x3F) | ((w4 << 4) & 0xC0); b3[i] = (w3 & 0x3F) | ((w4 << 6) & 0xC0); } /* Copy from the user's buffer to our buffer, while computing * the three-byte data checksum */ i = 0; j = 0; c1 = 0; c2 = 0; c3 = 0; while (1) { c1 = (c1 & 0xFF) << 1; if (c1 & 0x0100) c1++; val = (b1[j] ^ c1) & 0xFF; c3 += val; if (c1 & 0x0100) { c3++; c1 &= 0xFF; } out[i++] = val; val = (b2[j] ^ c3) & 0xFF; c2 += val; if (c3 > 0xFF) { c2++; c3 &= 0xFF; } out[i++] = val; if (i == 524) break; val = (b3[j] ^ c2) & 0xFF; c1 += val; if (c2 > 0xFF) { c1++; c2 &= 0xFF; } out[i++] = val; j++; } c4 = ((c1 & 0xC0) >> 6) | ((c2 & 0xC0) >> 4) | ((c3 & 0xC0) >> 2); b3[174] = 0; checksum[0] = c1 & 0x3F; checksum[1] = c2 & 0x3F; checksum[2] = c3 & 0x3F; checksum[3] = c4 & 0x3F; } void sony_filltrack(uint8_t *buffer, size_t buffer_len, size_t *pos, uint8_t data) { buffer[*pos / 8] &= 0xFF << (8 - (*pos % 8)); buffer[*pos / 8] |= data >> (*pos % 8); *pos += 8; *pos %= buffer_len * 8; buffer[*pos / 8] &= 0xFF >> (*pos % 8); buffer[*pos / 8] |= data << (8 - (*pos % 8)); } uint8_t sony_fetchtrack(const uint8_t *buffer, size_t buffer_len, size_t *pos) { uint8_t data; data = buffer[*pos / 8] << (*pos % 8); *pos += 8; *pos %= (buffer_len * 8); data |= buffer[*pos / 8] >> (8 - (*pos % 8)); while ((data & 0x80) == 0) { /* this code looks weird because it isn't simply rotating the new bit * in, but for some reason it won't work if I rotate the bit in; I * have to match the algorithm used by the old code */ data <<= 1; data |= (buffer[*pos / 8] >> (8 - ((*pos % 8) + 1))); (*pos)++; *pos %= (buffer_len * 8); } // printf("sony_fetchtrack: pos %ld = %02x\n", *pos/8, data); return data; } static uint32_t apple35_get_offset(floppy_image_legacy *floppy, int head, int track, int sector, uint32_t *tag_offset) { int i; uint32_t sector_index = 0; struct apple35_tag *tag; tag = get_apple35_tag(floppy); if (track >= ARRAY_LENGTH(apple35_tracklen_800kb)) return ~0; if (head >= tag->sides) return ~0; if (sector >= apple35_sectors_per_track(floppy, track)) return ~0; for (i = 0; i < track; i++) sector_index += apple35_sectors_per_track(floppy, i); sector_index *= tag->sides; if (head) sector_index += apple35_sectors_per_track(floppy, i); sector_index += sector; if (tag_offset) { *tag_offset = sector_index * 12; if (*tag_offset >= tag->tag_size) { *tag_offset = ~0; } else { *tag_offset += tag->tag_offset; } } return sector_index * 0x200 + tag->data_offset; } static floperr_t apple35_read_sector(floppy_image_legacy *floppy, int head, int track, int sector, void *buffer, size_t buflen) { uint32_t data_offset; data_offset = apple35_get_offset(floppy, head, track, sector, nullptr); if (data_offset == ~0) { return FLOPPY_ERROR_SEEKERROR; } floppy_image_read(floppy, buffer, data_offset, buflen); return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_write_sector(floppy_image_legacy *floppy, int head, int track, int sector, const void *buffer, size_t buflen, int ddam) { uint32_t data_offset; data_offset = apple35_get_offset(floppy, head, track, sector, nullptr); if (data_offset == ~0) return FLOPPY_ERROR_SEEKERROR; floppy_image_write(floppy, buffer, data_offset, buflen); return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_read_sector_td(floppy_image_legacy *floppy, int head, int track, int sector, void *buffer, size_t buflen) { floperr_t err; uint32_t tag_offset = 0; assert(buflen == 524); /* first read the sector */ err = apple35_read_sector(floppy, head, track, sector, ((uint8_t *) buffer) + 12, 512); if (err) { return err; } /* read the tag data, if possible */ memset(buffer, '\0', 12); apple35_get_offset(floppy, head, track, sector, &tag_offset); if (tag_offset != ~0) { floppy_image_read(floppy, buffer, tag_offset, 12); } return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_write_sector_td(floppy_image_legacy *floppy, int head, int track, int sector, const void *buffer, size_t buflen, int ddam) { floperr_t err; uint32_t tag_offset = 0; assert(buflen == 524); /* first write the sector */ err = apple35_write_sector(floppy, head, track, sector, ((const uint8_t *) buffer) + 12, 512, 0); if (err) return err; /* write the tag data, if possible */ apple35_get_offset(floppy, head, track, sector, &tag_offset); if (tag_offset != ~0) floppy_image_write(floppy, buffer, tag_offset, 12); return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_get_sector_length(floppy_image_legacy *floppy, int head, int track, int sector, uint32_t *sector_length) { *sector_length = 512; return FLOPPY_ERROR_SUCCESS; } static int apple35_get_heads_per_disk(floppy_image_legacy *floppy) { return get_apple35_tag(floppy)->sides; } static int apple35_get_tracks_per_disk(floppy_image_legacy *floppy) { return 80; } static uint32_t apple35_get_track_size(floppy_image_legacy *floppy, int head, int track) { if ((track < 0) || (track >= 80)) return 0; return apple35_sectors_per_track(floppy, track) * 800; } static uint8_t calculate_side(int head, int track) { uint8_t side; side = head ? 0x20 : 0x00; if (track & 0x40) side |= 0x01; return side; } static floperr_t apple35_read_track(floppy_image_legacy *floppy, int head, int track, uint64_t offset, void *buffer, size_t buflen) { floperr_t err; size_t pos = 0; int sector_count, sector, i; uint8_t sum, side; struct apple35_tag *tag; uint8_t sector_data[524]; uint8_t nibble_data[699]; uint8_t checksum[4]; tag = get_apple35_tag(floppy); if (track >= ARRAY_LENGTH(apple35_tracklen_800kb)) return FLOPPY_ERROR_SEEKERROR; if (offset != 0) return FLOPPY_ERROR_UNSUPPORTED; memset(buffer, 0xFF, buflen); sector_count = apple35_sectors_per_track(floppy, track); side = calculate_side(head, track); for (sector = 0; sector < sector_count; sector++) { /* read the sector */ err = apple35_read_sector_td(floppy, head, track, sector, sector_data, ARRAY_LENGTH(sector_data)); if (err) { return err; } sony_nibblize35(sector_data, nibble_data, checksum); for (i = 0; i < ARRAY_LENGTH(blk1); i++) sony_filltrack((uint8_t*)buffer, buflen, &pos, blk1[i]); sum = (track ^ sector ^ side ^ tag->format_byte) & 0x3F; sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[track & 0x3f]); sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[sector]); sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[side]); sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[tag->format_byte]); sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[sum]); for (i = 0; i < ARRAY_LENGTH(blk2); i++) sony_filltrack((uint8_t*)buffer, buflen, &pos, blk2[i]); sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[sector]); for (i = 0; i < ARRAY_LENGTH(nibble_data); i++) sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[nibble_data[i]]); for (i = 3; i >= 0; i--) sony_filltrack((uint8_t*)buffer, buflen, &pos, diskbytes[checksum[i]]); for (i = 0; i < ARRAY_LENGTH(blk3); i++) sony_filltrack((uint8_t*)buffer, buflen, &pos, blk3[i]); } return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_write_track(floppy_image_legacy *floppy, int head, int track, uint64_t offset, const void *buffer, size_t buflen) { floperr_t err; size_t pos = 0; int sector_count, sector, i, j; struct apple35_tag *tag; uint8_t sum, format_byte, val, side; uint32_t found_sectors = 0; uint8_t sector_data[524]; uint8_t nibble_data[699]; uint8_t checksum[4]; tag = get_apple35_tag(floppy); if (track >= ARRAY_LENGTH(apple35_tracklen_800kb)) return FLOPPY_ERROR_SEEKERROR; if (offset != 0) return FLOPPY_ERROR_UNSUPPORTED; sector_count = apple35_sectors_per_track(floppy, track); side = calculate_side(head, track); /* do 2 rotations, in case the bit slip stuff prevent us to read the first sector */ for (j = 0; j < (buflen * 2); j++) { if (sony_fetchtrack((uint8_t*)buffer, buflen, &pos) != 0xD5) continue; j++; if (sony_fetchtrack((uint8_t*)buffer, buflen, &pos) != 0xAA) continue; j++; if (sony_fetchtrack((uint8_t*)buffer, buflen, &pos) != 0x96) continue; j++; if (rev_diskbytes[sony_fetchtrack((uint8_t*)buffer, buflen, &pos)] != (track & 0x3F)) continue; j++; sector = rev_diskbytes[sony_fetchtrack((uint8_t*)buffer, buflen, &pos)]; if ((sector < 0) || (sector >= sector_count)) continue; j++; if (rev_diskbytes[sony_fetchtrack((uint8_t*)buffer, buflen, &pos)] != side) continue; j++; format_byte = rev_diskbytes[sony_fetchtrack((uint8_t*)buffer, buflen, &pos)]; if (format_byte != tag->format_byte) { /* this is an error, but not THAT critical, I guess */ } j++; sum = track ^ sector ^ side ^ format_byte; if (rev_diskbytes[sony_fetchtrack((uint8_t*)buffer, buflen, &pos)] != sum) continue; j++; if (sony_fetchtrack((uint8_t*)buffer, buflen, &pos) != 0xDE) continue; j++; if (sony_fetchtrack((uint8_t*)buffer, buflen, &pos) != 0xAA) continue; j++; while((val = sony_fetchtrack((uint8_t*)buffer, buflen, &pos)) == 0xFF) j++; if (val != 0xD5) continue; /* lost bit slip mark! */ j++; if (sony_fetchtrack((uint8_t*)buffer, buflen, &pos) != 0xAA) continue; j++; if (sony_fetchtrack((uint8_t*)buffer, buflen, &pos) != 0xAD) continue; j++; /* should this be regarded as a critical error ??? */ if (rev_diskbytes[sony_fetchtrack((uint8_t*)buffer, buflen, &pos)] != sector) continue; j++; for (i = 0; i < ARRAY_LENGTH(nibble_data); i++) { nibble_data[i] = rev_diskbytes[sony_fetchtrack((uint8_t*)buffer, buflen, &pos)]; j++; } for (i = 3; i >= 0; i--) { /* should be checking checksum */ sony_fetchtrack((uint8_t*)buffer, buflen, &pos); } sony_fetchtrack((uint8_t*)buffer, buflen, &pos); /* should get 0xDE */ sony_fetchtrack((uint8_t*)buffer, buflen, &pos); /* should get 0xAA */ sony_fetchtrack((uint8_t*)buffer, buflen, &pos); /* should get 0xFF */ /* did we already write this sector? */ if ((found_sectors & (1 << sector)) == 0) { sony_denibblize35(sector_data, nibble_data, checksum); /* write the sector */ err = apple35_write_sector_td(floppy, head, track, sector, sector_data, ARRAY_LENGTH(sector_data), 0); if (err) return err; found_sectors |= 1 << sector; } } return FLOPPY_ERROR_SUCCESS; } static floperr_t apple35_construct(floppy_image_legacy *floppy, uint32_t data_offset, uint32_t data_size, uint32_t tag_offset, uint32_t tag_size, int16_t format_byte, uint8_t sides, bool is_1440k) { struct apple35_tag *tag; struct FloppyCallbacks *format; /* figure out format byte if not specified */ if (format_byte < 0) { switch(sides) { case 1: format_byte = 0x02; break; case 2: format_byte = 0x22; break; default: return FLOPPY_ERROR_INVALIDIMAGE; } } /* create tag */ tag = (struct apple35_tag *) floppy_create_tag(floppy, sizeof(struct apple35_tag)); if (!tag) return FLOPPY_ERROR_OUTOFMEMORY; tag->data_offset = data_offset; tag->data_size = data_size; tag->tag_offset = tag_offset; tag->tag_size = tag_size; tag->format_byte = (uint8_t) format_byte; tag->sides = sides; tag->is_1440k = is_1440k ? 1 : 0; /* set up format callbacks */ format = floppy_callbacks(floppy); format->read_sector = apple35_read_sector; format->write_sector = apple35_write_sector; format->read_track = apple35_read_track; format->write_track = apple35_write_track; format->get_sector_length = apple35_get_sector_length; format->get_heads_per_disk = apple35_get_heads_per_disk; format->get_tracks_per_disk = apple35_get_tracks_per_disk; format->get_track_size = apple35_get_track_size; return FLOPPY_ERROR_SUCCESS; } /* ----------------------------------------------------------------------- */ static FLOPPY_IDENTIFY(apple35_raw_identify) { uint64_t size; size = floppy_image_size(floppy); *vote = ((size == 80*1*10*512) || (size == 80*2*10*512) || (size == (80*2*18*512)+84) || (size == 80*2*18*512)) ? 100 : 0; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_CONSTRUCT(apple35_raw_construct) { uint64_t size; uint8_t sides; bool is_1440k; if (params) { /* create */ sides = params->lookup_int(PARAM_HEADS); size = 80*sides*10*512; is_1440k = false; } else { /* load */ size = floppy_image_size(floppy); if (size == 80*1*10*512) { sides = 1; is_1440k = false; } else if ((size == 80*2*10*512) || (size == 80*2*18*512) || (size == (80*2*18*512)+84)) { sides = 2; is_1440k = (size == 80*2*18*512) || (size == (80*2*18*512)+84); } else return FLOPPY_ERROR_INVALIDIMAGE; } return apple35_construct(floppy, 0, (uint32_t) size, 0, 0, -1, sides, is_1440k); } /* ----------------------------------------------------------------------- */ struct header_diskcopy { uint8_t disk_name[64]; /* name of the disk */ uint32_t data_size; /* total size of data for all sectors (512*number_of_sectors) */ uint32_t tag_size; /* total size of tag data for all sectors (12*number_of_sectors for GCR 3.5" floppies, 20*number_of_sectors for HD20, 0 otherwise) */ uint32_t data_checksum; /* CRC32 checksum of all sector data */ uint32_t tag_checksum; /* CRC32 checksum of all tag data */ uint8_t disk_format; /* 0 = 400K, 1 = 800K, 2 = 720K, 3 = 1440K (other values reserved) */ uint8_t format_byte; /* should be $00 Apple II, $01 Lisa, $02 Mac MFS ??? */ /* $12 = 400K, $22 = >400K Macintosh (DiskCopy uses this value for all Apple II disks not 800K in size, and even for some of those), $24 = 800K Apple II disk */ uint16_t magic; /* always $0100 (otherwise, the file may be in a different format. */ }; static floperr_t apple35_diskcopy_headerdecode(floppy_image_legacy *floppy, uint32_t *data_offset, uint32_t *data_size, uint32_t *tag_offset, uint32_t *tag_size, uint8_t *format_byte, uint8_t *sides) { uint64_t size; struct header_diskcopy header; if (data_offset) *data_offset = 0; if (data_size) *data_size = 0; if (tag_offset) *tag_offset = 0; if (tag_size) *tag_size = 0; if (format_byte) *format_byte = 0; if (sides) *sides = 0; size = floppy_image_size(floppy); if (size < sizeof(struct header_diskcopy)) return FLOPPY_ERROR_INVALIDIMAGE; floppy_image_read(floppy, &header, 0, sizeof(header)); header.data_size = big_endianize_int32(header.data_size); header.tag_size = big_endianize_int32(header.tag_size); header.data_checksum = big_endianize_int32(header.data_checksum); header.tag_checksum = big_endianize_int32(header.tag_checksum); header.magic = big_endianize_int16(header.magic); if (header.disk_name[0] >= sizeof(header.disk_name)) return FLOPPY_ERROR_INVALIDIMAGE; if (header.magic != 0x0100) return FLOPPY_ERROR_INVALIDIMAGE; if (size != (header.data_size + header.tag_size + sizeof(header))) return FLOPPY_ERROR_INVALIDIMAGE; if (header.data_size == 80*1*10*512) { if (sides) *sides = 1; } else if (header.data_size == 80*2*10*512) { if (sides) *sides = 2; } else return FLOPPY_ERROR_INVALIDIMAGE; if (data_offset) *data_offset = sizeof(header); if (data_size) *data_size = header.data_size; if (tag_offset) *tag_offset = sizeof(header) + header.data_size; if (tag_size) *tag_size = header.tag_size; if (format_byte) *format_byte = header.format_byte; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_IDENTIFY(apple35_diskcopy_identify) { *vote = apple35_diskcopy_headerdecode(floppy, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr) ? 0 : 100; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_CONSTRUCT(apple35_diskcopy_construct) { floperr_t err; uint8_t format_byte, sides; uint32_t data_offset, data_size; uint32_t tag_offset, tag_size; int16_t format_byte_param = -1; struct header_diskcopy header; if (params) { /* create */ sides = params->lookup_int(PARAM_HEADS); data_size = 80*sides*10*512; tag_size = 80*sides*10*12; memset(&header, 0, sizeof(header)); header.data_size = big_endianize_int32(data_size); header.tag_size = big_endianize_int32(tag_size); header.disk_format = (sides > 1) ? 1 : 0; header.magic = big_endianize_int16(0x100); floppy_image_write(floppy, &header, 0, sizeof(header)); floppy_image_write_filler(floppy, 0, sizeof(header), data_size + tag_size); } /* load */ err = apple35_diskcopy_headerdecode(floppy, &data_offset, &data_size, &tag_offset, &tag_size, &format_byte, &sides); if (err) return err; format_byte_param = format_byte; return apple35_construct(floppy, data_offset, data_size, tag_offset, tag_size, format_byte_param, sides, false); } /* ----------------------------------------------------------------------- */ struct header_2img { char magic[4]; /* '2IMG' */ char creator[4]; /* signature; 'MESS' for MESS */ uint16_t header_length; uint16_t version; uint32_t image_format; uint32_t flags; uint32_t block_count; uint32_t data_offset; uint32_t data_length; uint32_t comment_offset; uint32_t comment_length; uint32_t creator_offset; uint32_t creator_length; uint32_t padding[4]; }; #define IMAGE_FORMAT_DO 0 #define IMAGE_FORMAT_PO 1 #define IMAGE_FORMAT_NIB 2 #define IMAGE_FLAGS_LOCKED 0x80000000 static floperr_t apple35_2img_decode(floppy_image_legacy *floppy, uint32_t *image_format, uint32_t *data_offset, uint32_t *data_length) { struct header_2img header; uint64_t size; if (image_format) *image_format = 0; if (data_offset) *data_offset = 0; if (data_length) *data_length = 0; size = floppy_image_size(floppy); if (size < sizeof(header)) { return FLOPPY_ERROR_INVALIDIMAGE; } floppy_image_read(floppy, &header, 0, sizeof(header)); if (memcmp(header.magic, "2IMG", 4)) { return FLOPPY_ERROR_INVALIDIMAGE; } header.header_length = little_endianize_int16(header.header_length); header.version = little_endianize_int16(header.version); header.image_format = little_endianize_int32(header.image_format); header.flags = little_endianize_int32(header.flags); header.block_count = little_endianize_int32(header.block_count); header.data_offset = little_endianize_int32(header.data_offset); header.data_length = little_endianize_int32(header.data_length); header.comment_offset = little_endianize_int32(header.comment_offset); header.comment_length = little_endianize_int32(header.comment_length); header.creator_offset = little_endianize_int32(header.creator_offset); header.creator_length = little_endianize_int32(header.creator_length); // at least some images "in the wild" (e.g. TOSEC Minor Set 1) have big-endian data sizes // even though that's against the .2mg spec if (header.data_length == 0x800c00) { LOG_FORMATS("ap_dsk35: corrected bad-endian data length\n"); header.data_length = 0x0c8000; } if ((((uint64_t) header.data_offset) + header.data_length) > size) return FLOPPY_ERROR_INVALIDIMAGE; if ((((uint64_t) header.comment_offset) + header.comment_length) > size) return FLOPPY_ERROR_INVALIDIMAGE; if ((((uint64_t) header.creator_offset) + header.creator_length) > size) return FLOPPY_ERROR_INVALIDIMAGE; if ((header.image_format != IMAGE_FORMAT_DO) && (header.image_format != IMAGE_FORMAT_PO) && (header.image_format != IMAGE_FORMAT_NIB)) return FLOPPY_ERROR_INVALIDIMAGE; if (image_format) *image_format = header.image_format; if (data_offset) *data_offset = header.data_offset; if (data_length) *data_length = header.data_length; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_IDENTIFY(apple35_2img_identify) { *vote = apple35_2img_decode(floppy, nullptr, nullptr, nullptr) ? 0 : 100; return FLOPPY_ERROR_SUCCESS; } static FLOPPY_CONSTRUCT(apple35_2img_construct) { floperr_t err; uint32_t image_format; uint32_t data_offset; uint32_t data_size; uint8_t sides = 2; struct header_2img header; if (params) { /* create */ sides = params->lookup_int(PARAM_HEADS); data_offset = sizeof(header); data_size = 80*sides*10*512; memset(&header, 0, sizeof(header)); header.header_length = little_endianize_int16(sizeof(header)); header.block_count = little_endianize_int32(80*sides*10); header.data_offset = little_endianize_int32(data_offset); header.data_length = little_endianize_int32(data_size); floppy_image_write(floppy, &header, 0, sizeof(header)); floppy_image_write_filler(floppy, 0, sizeof(header), data_size); } else { /* load */ err = apple35_2img_decode(floppy, &image_format, &data_offset, &data_size); if (err) return err; if (data_size == 80*1*10*512) sides = 1; /* single sided */ else if (data_size == 80*2*10*512) sides = 2; /* double sided */ else sides = 2; /* unknown... what to do... */ } return apple35_construct(floppy, data_offset, data_size, 0, 0, -1, sides, false); } LEGACY_FLOPPY_OPTIONS_START( apple35_mac ) LEGACY_FLOPPY_OPTION( apple35_raw, "dsk,img,image", "Apple raw 3.5\" disk image", apple35_raw_identify, apple35_raw_construct, nullptr, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTION( apple35_dc, "dc,dc42,dsk,img,image", "Apple DiskCopy disk image", apple35_diskcopy_identify, apple35_diskcopy_construct, nullptr, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTIONS_END LEGACY_FLOPPY_OPTIONS_START( apple35_iigs ) LEGACY_FLOPPY_OPTION( apple35_raw, "dsk,img,image,po", "Apple raw 3.5\" disk image", apple35_raw_identify, apple35_raw_construct, nullptr, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTION( apple35_dc, "dc,dsk,img,image", "Apple DiskCopy disk image", apple35_diskcopy_identify, apple35_diskcopy_construct, nullptr, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTION( apple35_2img, "2img,2mg", "Apple ][gs 2IMG disk image", apple35_2img_identify, apple35_2img_construct, nullptr, HEADS([1]-2) TRACKS([80]) SECTOR_LENGTH([512]) FIRST_SECTOR_ID([0])) LEGACY_FLOPPY_OPTIONS_END // license:BSD-3-Clause // copyright-holders:Olivier Galibert dc42_format::dc42_format() : floppy_image_format_t() { } const char *dc42_format::name() const { return "dc42"; } const char *dc42_format::description() const { return "DiskCopy 4.2 image"; } const char *dc42_format::extensions() const { return "dc42"; } bool dc42_format::supports_save() const { return true; } int dc42_format::identify(io_generic *io, uint32_t form_factor) { uint8_t h[0x54]; uint64_t size = io_generic_size(io); if(size < 0x54) return 0; io_generic_read(io, h, 0, 0x54); uint32_t dsize = (h[0x40] << 24) | (h[0x41] << 16) | (h[0x42] << 8) | h[0x43]; uint32_t tsize = (h[0x44] << 24) | (h[0x45] << 16) | (h[0x46] << 8) | h[0x47]; return size == 0x54+tsize+dsize && h[0] < 64 && h[0x52] == 1 && h[0x53] == 0 ? 100 : 0; } const floppy_image_format_t::desc_e dc42_format::mac_gcr[] = { { SECTOR_LOOP_START, 0, -1 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xd5aa96, 24 }, { CRC_MACHEAD_START, 0 }, { TRACK_ID_GCR6 }, { SECTOR_ID_GCR6 }, { TRACK_HEAD_ID_GCR6 }, { SECTOR_INFO_GCR6 }, { CRC_END, 0 }, { CRC, 0 }, { RAWBITS, 0xdeaaff, 24 }, { RAWBITS, 0xff3fcf, 24 }, { RAWBITS, 0xf3fcff, 24 }, { RAWBITS, 0xd5aaad, 24 }, { SECTOR_ID_GCR6 }, { SECTOR_DATA_MAC, -1 }, { RAWBITS, 0xdeaaff, 24 }, { RAWBITS, 0xff, 8 }, { SECTOR_LOOP_END }, { END }, }; bool dc42_format::load(io_generic *io, uint32_t form_factor, floppy_image *image) { uint8_t h[0x54]; io_generic_read(io, h, 0, 0x54); int dsize = (h[0x40] << 24) | (h[0x41] << 16) | (h[0x42] << 8) | h[0x43]; int tsize = (h[0x44] << 24) | (h[0x45] << 16) | (h[0x46] << 8) | h[0x47]; uint8_t encoding = h[0x50]; uint8_t format = h[0x51]; if((encoding != 0x00 || format != 0x02) && (encoding != 0x01 || format != 0x22)) { osd_printf_error("dc42: Unsupported encoding/format combination %02x/%02x\n", encoding, format); return false; } uint8_t sector_data[(512+12)*12]; memset(sector_data, 0, sizeof(sector_data)); desc_s sectors[12]; int pos_data = 0x54; int pos_tag = 0x54+dsize; int head_count = encoding == 1 ? 2 : 1; for(int track=0; track < 80; track++) { for(int head=0; head < head_count; head++) { int ns = 12 - (track/16); int si = 0; for(int i=0; i<ns; i++) { uint8_t *data = sector_data + (512+12)*i; sectors[si].data = data; sectors[si].size = 512+12; sectors[si].sector_id = i; sectors[si].sector_info = format; if(tsize) { io_generic_read(io, data, pos_tag, 12); pos_tag += 12; } io_generic_read(io, data+12, pos_data, 512); pos_data += 512; si = (si + 2) % ns; if(si == 0) si++; } generate_track(mac_gcr, track, head, sectors, ns, 6208*ns, image); } } return true; } uint8_t dc42_format::gb(const uint8_t *buf, int ts, int &pos, int &wrap) { uint8_t v = 0; int w1 = wrap; while(wrap != w1+2 && !(v & 0x80)) { v = v << 1 | ((buf[pos >> 3] >> (7-(pos & 7))) & 1); pos++; if(pos == ts) { pos = 0; wrap++; } } return v; } void dc42_format::update_chk(const uint8_t *data, int size, uint32_t &chk) { for(int i=0; i<size; i+=2) { chk += (data[i] << 8) | data[i+1]; chk = (chk >> 1) | (chk << 31); } } bool dc42_format::save(io_generic *io, floppy_image *image) { int g_tracks, g_heads; image->get_actual_geometry(g_tracks, g_heads); if(g_heads == 0) g_heads = 1; uint8_t h[0x54]; memset(h, 0, 0x54); strcpy((char *)h+1, "Unnamed"); h[0] = 7; int nsect = 16*(12+11+10+9+8)*g_heads; uint32_t dsize = nsect*512; uint32_t tsize = nsect*12; h[0x40] = dsize >> 24; h[0x41] = dsize >> 16; h[0x42] = dsize >> 8; h[0x43] = dsize; h[0x44] = tsize >> 24; h[0x45] = tsize >> 16; h[0x46] = tsize >> 8; h[0x47] = tsize; h[0x50] = g_heads == 2 ? 0x01 : 0x00; h[0x51] = g_heads == 2 ? 0x22 : 0x02; h[0x52] = 0x01; h[0x53] = 0x00; uint32_t dchk = 0; uint32_t tchk = 0; int pos_data = 0x54; int pos_tag = 0x54+dsize; for(int track=0; track < 80; track++) { for(int head=0; head < g_heads; head++) { uint8_t sectdata[(512+12)*12]; memset(sectdata, 0, sizeof(sectdata)); int nsect = 12-(track/16); uint8_t buf[13000]; int ts; generate_bitstream_from_track(track, head, 200000000/(6208*nsect), buf, ts, image); int pos = 0; int wrap = 0; int hb = 0; for(;;) { uint8_t v = gb(buf, ts, pos, wrap); if(v == 0xff) hb = 1; else if(hb == 1 && v == 0xd5) hb = 2; else if(hb == 2 && v == 0xaa) hb = 3; else if(hb == 3 && v == 0x96) hb = 4; else hb = 0; if(hb == 4) { uint8_t h[7]; for(auto & elem : h) elem = gb(buf, ts, pos, wrap); uint8_t v2 = gcr6bw_tb[h[2]]; uint8_t v3 = gcr6bw_tb[h[3]]; uint8_t tr = gcr6bw_tb[h[0]] | (v2 & 1 ? 0x40 : 0x00); uint8_t se = gcr6bw_tb[h[1]]; uint8_t si = v2 & 0x20 ? 1 : 0; // uint8_t ds = v3 & 0x20 ? 1 : 0; // uint8_t fmt = v3 & 0x1f; uint8_t c1 = (tr^se^v2^v3) & 0x3f; uint8_t chk = gcr6bw_tb[h[4]]; if(chk == c1 && tr == track && si == head && se < nsect) { int opos = pos; int owrap = wrap; hb = 0; for(int i=0; i<20 && hb != 4; i++) { v = gb(buf, ts, pos, wrap); if(v == 0xff) hb = 1; else if(hb == 1 && v == 0xd5) hb = 2; else if(hb == 2 && v == 0xaa) hb = 3; else if(hb == 3 && v == 0xad) hb = 4; else hb = 0; } if(hb == 4) { uint8_t *dest = sectdata+(512+12)*se; gb(buf, ts, pos, wrap); // Ignore the sector byte uint8_t ca = 0, cb = 0, cc = 0; for(int i=0; i<522/3+1; i++) { uint8_t e0 = gb(buf, ts, pos, wrap); uint8_t e1 = gb(buf, ts, pos, wrap); uint8_t e2 = gb(buf, ts, pos, wrap); uint8_t e3 = i == 522/3 ? 0x96 : gb(buf, ts, pos, wrap); uint8_t va, vb, vc; gcr6_decode(e0, e1, e2, e3, va, vb, vc); cc = (cc << 1) | (cc >> 7); va = va ^ cc; int suma = ca + va + (cc & 1); ca = suma; vb = vb ^ ca; int sumb = cb + vb + (suma >> 8); cb = sumb; vc = vc ^ cb; cc = cc + vc + (sumb >> 8); *dest++ = va; *dest++ = vb; if(i != 522/3) *dest++ = vc; } } else { pos = opos; wrap = owrap; } } hb = 0; } if(wrap) break; } for(int i=0; i<nsect; i++) { uint8_t *data = sectdata + (512+12)*i; io_generic_write(io, data, pos_tag, 12); io_generic_write(io, data+12, pos_data, 512); pos_tag += 12; pos_data += 512; if(track || head || i) update_chk(data, 12, tchk); update_chk(data+12, 512, dchk); } } } h[0x48] = dchk >> 24; h[0x49] = dchk >> 16; h[0x4a] = dchk >> 8; h[0x4b] = dchk; h[0x4c] = tchk >> 24; h[0x4d] = tchk >> 16; h[0x4e] = tchk >> 8; h[0x4f] = tchk; io_generic_write(io, h, 0, 0x54); return true; } const floppy_format_type FLOPPY_DC42_FORMAT = &floppy_image_format_creator<dc42_format>;